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Quantum electron microscopy (QEM) is a measurement approach that could reduce sample radiation damage,
which represents the main obstacle to sub-nanometer direct imaging of molecules in conventional electron
microscopes. This method is based on the exploitation of interaction-free measurements in an electron resonator.
In this work, we present the design of a linear resonant electron cavity, which is at the core of QEM. We assess its
stability and optical properties during resonance using ray-tracing electron optical simulations. Moreover, we

analyze the issue of spherical aberrations inside the cavity and we propose and verify through simulation two
possible approaches to the problem. Finally, we discuss some of the important design parameters and con-
straints, such as conservation of temporal coherence and effect of alignment fields.

1. Introduction

In state-of-the-art electron microscopy, radiation damage due to the
minimum electron dose necessary to overcome the source and detector
shot noise and resolve sub-nanometer features is recognized as the main
resolution limit when imaging biological specimens [1-4]. Williams
and Carter refer to this issue as the microscopists’ counterpart of the
Heisenberg uncertainty principle [5]. Important progress to solve this
problem has been made in recent years thanks to the development of
cryo-transmission electron microscopy [6,7]. In particular, the coupling
of this method with data analysis techniques, consisting of merging data
coming from tens of thousands of images, [8] allows reaching sub-
nanometer resolution [9]. Even though this technique gets around the
radiation-damage problem, it does not allow direct imaging of a single
target molecule, which would be the ideal solution. Moreover, even
though cryo-TEM shows astonishing results, [10,11] it exhibits some
critical issues in terms of effort in preparing several identical samples
and complexity of data treatment [8,12]. Alternative techniques are
under investigation, such as electron wavefront engineering to verify
structural hypotheses [13], entanglement-assisted electron microscopy
based on a flux qubit [14], electron holography/ptychography [15,16],
multi-pass transmission electron microscopy [17] and quantum elec-
tron microscopy (QEM) [18]. This work develops the QEM approach.

* Corresponding author.
E-mail address: turchett@mit.edu (M. Turchetti).
! These authors contributed equally to this work.

https://doi.org/10.1016/j.ultramic.2019.01.010

A QEM scheme exploits the concept of interaction-free measurement
in a resonant electron cavity, that generates and sustains the resonance
of two coupled states of the electron wavefunction in order to form
images with reduced damage [19]. Several design schemes for a QEM,
including new electron optical elements and design considerations,
have been proposed in 2016 [18]. These design schemes are based on
both linear and circular types of resonators. The cavity of a linear re-
sonator is mainly defined by two electron mirrors. Instead, the form of a
circular resonator is similar to the storage ring in particle accelerators
[20], and a miniature storage ring has been developed [21]. However, a
resonator with controlled electron trajectories for nanoscale imaging
applications has not been designed or demonstrated. Thus, before
building a physical apparatus, a detailed electron optical design is ne-
cessary with consideration of many parameters such as beam diameter,
aberration and alignment precision. Particularly important is the vali-
dation of the system performance during resonance, which means that a
comprehensive study of the electron trajectory evolution with the
number of roundtrips is necessary.

To address these issues, in this work we propose a design for a linear
resonant electron cavity with two electron mirrors, and we assess its
performance through a ray-tracing simulation of the electron trajec-
tories for several consecutive roundtrips. Particularly important in our
electron-optical resonant system is the value of electron optical
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properties such as first-order chromatic aberration (C.) and third-order
spherical aberration (C;), because they build-up at every roundtrip
progressively, thus, compromising the resolution. Specifically, we pro-
pose two possible modifications to our initial scheme in order to correct
C, that appears to be the dominant aberration in our system. The first
one consists of the insertion of a quadrupole-octupole corrector inside
the cavity. The second one consists in the substitution of the electron
gate mirror with a hyperbolic triode mirror equipped with an Einzel
lens to correct the aberrations [22-24]. Finally, we discuss some of the
constraints that the peculiarity of our system imposes on the design
specifications (e.g the path difference between the two coupled beams)
and the alignment precision, such as the conservation of the temporal
coherence and the parasitic phase error. We also address the necessity
of correcting misalignments in the cavity, designing an alignment unit
and analyzing the effect of an alignment field on the stability of the
system in terms of loss of beam coherence and beam energy spread.

2. Design of the linear resonant electron cavity

In this section, we will explain the working principle of the linear
resonant electron cavity, supporting our design with ray-tracing simu-
lation to assess the system performance. Moreover, we will describe the
process of geometrical optimization that we used in order to reduce the
effect of aberrations.

