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A nonlinear resonant circuit comprising a SQUID magnetometer and a shunting capacitor is studied as a
readout scheme for a persistent-current qubit. The flux state of the qubit is detected as a change in the
Josephson inductance of the SQUID magnetometer, which in turn mediates a shift in the resonant frequency of
the readout circuit. The nonlinearity and resulting hysteresis in the resonant behavior are characterized as a
function of the power of both the input drive and the associated resonance-peak response. Numerical simula-
tions based on a nonlinear circuit model shows that the observed nonlinearity is dominated by the effect due to
an ac flux rather than current bias through the Josephson inductor.
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I. INTRODUCTION

Superconducting Josephson junction circuits are promis-
ing candidates for realizing a quantum computer. These
solid-state qubits can be fabricated using standard integrated-
circuit techniques. The possibility to incorporate the control
and readout circuitry on chip provides a manageable option
for scaling up to a larger number of qubits. Quantum-
coherent phenomena1 have been studied utilizing the
quantum states2 of single-qubit circuits and cavities,
including superpositions of distinct macroscopic states,3,4

time-dependent Rabi oscillations,5–11 cavity quantum
electrodynamics,12–14 and Mach-Zehnder-type
interferometry.15–17 Coherent oscillations,18 spectroscopic
evidence for entanglement,19 and a prototypical gate
operation20 have also been demonstrated in superconducting
coupled qubits. However, to further increase the coherence
times of these qubits for manipulation of their quantum
states, one must find ways to reduce the amount of noise
intrinsic to the qubit, as well as noise introduced by the read-
out process itself. In particular, several previous readout
methods have relied on the switching of a Josephson circuit
from a zero-voltage to a finite-voltage state. This switching
generates quasiparticles, and thus such a readout approach is
limited by the subsequent decoherence. More recently, dis-
persive readout schemes have been developed such that the
qubit is coupled to a resonator, and the state of the qubit is
detected as a shift in the resonant frequency of the resonator.
As a result, the readout process requires only lower input
biases and hence minimizes the generation of quasiparticles.
Furthermore, the resonator also acts as a narrow-band filter,
which shields the qubit from broadband noise. Dispersive
readout has been implemented for the persistent current
qubit,21,22 for the charge qubit,23 and for the hybrid qubit
where the readout was operated in the nonlinear regime for
its use as a bifurcation amplifier.24

This paper focuses on characterizing the nonlinear reso-
nant behavior of the dispersive readout circuit for a persistent
current qubit. The readout element is a SQUID magnetome-
ter, which is operated as a nonlinear, flux-sensitive inductor
incorporated in an L-C resonator. The qubit is coupled to the

SQUID inductor, and the flux state of the qubit is detected as
a shift in the resonant frequency of the resonator by means of
magnitude and/or phase measurements. Our approach differs
from other resonant-type experiments in two main ways.
First, our qubit and readout circuit were fabricated on the
same chip from niobium, whereas the implementations in
Refs. 21–24 were aluminum based. Second, we were able to
achieve a high-quality factor for the resonator by incorporat-
ing an rf transformation network on chip using the planarized
niobium process. We observed resonant behavior due to the
nonlinear Josephson inductance of the SQUID, given the
high-quality factor of the resonance.25,26 The frequency spec-
tra of the readout circuit were characterized in both the linear
and nonlinear regimes. Biasing the readout circuit in the non-
linear regime potentially provides additional sensitivity for
distinguishing the qubit states.24

The persistent current �PC� qubit used in this study is a
superconducting loop interrupted by three Josephson junc-
tions, two of which have the same critical current while the
third junction has a critical current reduced by a factor �.27,28

When the external magnetic flux threading the qubit loop is
biased near half a flux quantum, the two lowest-energy states
correspond to oppositely circulating persistent currents in the
qubit loop. The induced flux of the persistent current �and
hence the state of the qubit� is detected by a SQUID magne-
tometer which surrounds the qubit.

In the resonant readout scheme, the SQUID magnetome-
ter is operated based on the property that the Josephson in-
ductance of the SQUID is a nonlinear function of both the
current bias Isq and the flux bias �ext. In our experiments, the
current bias comprises solely an ac component, whereas the
flux bias �ext=�dc+�ac has both a dc component corre-
sponding to the external bias, and an ac component corre-
sponding to the induced flux that is mutually coupled to the
SQUID. In particular, we expect that the flux induced by the
circulating current in the resonating loop can be coupled to
the SQUID, and the size of the coupled flux is significant
near the resonant frequency at which the resonating current
becomes Q times the input current drive �Q enhancement�.