2.1. Principle of the linear cavity

A QEM consists of an electron gun, illumination optics, resonant
cavity, imaging optics, and detectors, as described in [18]. The core of
the structure is the cavity, which sustains and controls the electron
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beam roundtrips. Fig. 1 shows a geometric ray diagram for a linear
resonant electron cavity with two electron mirrors, a gated mirror, and
a diffractive mirror. The gated and diffractive mirrors are essential
components of the resonant cavity that can permit or deny the passage
of electrons through their optical axis, therefore controlling the in-
coupling into and out-coupling from the resonant cavity. In particular,
Fig. 1(a) portrays the schematics of the cavity and its operation in an
SEM, while Fig. 1(b) shows the optical diagram of the resonator high-
lighting the two phases of operation, in-coupling, diffraction, and re-
sonance. The optics of the resonator is designed so that both object and
image lie on the same plane, at the mirror surface of the gated mirror
side of the resonator. Fig. 1(c) and (d) show the mode of operation of
gated and diffractive mirror respectively.

This design is simplified with respect to the one with two electron
mirrors and one lens described in [18] in order to reduce the number of
alignment units that will be required between every two electron op-
tical elements composing the cavity. Moreover, this scheme is con-
ceived so that the resonator could be placed in a scanning electron
microscope (SEM) with a pulsed illumination that can be obtained
through laser triggering [25-28] or using a fast blanker [29,30]. A
comparison between the two methods has also been proposed in [31].
The SEM column, consisting of the electron gun and focusing optics, is
used to produce a focused electron beam. In the following, we analyse
the different phases of operation.

2.1.1. In-coupling

The gated mirror (also referred to as the ‘barn door’ in [18]) con-
trols the access of this beam to the resonator. A similar concept was
proposed for in-line aberration correction in [32]. This electron optical
element is comprised of six stacked electrodes placed at the top of the

Fig. 1. Schematic (a) and optical diagram (b) of
the linear resonant cavity, with highlight on the
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resonator. The potential at the gated mirror is usually tuned so that it
acts as a double-sided mirror. In this condition, the electrons external to
the cavity cannot enter the cavity, while the resonance stability is
maintained internally. To let the electron access the resonator, a posi-
tive pulse is applied to temporarily lower the central electrode’s nega-
tive potential and open the gate.

2.1.2. Resonance

Once the beam enters the cavity, it reaches the diffractive mirror.
This is a four-electrode element. Here, the electron wavefunction is split
into two components by the interaction with a potential grating gen-
erated by the periodic pattern of the mirror’s lowest electrode. This
diffraction scheme is similar to the one in low energy electron diffrac-
tion (LEED) [33]. However, the use of a potential surface for the dif-
fraction in place of a physical surface ensures the absence of direct
interaction with the physical grating, which prevents intensity loss by
inelastic scattering as can happen in LEED [34]. The zeroeth diffraction
order, that will be referred to as the “reference beam”, is reflected on
the same path of the incoming beam. The first order diffracted beams
generated by the grating instead will be referred to as the “sample
beam”. The diffractive electron mirror also generates higher order
diffracted beams. The intensities of these orders depend on the ampli-
tude of the sinusoidal surface at which the electron are reflected.
Hence, if the diffractive mirror potential is tuned correctly, the loss to
the higher order can be made negligible. Moreover, as described by
Yang et al. [35] these higher-order beams can be blocked by a beam
limiting aperture. This approach can effectively preserve two beam
intensities by using the quantum Zeno effect. Therefore, if necessary, an
aperture can be added at the gated mirror. Note that we cannot block
one of the first order diffracted beams since in this set-up the intensity
in the +1 beam appears in the — 1 beam after the next round in the
resonator.

The cavity design permits resonance of both the reference and
sample beams, which are coupled by diffraction at the potential grating.
To reduce the complexity of the “electron diffraction on a potential
grating” problem treatment (yet to be experimentally demonstrated),
the cavity is designed so that the reference beam reaches the potential
grating parallel to the optical axis. The fundamental condition is that
the electric field at the grating has to be high enough so as to reduce the
effect of the energy distribution of reflecting electrons. In fact, assuming
the electron beam has an energy spread AE= 0.7 eV, [5] the electrons
with higher and lower energies with respect to the average are reflected
at different potential surfaces, and the distance of such surfaces from
the ideal surface is lower with a higher electric field. In this particular
case, with an 8 kV/mm and a 16 kV/mm electric fields & we would have
a longitudinal spread of the mirror surface location Ax = AE/q&E of
87.5nm and 43.75 nm, respectively. Moreover, a higher electric field at
the mirror guarantees a higher amplitude of the periodic potential at
the reflection surface for the same mirror electrode potential.

The present set-up is meant for proof-of principle experiments, so
we may choose the sample as we wish. We plan to place the sample on a
thin conductive foil electrode with a center hole for the reference beam.
For the first experiment, the sample is going to be a symmetric pattern
of holes on the foil itself, where the sample beams can be either blocked
or transmitted. This foil is to be positioned on an equipotential plane
close to the mirror surface, where the electrons still have a few elec-
tronvolts energy. The voltage on this electrode should be such that the
electric field at both sides of the foil is equal, thus avoiding a lens effect
of the holes. We expect that the resonance function will not be not
disturbed. It is worth noticing that the foil is going to act as the blocking
aperture for the higher order beams, therefore confining the intensity to
reference and sample beams.

In this work we assume a binary amplitude object model, that is to
say that different regions of the sample can be either opaque or trans-
parent. Such an object allows us to apply straightforward interaction-
free measurement theory. A real sample with different levels of
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transparency can be imaged as well in this system as demonstrated by
Thomas et al. in [36], but the treatment of the problem is more com-
plex. However, for a proof of concept of the measurement scheme a
binary object would suffice. According to interaction-free measurement
theory, in the case of a transparent sample pixel, during the resonance,
the beam intensity is gradually transferred to the sample beam. On the
contrary in the case of an opaque sample pixel, most of the intensity
remains confined in the reference beam [18,19,37,38].

This system sustains the resonance for a unique reference state, so
the sample cannot be scanned by moving the beam. Therefore it has to
be imaged by moving the sample itself with a nano-stage controlled by
a piezo-motor. We recognize that having to move the sample is a lim-
itation of our current design because it will be challenging from a
mechanical standpoint to move a sample in such a small region and
because in the long run it could represent a bottleneck for the system
resolution. Therefore, future designs will have to address this issue and
some better solution will have to be implemented. However, for a
proof-of-concept demonstration of the technique it is a suitable solu-
tion.

2.1.3. Out-coupling

After a sufficient number of roundtrips, a pulse is applied to increase
the diffractive electron mirror potential, letting the beams out of the
resonator. The necessary number of roundtrips can be estimated con-
sidering the expected probability of amplitude transfer of the wave-
function that allows discriminating between an opaque and a trans-
parent pixel [38]. In order to allow the out-coupling of the electrons the
grating has to be a transmission free-standing grating, similarly to the
grating used by McMorran et al. in [39]. The out-coupling process is
summarized in Fig. 1d. After the signal is out-coupled increasing the
negative diffractive mirror potential using a voltage pulse, the beams
pass through a lens which focuses them on the detection plane and the
outcome of the measurement is recorded on a single electron sensitive
camera such as the Gatan K3 IS. The out-coupling is the only step of the
measurement in which the beam can interact with the grating. Since the
out-coupled intensity can vary depending on whether the constructive
interference fringes line up with the grating bars or not, in order to
maximize the out-coupled intensity it would be beneficial to use a low
duty-cycle grating and maintain during the out-coupling process a non-
zero voltage on the grating to produce a stronger phase grating effect.”
It is also worth noting that in the future other out-coupling and de-
tection schemes can be investigated. One possibility would be to use the
grating itself as a spatial filter during the out-coupling and then with a
single monolithic detector relate the out-coupled intensity to the spe-
cimen-induced phase [40].

2.2. Design constraints

We aim to integrate the electron cavity design presented in this
paper into a conventional SEM. We have considered a field emission
SEM, LEO 1525 (ZEISS) for our design, but most conventional SEMs
could potentially be used. We need to consider the following practical
points:

1 The length of electron cavity is limited to around 120 mm for the
resonator to fit in the SEM chamber. This length still requires a
significant modification of the stage. Most conventional SEMs can
deal with such modification of the stage and the SEM chamber can
deal with 120 mm-long electron column. The required stage should
handle the heavy weight of the electron cavity and also have a
through-hole along the SEM colomn optical axis for beam out-
coupling.

2 The length of the cavity should also consider the roundtrip time

2We thank the reviewer for pointing this out.
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Fig. 2. The dependence of the round-trip time on electron energy for different
cavity lengths. We highlighted on the graph a parametric window in which to
design the resonator by considering the physical dimensions of microscope
chamber and other experimental limits such as the pulse-generator specifica-
tion, the maximum voltage allowed by electrical feedthroughs and the
minimum electron energy available in the SEM.

(which is related to the energy of electron) and the correspondent
limitation on the pulse length, that, once electrons are allowed into
the cavity, has to close the gated mirror before they complete a
roundtrip. Therefore, we are limiting the roundtrip time to 1 ns as
building a sub-nanosecond high voltage pulse generator can be
challenging.

3 High speed and high voltage electrical feedthrough is only com-
mercially available up to 4kV.

4 The beam separation between reference and sample beam as func-
tions of energy of electron, grating pitch, and the length of re-
sonator;

5 The lowest energy that we can use in our SEM is 500 eV.

Fig. 2 shows the roundtrip time with the electron energy for dif-
ferent cavity dimensions, indicating a possible operational window by
taking into account some of the constraints previously explained. The
selected parameters for design and simulation are 3 keV of electron
energy and 60 mm of cavity length.