To demonstrate the general principles underlying the op-
eration, consider the limiting case where the SQUID has neg-
ligible loop inductance and symmetric junctions each with
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critical current Ico. In this limit, the SQUID behaves like an
equivalent single junction with an effective critical current
given by Ic��ext�=2Ico�cos���ext /�o��, and an effective
phase given by �p=sin−1�Isq / Ic��ext��. By defining the
Josephson inductance according to Vsq=d�LJIsq� /dt, where
Vsq is the voltage across the SQUID, we obtain the induc-
tance to be

LJ�Isq,�ext� =
�o

2�Ic��ext�
�p

sin �p
. �1�

In the linear regime where the current and flux biases are
small, one can approximate the SQUID by a linear inductor
given by

LJo =
�o

4�Ico
. �2�

The inductance for small ac drives can be approximated qua-
sistatically by the inductance at the dc operating points for
the current and flux biases. To demonstrate the separate ef-
fects due to the current and the flux, we first set �ext to zero
and reduce Eq. �1� to

LJ�Isq,0� = 2LJo
�p

sin �p
, �3�

where �p=sin−1�Isq /2Ico�. Thus, the inductance increases
with the size of the driving dc current bias. Likewise, when
Isq in Eq. �1� is set to zero,

LJ�0,�ext� =
LJo

�cos���ext

�o
�� , �4�

which has a periodic dependence on the dc flux bias with
periodicity given by �o. Starting from a bias of �dc=0, the
inductance increases with flux, and starting from a bias of
�dc=0.5 �o, the inductance decreases with flux.

The general trend of an ac bias can be conceptualized as
averaging the inductance about the dc bias point over the
range of the ac bias. Hence, near �dc=0 both the ac driving
current and the ac flux increase the effective inductance as
the ac drives increase. In contrast, near �dc=0.5 �o an in-
creasing ac flux bias tends to decrease the effective induc-
tance and an increasing ac current bias tends to have the
opposite effect. Therefore, the current and flux act in concert
at �dc=0, whereas, they compete at �dc=0.5 �o. From our
experiments and numerical simulations,29 we have found in
our readout circuit that the ac flux dominates at �dc=0.5�o.
Consequently, this paper will focus on the effects due to flux,
thereby allowing us to develop a nonlinear LRC model that
qualitatively matches the experimental observations.

Figure 1�a� shows the circuit schematic of the resonant
readout circuit. The PC qubit is mutually coupled to the
SQUID inductor LJ. The resonating loop comprises LJ, L2,
and the parallel combination of C1 and C2. To raise the qual-
ity factor of the resonance for higher readout sensitivity, a
tapped-inductor transformer formed by L2 and LJ is used to
step up the effective output resistance at the resonant fre-
quency. On the input side, L1 and C1 form an L-match net-

work, which matches the input resistance to the transformed
output resistance.30 Rs and RL represent the 50 � source and
load impedances from the RF electronics, and no resistors
were fabricated on chip. The junctions of the SQUID are
each shunted by a 5 pF capacitor �not shown�.

The device was fabricated using the planarized niobium
trilayer process at MIT Lincoln Laboratory.31 A device mi-
crograph is shown in Fig. 1�b�. The Josephson critical cur-
rent density was estimated to be 1.2 �A/�m2 from the pro-
cess test data. The Josephson junctions were laid out as
squares with a dimension of 1.0 �m and 0.9 �m for the
qubit, and 1.5 �m for the SQUID. Due to process bias, the
effective electrical junction dimensions are expected to be
smaller. We measured the effective size of the SQUID junc-
tions to be approximately 1.3 �m, a reduction of 0.2 �m
from their drawn dimension. The effective qubit junction
sizes were not measured directly, but were estimated to have
a reduction of approximately 0.35 �m, as determined by
measuring similarly drawn 1.0 �m process-test junctions
nearby. The area ratio of the SQUID to the qubit loop was
designed to be 1.3, with mutual coupling estimated to be
30 pH. The inductors were realized by square spirals with a
linewidth and spacing of 1 �m, while the capacitors com-
prised Nb electrodes with a dielectric consisting of 50 nm of
Nb2O5 and 200 nm of SiO2.