2.3. Design of optic components

2.3.1. Gated mirror

Fig. 3 shows electrodes’ geometries and analysis of the gated mirror.
The electron-optical simulation described in this paper are performed
using Lorentz-2D-E and Lorentz-3D-E software from Integrated En-
gineering Software Inc, and employing boundary element method for
the calculation of the potential distribution. Fig. 3(a) illustrates the
structure of the gated mirror and equipotential lines. This element is
comprised of six stacked electrodes. The M3 electrode is the core of the
electron gate because it hosts the signal that opens and closes the
electron path. Vy; and Vi are ground potentials and their function is
to insulate the unit and guarantee that the electrons do not experience a
modification of their kinetic energy after passing through the structure.
Ve and Vi are responsible for the in-coupling and the reflection plane
modulation. Instead, Vs is used to adjust the stability of the sample
beam trajectory depending on its diffraction angle. Such a feature will
be discussed in more detail in the next section. It is worth noting that
the latter potential has almost no influence on the position of the
Gaussian mirror plane, thanks to the fact that this surface lies within the
lens form, therefore the sample beam resonance condition can be
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achieved practically independently from the other electrodes’ config-
uration. Fig. 3(b) portrays the axial potential distribution of the gated
mirror in the two different configurations, open and closed, that cor-
responds to in-coupling and resonance, respectively. The gated mirror
switching time has to be lower than the time necessary for an electron
to complete a full roundtrip. For a 60 mm cavity with 3 keV electrons,
the roundtrip time is around 4 ns, as can be seen in Fig. 2. In Fig. 3(c)
and (d), we plot the radial potential lines of the mirror plane as a
function of applied potentials with a fixed bore diameter (c) and dif-
ferent bore diameters with a fixed applied potential (d). This plane is
the azimuthal plane that on the optical axis has a value of —3000V,
and in an ideal situation should exhibit a constant value throughout the
entire plane. A non-uniform potential means that the mirror surface is
not flat. In Fig. 3(c), this graph is portrayed for different values of the
potential and it shows that a higher potential corresponds to a flatter
condition of the mirror surface. However, a higher potential corre-
sponds to a higher amplitude of the pulse necessary to operate the gate.
Achieving a high amplitude for a few nanosecond pulse width would
increase the feedthrough technical design complexity and would re-
quire a customized pulse generator. Thus, a lower amplitude is pre-
ferable. Fortunately, as shown in Fig. 3(d), we can also achieve a flat
potential with the same pulse by decreasing the diameter of the M3
aperture. Specifically, we designed this electrode with a central aper-
ture of 20 pym in diameter, which is quite small with respect to con-
ventional lens bores, that are usually of the order of millimeters. In this
way, we can employ a relatively small pulse (Vp = 100V) to switch
between open and closed configuration. This condition is more suitable
for a commercially available high-frequency pulse generator.

2.3.2. Diffractive mirror

Fig. 4 illustrates the design of the diffractive tetrode mirror. This
element is composed of four electrodes, all cylindrically shaped. This
type of tetrode mirror is known to be able to control the back focal
length, analogously to cathode objective lens or emission lens [42]. The
lower electrode here is modeled as a flat surface, as we are simulating
electron trajectories without considering the electron phase that would
cause diffraction. In the real case, this electrode will be shaped as a
grating that generates the periodic surface potential responsible for the
diffraction that causes splitting and coherent coupling between the
sample and the reference beams. The two lowermost electrodes at Vy;
and Vy, create a negative cathode lens. In particular, the negative po-
tential Vy; has to be maintained higher than the corresponding electron
energy of 3 keV to obtain a mirroring effect.

In order to achieve the desired diffraction, it is necessary that the
reference beam reaches the grating with a perpendicular trajectory and
that the zero energy periodic surface be at the correct distance from the
physical grating so that such a surface exhibits an acceptable spatial
amplitude to generate diffraction. In particular, such sinusoidal am-
plitude modulation determines the beam splitting intensity between
diffraction orders. In order to predict the necessary amplitude mod-
ulation it is necessary to solve the Shroedinger equation for the electron
wavefunction all the way from the field free region. This is necessary as
the electron is not only diffracted at the classical turning point (the
modulated mirror potential) but already feels the modulation both on
its incident and reflected path. Thus, it experiences much more mod-
ulation (i.e. path length difference) than just these few angstrom. A
complete numerical model of this problem has been proposed in [41].
The result of this study show that a typical spatial amplitude to get a
beam splitting of few percentages in the first order (sample) and the rest
in the zeroth order (reference) is expected to be of the order of ang-
stroms.

V n2 is kept to a potential that fixes the electric field to 16 kV/mm.
Such high electric field is necessary to reduce the energy spread effect
of the incoming electron beam. V3 instead is used to control the focal
position of the mirror. Finally, the upper electrode is grounded so that
the unit is isolated from the rest of the elements creating a zero field
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Fig. 3. (a) Geometry and potential distribution of the elec-
tron gated mirror. The multi-colored lines indicate equipo-
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region inside the cavity.

2.4. Ray tracing of electron resonator

The following simulations are performed using LorentzEM software
from IES. The initial condition for the electron trajectory simulation in
resonance is achieved by emitting electrons close to the mirror elec-
trode, specifically at the mirror surface (— 3000 V). The reference beam
electrons are emitted with zero energy so that they are accelerated
perpendicular to the mirror surface. Despite the fact that a full solution
of the Shroedinger equation for the electron wavefunction from the
field free region to the modulated potential region is necessary to
capture the exact behaviour of the electron beam, to predict the elec-
tron trajectory after diffraction we can use a momentum kick approx-
imation. In order to simulate the momentum kick due to the grating
p = h/d (with d pitch of the grating), the electrons composing the
sample beam are emitted with in-plane energy parallel to the mirror
surface of E = h%/2md>.

(a)

Fig. 5(a) shows the result of the electron beam in-coupling simula-
tion, that is to say, the ray-tracing of the 3 keV electron trajectories
when the gated mirror is open and the electrons are free to enter in the
resonator. In order to open the gate, a 100V pulse is applied to the
central electrode bringing Vi3 potential from -3,050 V (closed config-
uration) to -2,950V (open configuration). Once the pulse effect is
concluded the gate is closed, and the electron resonates inside the
cavity. This situation is portrayed in Fig. 5(b), which shows the simu-
lation of the marginal and axial rays (i.e. the most external ray of the
beam and the central one, respectively) of both the sample and the
reference beam. In this simulation, the two beams successfully perform
5 roundtrips, demonstrating the correct functioning of the resonant
cavity built as a result of the integration of the two units. Fig. 5(c)
shows a close-up of the reference beam marginal ray trajectory, which
allow us to distinguish the different round-trip trajectories and visualize
the system sustainability of the resonance for N = 5. In this context, we
can define the trace stability as the difference between the electron
trajectories of two consecutive round-trips, calculated at the mirror

(b),
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Fig. 4. (a) Geometry and potential distribution of the tetrode electron mirror. The potentials used for the simulation are the following: Vy; = — 3010V, Vy, =
5000V, V3 = — 1467 V, V4 = 0V. This configuration generates a 16 kV/mm electric field between the two lowest electrodes. In the picture are also listed the

geometrical parameters: gap G to the left, thickness T and bore diameter D to the right. (b) Axial potential at the diffractive mirror, where 2 is the distance from the

mirror electrode.
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Fig. 5. (a) Trajectory simulation of the in-coupling. Different colors indicate different beam-convergence angles. (b) Ray-tracing simulation of the marginal and
paraxial rays of both reference and sample beams in resonance configuration, for N = 5 roundtrips. The simulation was performed emitting the electrons starting on
the mirror surface (the — 3000 V surface) with a direction perpendicular to that surface for the reference beam and imposing a lateral momentum kick, as explained in
the main text, to generate the sample beam. (c) Close-up of the electron trajectory of the reference-beam marginal ray near the mirror surface at the gated mirror. The

close proximity of adjacent trajectories demonstrates the cavity stability.

surface of the diffractive mirror. This criterion is important because the
grating mirror is acting as a two-state coupler between sample and
reference beam. Hence, the position of the beam on the grating mirror
gives us an indication of the quality of the measurement in term of its
compliance with the IFM criteria. In fact, if the stability were to be
worse than the grating period, no build-up of the signal in the sample
beam due to consecutive interference phenomena could occur. From
the simulation result, we obtain a marginal ray trace stability below
1 nm, which results in a final spread of the trajectories at the diffractive
mirror of about 2 nm. This result validates our design in term of sta-
bility, providing a constraint to the achievable resolution of the order of
few nm. We can conclude from this simulation that stability is not going
to be the limiting factor to the achievable resolution. The limiting factor
is going to be instead spherical aberration that entails the paraxial rays
(i.e. the rays closer to the axis) having a different focal position with
respect to the marginal rays. This issue is going to be addressed ex-
tensively in the next section.

In this simulation the sample beam is generated by initializing the
beam with an energy parallel to the grating surface of E = 10 meV,
which corresponds to a grating with a ~ 12 nm pitch. This small pitch
is used here in order to better visualize the separation between re-
ference and sample beams (smaller pitch corresponds to higher dif-
fraction angle, hence higher separation). In the actual system, a larger
pitch would be preferable because it would be easier to fabricate, and it
would entail a lower intensity loss during out-coupling. Our design can
be adapted for different pitches. Fig. 6 shows how V5 can be used to
tune the angle of the sample beam whose resonance is sustained by the
cavity. This angle depends on the periodicity of the grating following
the equation d sin6 = mA , where d is the grating pitch, A is the electron
wavelength, 6 is the diffraction angle and m is the diffraction order,
which in our case is =+ 1 as we are interested only in the first order.
This tunability is important because it allows us to use different pitches
in the same system. Also, the machining of the resonator will not be
perfect; therefore, having this additional degree of freedom gives us
room to correct for such non-idealities.