Our measurements were taken in a 3He cryostat at
300 mK. The measurement setup is shown in Fig. 1�c�. The
dc lines were used to characterize the properties of the
Josephson junctions, while the rf lines were used for the
resonant readout. The dc lines were filtered by copper pow-
der filters at 300 mK, whereas the rf lines had 3 dB attenu-
ators at the 1 K stage and 1 dB attenuators at the 300 mK
stage. The choice of attenuation was less than what was ideal
to attenuate the Johnson noise at the various temperature
stages, and was determined based on the signal-to-noise ratio

FIG. 1. Experimental setup: �a� Circuit schematic of the reso-
nant readout circuit. The designed component values were L1

=69 nH, L2=0.78 nH, C1=1.4 pF, and C2=100 pF. The SQUID
inductance LJ was approximated to be 0.1 nH for the circuit design.
Rs and RL were 50 � impedances. �b� Optical micrograph of the
actual device. �c� Electronic setup at different temperature stages of
the 3He cryostat.
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of the output, which was measured with a room-temperature
amplifier. Larger attenuation can be used in future experi-
ments where a cryogenic amplifier is incorporated. In addi-
tion, the external dc flux bias for the qubit was provided by a
superconducting coil wrapped around the sample housing.
We measured the transmission characteristics of the readout
circuit with a spectrum analyzer equipped with a tracking
generator, or with a network analyzer when the phase infor-
mation was needed. We used a resolution bandwidth �RBW�
of 3 kHz, and averaged each spectrum 100 times.

II. QUBIT READOUT AND EFFECT OF INPUT BIAS ON
READOUT CIRCUIT

The resonant frequency of the readout circuit was mea-
sured to be near 419 MHz, with a quality factor estimated to
be on the order of 1000. Figure 2�a� shows the results when
an external flux bias �ext was applied through the sample. At
a given �ext, we measured both the resonant frequency and
the peak power of the resonant spectrum. The resonant fre-
quency of the readout circuit, in the linear regime where all
the ac biases are small, is related to the effective inductance
LJ and capacitance C by

fo��ext� =
1

2�	�Ls + LJ��ext��C
. �5�

For our circuit parameters, Ls corresponds to the bias resistor
L2, and C is given by C1+C2
C2 in Fig. 1�a�.

A periodic modulation of the resonant frequency of the
readout circuit was observed and is interpreted as being
caused by the periodic modulation of the Josephson induc-
tance of the SQUID. At every 1.3 times the SQUID modu-
lation period, a shift in the resonant frequency, corresponding
to about 2 pH �1%� change in Josephson inductance, was
observed. These shifts, referred to as qubit steps, represent a
qubit transition between oppositely circulating current states,
and occur near flux biases of half a flux quantum �q=0.5 �o
for the qubit. As the flux is swept past �q=0.5�o, it is more
energetically favorable for the qubit to change from one cir-
culating current state to another in order to stay in the ground
state. The resultant change in the induced flux from the qubit
loop is coupled to the SQUID and accounts for the disconti-
nuities in the SQUID modulation curve. The periodicity of
the qubit steps �corresponding to a flux quantum for the qu-
bit� and the periodicity of the SQUID lobes �corresponding
to a flux quantum for the SQUID� are related by the ratio of
their loop areas defined by the fabrication parameters. In
addition, we observed a dip in the resonance-peak power
near the qubit step �not shown�, which corresponds to a
broadening of the resonant spectrum.32 Moreover, the para-
boliclike background observed in the frequency modulation
curve was due to undesired heating from the magnet current
in the dc �soft-coax� lines. The heating causes an increase in
the resonant frequency, and is more significant at high mag-
net current biases. The heating effect was eliminated for
faster scans and when the sample was later tested in a dilu-
tion refrigerator using superconducting magnet leads.

Figure 2�b� shows that as the level of input bias increases,
the amount by which the frequency is modulated over a flux
quantum decreases. This will be shown in the next section to
be a direct consequence of the shape of the resonant spec-
trum as it becomes increasingly nonlinear with higher input
power.

III. NONLINEAR RESONANT BEHAVIOR OF A
READOUT CIRCUIT

The resonant readout circuit can experimentally distin-
guish the difference in the flux produced by the circulating
current states of the qubit. Given that the efficacy of the
readout scheme depends on the nonlinear response of the
readout circuit, we now characterize the resonant behavior of
the readout circuit as a function of the dc flux bias for higher
ac drives.

Figure 3 shows the evolution of the magnitude and phase
spectra with increasing input power for external flux biases
of �dc=0,0.3�o, and 0.5 �o. In the case when �dc=0, the
magnitude and phase spectra evolve from a symmetric shape
to being asymmetric with a lower resonant frequency as the
power of the drive is increased. The lower resonant fre-
quency indicates that the effective Josephson inductance
over an oscillating period is higher. For higher levels of the
input power, the magnitude spectrum exhibits a discontinuity
near the resonant frequency, where the system jumps from
the lower branch to the higher branch. The phase spectrum
also exhibits a discontinuity similar to the magnitude spec-
trum. For �dc=0.5�o, the asymmetry is opposite to that of