2.5. Optimization of diffractive electron mirror

One of the main problems of the resonant cavity (as described so
far) is that the tetrode mirror is composed of a cathode lens, which is an
element strongly affected by aberrations, with C. and C; that scale with
the fourth and second power of the magnification, respectively
[43-45]. This is a well-known problem in low energy electron micro-
scopes (LEEM), which also employ cathode lenses [46]. This effect in
our case is amplified by the fact that the electron beam resonates inside
the cavity. Therefore, these deviations from ideal behavior worsen with
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Fig. 6. Dependence of the Vi§} on the diffraction angle 6. Vi is the potential of
the electrode M5 that guarantees the resonance of the sample beam. The angle 6
instead is imposed by the grating periodicity. Therefore, the voltage can be
easily tuned to adapt the setup to different gratings and to compensate for non-
idealities in the grating periodicity.

the number of roundtrips and the beam size increases progressively, as
can be seen in Fig. 7(d), causing a degradation of resolution. A standard
cathode objective lens (contrary of a standard einzel lens) can be cor-
rected for aberrations by modifying the cathode electrode geometry so
as to induce hyperbolically shaped potentials that would correct the
aberrated electron wavefront [22,47]. However, this correction scheme
cannot be easily applied to our cathode lens, because such component
also hosts the diffraction grating that has to generate the sample beam
and couple it to the reference beam. This task would be very challen-
ging if bending or any other variation of the grating geometry were
introduced for aberration correction. A different design, employing a
transmission coupler in place of a reflective one, would not have this
problem, but it would have to deal with a loss of intensity due to in-
elastic scattering, e.g, volume plasmon and thermal diffuse scattering.
Therefore, alternative strategies have to be found in order to overcome
the aberration build-up. The value of spherical and chromatic aberra-
tion of our tetrode mirror base geometry are Coy = 18- 10° m and Cax=
2.97 m, respectively. These coefficients are obtained by performing a
simulation using LorentzEM software. Analogously, the aberration
coefficients of the gated mirror are Cyy = 4.28 m and C.y = 0.052m.
In the following, we will address the issue of C, because in our case it is
the predominant aberration. Moreover, in principle, the effect of C.
could be reduced by improving the electron source energy spread, i.e.,
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Fig. 7. (a) Trajectory simulation of the beam
reflected up from the tetrode mirror showing

the effect of spherical aberration before the
geometrical optimization. (b) Influence of
geometrical parameters G1, R1, G2, R2 on the
total mirror lens aspherical aberration coeffi-
cient Cy and on the spot size d; at the gated
mirror, which is directly related to the sphe-
rical aberrations. In particular, the simulation
is performed at the back focal plane at the
gated mirror, maintaining a 16 kV/mm electric
field on the mirror electrode. The initial values
of these parameters are G1 = G2 = 0.5mm,
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Rl = R2 = 0.25mm, G3 = R3 = 1mm. (c)
Trajectory simulation of the beam coming from
the tetrode mirror showing the effect of sphe-
rical aberration after the geometrical optimi-

zation. (d) Results of a full cavity simulation
showing the dependence of the spot size d; at
i the gated mirror as a function of the number of
roundtrips.
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placing an energy filter at the top of the gated mirror. However, future
work should tackle also the influence of C.. We also consider mainly the
aberrations due to the diffractive mirror, since its contribution is the
greatest.

Fig. 7(a) illustrates the effect of C; due to the tetrode mirror on the
electron trajectories, in particular, on the spot size d,, using our base
configuration for the mirror, shown in Fig. 4(a). The first step to
minimize aberrations is to optimize the mirror geometry. Fig. 7(b)
portrays the influence of the geometrical parameters on the spot size d
and the correspondent value of C,. These results are extracted from the
electron optical simulation imposing the electrode potentials so as to
satisfy two conditions: the position of the back-focal plane being fixed
at a distance corresponding to the position of the gated mirror, and the
electric field between the two lowermost electrodes being maintained
at 16 kV/mm. The fact that a flat potential at the grating electrode is
required for diffraction limits the maximum radius R1 of the anode
electrode, which influences the aberration of the tetrode electron
mirror.