FIG. 2. �Color online� �a� Modulation of the resonant frequency
with external dc flux bias. Qubit steps are observed at 0.18 mA and
−0.495 mA. �b� Modulation of the resonant frequency for various
input power. The amount of modulation is reduced in the nonlinear
regime �fb,NL− fa,NL� compared to the linear regime �fb,L− fa,L�. The
circular markers represent the inflection points where d2fo /d�2=0.
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�dc=0; the resonant frequency increases with higher power,
indicating that the overall effective inductance is decreasing
with increasing power of the drive. An intermediate behavior
is captured at �dc=0.3�o. As the input power increases, the
nonlinear magnitude spectrum first bends towards the lower
frequency side, then gradually evolves into a characteristic
shape with two discontinuities near the resonant frequency,
once when the magnitude is increasing and once when the
magnitude is decreasing. Similarly, the phase spectrum also
shows two discontinuities at the same frequency locations,
with a partial phase drop at each discontinuity.

The shapes of these curves are similar to the response of
driven, weakly nonlinear systems, which exhibit an instabil-
ity region indicating multiple solutions and hysteresis.33,34

Two such curves are shown in Figs. 4�a� and 4�b�. In par-
ticular, we model our system as a nonlinear circuit, which
results from a current-driven LRC resonant circuit with a
nonlinear inductor L. In this case the flux in the inductor �
satisfies

I sin �st = C
d2�

dt2 +
1

R

d�

dt
+ h��,d�/dt� , �6�

where the function h�� ,d� /dt� models the nonlinearity of
the inductor. For example, when h=� /Lo then the system is
a simple LRC resonant circuit with a linear inductor Lo.
When h
sin � the nonlinear equation is analogous to a
driven pendulum system whose response is similar to Fig.
4�b�.33,37,38 Another example is the Duffing equation where
h
�−c�3,whose response is like Fig. 4�a� for negative c
and like Fig. 4�b� for positive c.33,34 In Sec. V we will use a

functional form for the effective inductance, which incorpo-
rates both the needed dependence on applied dc flux and the
resonant-frequency dependence observed for small drives. In
fact, given that Fig. 2 shows that the resonant frequency is
periodic in the applied dc flux, then the effective inductance
that needs to be captured in the form of h must also follow
this same periodicity.

We now use the illustration in Fig. 4 to explain some of
the general features of the data in Fig. 2 and to motivate the
subsequent analysis. In Fig. 4, the shape of the resonant
spectra are shown for both the linear and nonlinear regimes
for �dc=0 and 0.5 �o, with the resonant frequency at �dc
=0.5�o lower than at �dc=0 given the flux dependence of
the effective inductance. The shaded region of the nonlinear
spectrum corresponds to the region f � �f tip , fbend� over which
multiple solutions occur �two of which are stable and one of
which is unstable�.35 The solid line traces the actual spectrum
observed experimentally with a forward frequency sweep,
and the circular marker corresponds to the peak frequency
that was being measured.

We have seen from Fig. 2�b� that as the level of input
power increases, the amount by which the frequency is
modulated over a flux quantum decreases. This is a direct
consequence of the shape of the resonant spectrum as the
system response becomes increasingly nonlinear. As illus-
trated in Figs. 4�c� and 4�d�, the resonant spectra at �=0 and
0.5 �o have resonant frequencies that are maximally sepa-
rated �fb,L− fa,L� when the input bias is low, and therefore
when the resonant spectra are nearly those of a linear re-
sponse. As the input current bias increases, the resonant

FIG. 3. �Color� Evolution of the magnitude and phase spectra of
the readout circuit from the linear to the nonlinear regime with
increasing input power. Data are shown for flux biases at �dc=0,
0.3 �o, and 0.5 �o. The nonlinear spectrum evolves from having a
lower resonant frequency at �=0 to having a higher resonant fre-
quency at �=0.5�o. The phase spectrum at −54 dBm for �
=0.3�o was arbitrarily shifted for display purpose. A self-resonant
dip was observed near the resonant frequency of the spectrum, e.g.,
at 419.5 MHz for �dc=0.5�o, and accounted for the general tilt in
the shape of the spectrum. The self-resonance is believed to be due
to parasitic capacitive coupling between the input and output ports.