Fig. 7(c) shows the result of the optimization through ray-tracing
simulation. Perhaps it is possible to reduce the aberrations to zero as in
the design of Van Aken et al. [48], but we have not yet found such a
configuration in combination with a high field strength on the grating
mirror. As can be seen from the picture, after the optimization, the spot
size is reduced from 372 nm to 38 nm, thus improving the resolution by
a factor of 10. This spot size is close to the diffraction limited spot size
for the considered semiangle and acceleration voltage
dy = % ~ 40 nm. However, as can be seen in the simulation portrayed
in Fig. 7(d), d; grows linearly with the number of roundtrips N. More-
over, having lower spherical aberrations would be beneficial when the
system is operated with higher semiangle and hence smaller dg. Typical
SEMs can operate with a resolution of few nanometers for an energy of
3 keV. Therefore, this limit to the resolution remains non-negligible.
This spot size may allow us to demonstrate a proof-of-concept experi-
ment of an electron cavity for QEM. However, in the future, a further
correction would be necessary for the ultimate application of imaging
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biomolecules. To address this issue, we propose some strategies for
further improving spot size/resolution in the following section. In wave
optics, spherical aberration is a phase change proportional to the fourth
order of the distance to the optical axis. One may wonder if this will
affect the action of the grating. However, we expect this not to be the
case since the reference beam and the sample beam are almost over-
lapping, so the relative phase change will be small.

3. Aberration correction in a linear resonant electron cavity

In this section, we propose and simulate two improved designs for
the linear resonant cavity that allow correcting C, generated by the
tetrode mirror.

In 1936 Otto Scherzer demonstrated that spherical and chromatic
aberration, regardless of the fabrication precision, cannot be eliminated
by improving the quality of the lenses and that for an electrostatic
round lens the aberrations do not change sign (Scherzer’s Theorem)
[49]. As we established in the previous section, our geometrical opti-
mization is not conclusive, and we need to induce an opposite sign of
aberration. This can be done through one of the following means:

1 Breaking the rotational symmetry exploiting multipoles fields
[50,51]

2 Introducing orthogonal symmetries using elements such as mirrors
[22,47]

3 Using time-varying potential with pulsed beam [52]

4 Introducing space charges on the electron optical axis placing a
conducting foil or a mesh in the beam path [53]

The third method had not been demonstrated, and the fourth
method induces inelastic scattering, resulting in the loss of intensity.
Thus, these two methods are not considered in our work. In the fol-
lowing, we are going to apply the first and the second methods to our
system and highlight their different characteristics.
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Fig. 8. (a) Optical diagram of the quadrupole-octupole corrector employed in our design. The corrector consists of 4 multipole elements, on which a superposition of
quadrupole and octupole fields is applied to correct the aberration. The blue rectangular symbols define the quadrupoles, and the blue octagonal symbols define the
octupole elements. The beam shape at the lens planes is represented in green. (b) Schematics of the cavity corrected for spherical aberrations introducing the
quadrupole-octupole corrector. (c) Raytracing simulation portraying both the marginal and a paraxial ray of the same cavity. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

3.1. Quadrupole-octupole corrector

The first approach that we are going to discuss is shown in Fig. 8(a)
and (b), and consists of the insertion of a quadrupole-octupole corrector
in the cavity. The corrector comprises four multipole elements plus two
external grounded electrodes to insulate the structure. An einzel lens is
also placed above the corrector to restore the focusing of the beam after
its transit through the system. This design is based on the superposition
of quadrupole and octupole fields on the four multipole units [54]. The
optical diagram and the working principle of the system are illustrated
in Fig. 8(a). This system exploits quadrupole field two-fold astigmatism
to force the beam into a stretched elliptical shape in the two azimuthal
directions of the beam alternately, and superimposed octupole field
whose four-fold astigmatism Cs4 (radial order R = 3, azimuthal sym-
metry S = 4) compensates the third-order spherical aberrations C; (C3q
in term of R and S) in the same direction. This can be seen by observing
that the XZ and YZ electron trajectories first split to form ellipses, then
rejoin and are refocused at the electron gate. Fig. 8(b) illustrates the
integration of such a corrector inside the resonant cavity. The system is
placed in the zero-field region between the two electron mirrors (gated
mirror and diffractive mirror).

Fig. 8(c) shows the raytracing simulation of the marginal and
paraxial rays employing this kind of correction, both in XZ and YZ
plane. This simulation demonstrates that by appropriately tuning the
octupole fields Cs can be compensated. In particular, a trace stability
lower than 10nm is achieved after a full round-trip for every ray
composing the beam, while in the non-compensated scheme only the
marginal ray could achieve such trace stability. Therefore, we can
conclude that this scheme can be efficiently used to correct spherical
aberration in a linear resonant electron cavity. However, this kind of
corrector is known to work in a simulation, but is extremely unstable
and sensitive to misalignment, [55] which is why it took almost 50
years to go from the first theoretical proposal to an actual experimental
demonstration. For this reason, in the following section, we propose an
alternative scheme, easier to implement in an experimental apparatus,
to correct for spherical aberration in the cavity.