FIG. 4. �Color online� Illustration of the resonant spectra in the
nonlinear regime ��a� and �b�� and the linear regime ��c� and �d�� for
�=0.5�o and �=0, respectively. The shaded region of the nonlin-
ear spectrum marks the region over which multiple solutions occur.
The solid line traces the actual spectrum observed experimentally
with a forward frequency sweep, and the circular marker corre-
sponds to the peak frequency that was being measured. The bending
of the nonlinear spectra to opposite sides accounts for the reduced
separation of resonant frequencies �fb,NL− fa,NL� compared to the
linear case �fb,L− fa,L�, as was observed in Fig. 2�b�.
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spectrum evolves from the symmetric Lorentzian shape to an
asymmetric shape. This is shown in Figs. 4�a� and 4�b�. The
fact that the nonlinear spectra bend to opposite sides at
�=0 and 0.5 �o accounts for a reduced amount of modula-
tion in resonant frequency �fb,NL− fa,NL� compared to the lin-
ear case. It was also observed in Fig. 2�b� that the frequency
modulation curves for different input power meet periodi-
cally at the inflection points, where the second derivative
d2fo /d�2 equals zero. In fact, the asymmetry of the spectrum
changes sign near the inflection points.

To further quantify the amount of bending in the nonlinear
spectrum, we introduce a parameter 	f which is a normalized
shift of the resonant frequency fn of the nonlinear spectrum
relative to the linear spectrum fo,

	f =
fn − fo

fo
. �7�

Experimentally, fo was determined as the resonant frequency
of the spectrum measured at the lowest power �−74 dBm�. fn

was defined as the peak frequency and, in the limit of high
input power, the frequency at which the discontinuity occurs.
The sign of 	f serves as an indication of the polarity of the
bending. A positive 	f corresponds to the nonlinear spectrum
bending to the higher-frequency side, and a negative 	f cor-
responds to the spectrum bending to the lower-frequency
side.

In Fig. 5 the normalized frequency 	f of the resonant
spectrum is plotted for increasing input power from
−74 dBm to −54 dBm. The measurements of the spectra

were made with a forward frequency sweep. The different
markers correspond to various flux biases between �dc=0
and 0.5 �o. At �dc=0.5�o �top plot�, 	f is increasingly posi-
tive; whereas, at �dc=0 �bottom plot�, 	f becomes increas-
ingly negative. Furthermore, the amount of bending �	f � at
�dc=0 is smaller than at 0.5 �o for a given input bias, which
is related to the fact that a forward frequency sweep captures
the full frequency extent of the bistable region for �dc
=0.5�o but not for �dc=0. �The reverse is true if the fre-
quency is swept backwards, as discussed in the next section.�
Finally, at intermediate flux biases between 0.3 �o and 0.36
�o, 	f shows an undulating behavior, corresponding to the
asymmetric spectrum constantly varying its polarity. There is
an initial linear dependence of 	f on input power, which will
be discussed in the next section.

IV. HYSTERESIS OF THE RESONANT SPECTRUM

For larger input drives, the resonant spectrum exhibits a
discontinuity, which corresponds to one of the two bound-
aries of the bistable region. Within the bistable region, the
system settles into one of the solutions depending upon the
initial conditions. For our case, the initial condition is set by
the solution at the previous driving frequency, which in turn
is determined by the direction of the frequency sweep. The
resonant behavior of the readout circuit presented so far was
obtained with a forward frequency sweep. Here, we present
the hysteretic behavior of the resonant spectrum measured
with both forward and backward frequency sweeps so that
the full boundary of the bistable region can be mapped.

The top three plots in Fig. 6 show the typical hysteretic
spectrum for flux biases at �dc=0, 0.3�o, and 0.5�o. The
data are shown for an input power level of −54 dBm, which
corresponds to a highly nonlinear regime. The direction of
the frequency sweep is indicated by the arrows. For the case
of �dc=0 and 0.5�o, we define the extent of the bistable
region as �f t− fb�, where fb is the frequency at which the
resonant spectrum jumps from the lower to the higher stable
branch, and f t corresponds to the frequency at which the
spectrum falls from the higher to the lower stable branch. At
�dc=0.3�o, the forward and backward traces overlapped,
indicating that the bistable region associated with the two
discontinuous edges were too small to be detected given the
frequency resolution.

The onset of the hysteretic regime is illustrated in the
middle three plots of Fig. 6, where the extent of the bistable
region was characterized as a function of input power from
−66 dBm to −54 dBm in 1 dB steps. First, we normalized f t
and fb with respect to the resonant frequency fo in the linear
regime according to a definition similar to Eq. �7�.

	f t =
f t − fo

fo
and 	fb =

fb − fo

fo
. �8�

	f t and 	fb were then plotted as a function of input power.
Hysteretic behavior was observed when the input bias was
above a threshold PH, which was measured to be −61 dBm
for �=0.5�o, and at a higher power of −59 dBm for �=0.

In the bottom row of plots of Fig. 6, we have plotted 	f t
and 	fb as a function of the resonance-peak power. We see

FIG. 5. �Color online� Bending 	f as a function of input power
from −74 dBm to −54 dBm in 1 dB steps. Measurements were
made with a forward frequency sweep. The data are shown for
various dc flux biases between 0 and 0.5�o. The sign of 	f indi-
cates the polarity of the asymmetric spectrum. The red line corre-
sponds to a linear fit in the low-power regime.
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that 	f t is initially a linear function of the resonance-peak
power for all three fluxes shown and that it is fully linear for
zero dc flux. This initial linear dependence on resonance-
peak power is found for many functional forms of the non-
linear term h�� ,d� /dt�.33,34 However, the dependence on
input power varies according to the particular functional
form of h�� ,d� /dt� �see Ref. 34 for some sample cases�.
For example, both the Duffing equation and the pendulum
model give a linear dependence on both input and resonance-
peak powers in the weakly nonlinear regime.34–36 For h
=��d� /dt�2, 	f t depends linearly on the resonance-peak
amplitude, but as the cube root of the input power.34

V. SIMULATIONS OF NONLINEAR RESONANT
BEHAVIOR BASED ON AN LRC CIRCUIT MODEL

In this section, we simulate the nonlinear resonant behav-
ior of the readout circuit. One of the approaches to analyze
the ac-driven behavior of a circuit comprising a SQUID is to
solve the set of coupled differential equations governing the
SQUID consistently with the rest of the circuit. However, the
dynamical modeling of the resulting circuit is complex; for
example, for a circuit with a SQUID shunted by a resonating
capacitor has six dynamical variables when the mutual in-
ductive coupling between the SQUID and the resonating
loop is included.29 Here, we present simulation results based
on the LRC circuit model of Eq. �6� with the linear induc-
tance replaced by a flux-dependent nonlinear inductor. The
circuit schematic is shown in Fig. 7�a�. This approach re-
duces the mathematical complexity of the problem to one

dynamical variable, and at the same time, it models the non-
linearity of the SQUID due to an ac flux bias. The observed
nonlinear resonant behavior was qualitatively reproduced.

Specifically, the readout SQUID is modeled by a flux-
dependent nonlinear inductor LJ��ext� given by

LJ��ext� =
Lo

	�1 + 
2� + �1 − 
2�cos�2��ext/�o�
. �9�

The functional form for the nonlinear inductance was moti-
vated by the Josephson inductance of an asymmetric SQUID.
Equation �9� has the form of LJ��ext�=�o /2�Ic��ext�, where
Ic��ext� corresponds to the critical current of a SQUID with
asymmetric junctions of Ico�1±
�.37 The functional form for
the nonlinear inductor LJ��ext� in Eq. �9� captures the sinu-
soidallike shape of the frequency response of the actual read-
out circuit as previously shown in Fig. 2�b�. This is illus-
trated in Fig. 7�b�, where LJ��ext� is plotted for Lo=	2LJo

�Eq. �2��, and for different values of 
. It can be seen that 

has an effect on �a� the amount by which LJ is modulated
over half a flux quantum, and �b� the locations of the inflec-
tion points at which the second derivative d2LJ /d�2 is zero.
We used 
 to fit the locations of the inflection points
�d2fo /d�2=0� in the frequency response data in Fig. 2�b�. It
should be noted that in this nonlinear LRC circuit model, we
have used asymmetry in the junctions as one possible expla-
nation for the shape of the frequency response data. How-
ever, regardless of the physical origin of Eq. �9�, it is only its
functional form that is important in capturing the flux depen-
dence of the inductance.

FIG. 6. �Color online� Top plots: Hysteretic
resonant spectrum for flux biases at �dc=0,
0.3�o, and 0.5�o. The extent of the bistable re-
gion is given by �f t− fb�. Middle plots: 	f t and 	fb

as a function of input power from −66 dBm to
−54 dBm in 1 dB steps. The onset of hysteretic
regime occurs at PH=−61 dBm for �dc=0.5�o

and PH=−59 dBm for �dc=0. Bottom plots: 	f t

and 	fb replotted as a function of resonance-peak
power. The dotted line is a linear fit for low
power.
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The nonlinear behavior of the simulated LRC circuit is
due to an ac flux drive. In particular, the nonlinear inductor is
mutually coupled to an external flux bias of �ext=�dc+�ac,
where �dc models the dc flux bias that was applied experi-
mentally to the SQUID, and �ac models the ac flux drive that
was mutually coupled to the SQUID from a nearby loop. In
reality, we expect that the induced flux due to the circulating
current in the resonating loop was coupled to the SQUID.
The coupled flux became significant especially near the reso-
nant frequency at which the resonating current is enhanced
by the quality factor Q. In the simulations, the ac flux drive
is given by �ac=��, where it is proportional to the self-
induced flux of the inductor � and has the same frequency as
the driving frequency �s.

The dynamics of the nonlinear LRC circuit is governed by
Eq. �6� with

h =
�

LJ��ext�
. �10�

Assuming that �1−
2� / �1+
2��1, Eq. �10� can be ex-
panded in the form of a�+b�2+c�3, where b

sin�2��dc /�o� and c
cos�2��dc /�o�. For the cases

when �dc=0 or �dc=0.5�o, b=0. The resulting equation is
of the form of a Duffing equation with both a linear and
cubic term in �. With increasing drive, there will be a bend-
ing of the resonant frequency with its associated hysteresis.34

Moreover, the sign of the cubic term is opposite for �dc=0
and �dc=0.5�o, and hence bending will be in opposite di-
rections, as needed to qualitatively explain the data. At inter-
mediate values of �dc there will be a competition between
the quadratic and cubic terms. Finally, it should be noted that
for small coupling ���0�, Eq. �10� reduces to a linear in-
ductance, which depends on �dc in a sinusoidal-like fashion.

The circuit parameters used for the simulations were C
=100 pF, and Ico=2.3 �A, corresponding to LJo
0.1 nH.
The choice of C and LJo were based on best estimates of the
actual sample parameters. In the actual sample, the quality
factor Q was based on the transformed value of the 50 �
load with the tapped-inductor network. On the other hand,
the resistance R in the simulated circuit was chosen to give a
desirable quality factor Q. The simulation results presented
here were based on R=500 � which corresponds to a Q of
500. Moreover, the coupling parameter � was chosen such
that �ac was about 0.1�o near the resonant frequency.

Given that the tapped-inductor network was not included
in the simulated circuit, i.e., we have kept the nonlinear in-
ductor LJ based on the best estimate of the SQUID param-
eters and omitted the bias inductor Ls, i.e., L2 in Fig. 1�b�, we
expected the simulation results to be quantitatively different
from the experimental data in two ways: First, the resonant
frequency of the simulated response will be higher; and sec-
ond, the resultant amount of bending in the nonlinear reso-
nant spectrum given by 	f in Eq. �7� will be larger.

By numerically solving Eq. �6� for � at different driving
frequencies �s, the magnitude and phase spectra of the volt-
age across the inductor VL=d� /dt were obtained. In Fig. 8
the spectra are shown for increasing drive amplitude for
�dc=0, 0.3�o, and 0.5�o. VL is plotted in reduced units of
�o /	LJoC, and the drive amplitude I is in units of 2Ico. The
driving frequency was swept such that the lower stable
branch within the bistable region is shown for all flux biases.
The simulation qualitatively resembles the experimental data
presented in Fig. 3. As expected, the nonlinear spectrum has
a lower resonant frequency at �dc=0, and a higher resonant
frequency at �dc=0.5�o. Also, discontinuities are observed
at the boundary of the bistable region for the higher biases.
At �dc=0.3�o, the magnitude spectra at the two highest in-
put biases exhibit two discrete jumps, one at a lower fre-
quency when the magnitude is increasing, and another at a
higher frequency when the magnitude is decreasing. As for
the phase spectra, a partial phase drop occurs at the low-
frequency discontinuity, while most of the phase drop occurs
at the high-frequency discontinuity.

The hysteretic behavior was also captured with the simu-
lations and shown in Fig. 9. This was performed by stepping
the driving frequency in both the low-to-high and high-to-
low frequency directions, and by ensuring the initial condi-
tions used for the next frequency point were the solutions
obtained for the previous frequency point. We have assumed
that the square of the drive amplitude I2 for the simulations is
proportional to the input power for the experiment.

The top row of plots in Fig. 9 shows the typical simulated
hysteretic behavior at various flux biases for I /2Ico=0.01.

FIG. 7. �Color online� �a� Circuit schematic of the simulated
nonlinear LRC circuit model. The circuit is driven by a current
source I sin �st. The readout SQUID is modeled by a flux-
dependent nonlinear inductor given by Eq. �9�. The simulated cir-
cuit parameters are R=500 �, C=100 pF, and Ico=2.3 �A, which
corresponds to LJo=0.1 nH. The Q of the simulated circuit is about
500. �b� A plot of LJ��ext� given by Eq. �9� for different values of 
.
The circular markers represent the inflection points where
d2LJ /d�2 is zero. The illustration shows that depending on the dc
flux bias, the ac modulation of LJ due to �ac can result in a lower
��dc=0.5�o� or higher ��dc=0� effective inductance.
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The extent of the bistable region given by �	f t−	fb� is the
largest at �dc=0.5�o for this drive amplitude. The middle
and bottom rows of plots show the dependence of 	fb and 	f t
as a function of input power, and resonance-peak power, re-
spectively. The trend at �dc=0.3�o shows a qualitative re-
semblance to the experimental data. The magnitude of 	f t
initially increases linearly with the power of the drive for

�dc=0 and 0.5�o similar to the data. As explained previ-
ously, this linear dependence is expected at low drives due to
the nature of the nonlinearity.34,36

It has been discussed earlier that the omittance of the bias
resistor in the resonating loop from the actual circuit was
expected to cause discrepancy in the simulated values for the
resonant frequency and 	f . With reference to Eq. �5�, the

FIG. 8. �Color online� Simu-
lated magnitude and phase spectra
of VL for increasing drive ampli-
tude I. The results qualitatively re-
produce the experimentally ob-
served behavior in Fig. 3. VL is
plotted in reduced units of
�o /	LJoC and I in units of 2Ico.
The frequency axes are normal-
ized with respect to the resonant
frequency of the linear spectrum:
fo=1.88 GHz ��dc=0�, 1.59 GHz
�0.3�o�, and 1.33 GHz �0.5�o�.
The phase spectra at the highest
drives I=0.1 and 0.2 for �dc

=0.3�o are arbitrarily shifted for
display purpose.

FIG. 9. �Color online� Top row: simulated
hysteretic behavior at various flux bias for drive
amplitude I=0.01. Middle row: 	fb and 	f t as a
function of the square of the drive amplitude,
which is proportional to the input power. The
simulations were performed for I between 0.001
and 0.05. Bottom row: 	fb and 	f t as a function
of the square of the voltage response VL, which is
proportional to the resonance-peak power. VL is
in reduced units of �o /	LJoC and I is in units of
2Ico.
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effect of a bias inductor was estimated with a linear analysis
using Ls=1.4 nH. This estimate results in the resonant fre-
quency reduced to 419 MHz while 	f was also reduced to
about 10−4, consistent with the data.

Finally, we have performed simulations with higher val-
ues of R, which correspond to Q=1000 and 5000. As Q
increased, we observed that the resonance-peak voltage/
current was enhanced when the circuit was driven in the
linear regime, but the enhancement effect decreased at higher
input drive and was negligible in the strongly nonlinear re-
gime. Similarly, 	f increased with Q in the weakly nonlinear
regime, but the effect became negligible in the strongly non-
linear regime.

The nonlinear LRC circuit model presented here is meant
to show the qualitative trends in the data. To be more quan-
titative, we have analyzed more complex circuits.29 For ex-
ample, we have considered the current-driven circuit across
an asymmetric SQUID with self-inductance, and mutual in-
ductive coupling between the SQUID loop and the resonat-
ing loop. The simulation results reproduced the data with
reasonable numbers; however, the quantitative fitting of the
data was not possible due to the uncertainty in the actual
on-chip values for the capacitances and the mutual or self-
inductances.

VI. DISCUSSION

In this paper, we experimentally characterized the nonlin-
ear resonant behavior of the readout circuit to be utilized in a
resonant scheme for measuring a PC qubit. Different levels
of nonlinearity in the readout operation were demonstrated
by varying the level of input bias to the circuit. Given the
high-quality factor of the resonance, we observed unique
manifestation of the nonlinearity due to the Josephson induc-
tance of the readout SQUID. The resonant spectrum of the

readout circuit became asymmetric in the nonlinear regime,
and the polarity of the asymmetry changed sign as a function
of dc magnetic flux bias to the SQUID. The numerical simu-
lations based on a nonlinear LRC circuit model qualitatively
reproduced the trends in the experimental data.

To perform time-resolved measurements of the qubit on a
microsecond time scale, the resonant readout is to be oper-
ated at a bias frequency fs near the resonant frequency fo.
The change in the resonant frequency due to the qubit signal
is thus detected as a difference in the magnitude or phase of
the output voltage at fs.

While operating the resonant readout in the linear regime
keeps the input bias low and reduces the level of decoher-
ence on the qubit, the readout operated in the nonlinear re-
gime has the advantage of being used as a bifurcation
amplifier.24 In particular, the bias frequency fs can be chosen
within the bistable region of the nonlinear spectrum such that
the system has two stable solutions corresponding to differ-
ent voltages. The probability of occupancy in the higher
�lower� stable solution is sensitive to changes in the resonant
frequency fo �qubit-mediated� relative to fs, and provides
additional sensitivity for qubit readout over the linear ap-
proach.
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