3.2. Mirror corrector

Fig. 9(a) illustrates the second approach, where we substitute the
gated mirror with a gate that includes a hyperbolic triode electron
mirror coupled with an einzel lens on the internal side of the cavity, in
place of a standard tetrode mirror. Aberration correction using a mirror
in a linear electron reflector was first proposed by [32]. In this case, a
modification of the beam-path design is necessary, because for the
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hyperbolic mirror to be effective in correcting the aberration, overlap of
object and image plane in front of the mirror is required, while the
previous design had a focus at the mirror surface. The hyperbolic mirror
can generate negative aberrations, whose intensity depends on 2, the
position of object/image plane. z; is determined by the combination of
the einzel lens (labeled Lens I in the figure) and the electrode below the
mirror potentials (highlighted in light blue in the figure). Moreover, the
value of the C; scales as M* [24]. Therefore, by decreasing the focal
length of the einzel lens we can increase the strength of the correction
considerably. In standard triode hyperbolic mirrors, the wedge elec-
trode potential (highlighted in yellow in the figure) represents an ad-
ditional degree of freedom for tuning the correction, as it can move the
position of the mirror surface. However, in our system, we have some
additional constraints because the gated mirror must assure the in-
coupling of the beam. Consequently, the wedge electrode potential is
limited to few hundreds of volts above the 3000 V corresponding to the
potential to which the electrons are accelerated, otherwise we would
require too big a pulse for the in-coupling. To sustain both the reference
and sample beams, this new design requires the introduction of an
additional Einzel lens, labeled as Lens II in Fig. 9a. The picture illus-
trates in blue the reference beam and in red the sample beam axial ray.

In Fig. 9(b), simulation of the marginal and paraxial ray of the re-
ference beam and the axial ray of the sample beam are shown. The
simulated ray trajectories confirm that the resonance is achieved with
this structure, and demonstrate a suppression of C; and a trace stability
below 10 nm for all the rays composing the beam. The main advantages
of this design with respect to the previous one are that the sample is
placed in a more accessible field-free region, in the middle of the cavity,
and that the practical realization is expected to be much easier due to
the lower instability and sensitivity of this kind of corrector. Con-
versely, since the beam is not focused but spread at the gate reflection
surface (a condition necessary for the correction), the in-coupling is
expected to be more difficult in terms of timing and accuracy of the
beam focusing, and an additional calibrating screen will probably be
required above the gated mirror. Moreover, the hyperbolic mirror
corrects the aberration of one of the two beams generated by the dif-
fractive mirror only after its first interaction with the sample, and it is
reasonable to assume that this would fix the final resolution. Therefore,
this approach prevents the building up of the spherical aberration in-
duced by the diffractive mirror but it does not eliminate it completely.
A ground level of aberration remains unavoidable.

4. Discussion

In this section, we discuss some of the parameters that could affect
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Fig. 9. (a) Diagram of the cavity corrected for spherical aberrations introducing a hyperbolic mirror in place of the standard electron gate mirror. The mirror is
composed of a wedge electrode (in yellow) with slope coefficient /2 and two electrodes at distances 9.5 mm and 19 mm from it, respectively. The reference beam is
shown in blue while the axial ray of the sample beam is in red. (b) Raytracing simulation portraying both the marginal and a paraxial ray in the cavity shown in (a).
(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

our system such as defects and misalignment, some constraints neces-
sary to maintain coupling, and the effect of an alignment field on the
beam properties, such as the coherence of the beam. In fact, as our
measurement scheme exploits interference phenomena the beam has to
be coherent. In particular, we are interested in temporal coherence
between the reference beam and the sample beam. Spatial coherence
can be achieved by satisfying the current criterion for fully coherent
beam, that is to say maintaining a beam current I < 0.95-10'B,.
Assuming a brightness for a typical SEM to be B, ~ 10® , we need to
use a current I < 100 pA.

Several imperfections can occur during electron optics construction,
i.e. machining and the assembly of electrodes, insulators, and housings.
The more common defects in a round lens that can generate perturba-
tion to the expected field are misalignment, tilt, and ellipticity [56]. In
our system, the SEM optics can only correct the errors caused by the
components external to the cavity. However, an additional correction
unit is necessary to correct the defect generated within the resonator. In
fact, as the QEM system relies on multiple reflections, the perfect
control of the beam path is crucial to the success of the measurements.
Misalignment or rotation can induce a phase shift, which blocks the
wavefront accumulation, reduces the temporal coherence and increase
the energy dispersion of the electron beam. Specifically, a cavity is
extremely sensitive and even the slightest trajectory error can lead to
severe consequences after few roundtrips. For instance, a 100 nm mis-
alignment between the axis of the gated mirror and the diffractive
mirror, if not corrected, causes a shift of the reference beam position on
the diffractive mirror of 220 nm after just one roundtrip, which, in
practice, makes any multi round-trip measurement with high resolution
impossible. Therefore, it is very important for the reference beam to be
located on the central axis and errors in the beam angle should be
precisely corrected, as well as possible astigmatism aberration. We have
also to consider that an electromagnetic alignment cannot be adopted
because magnetic field force vector depends on the electron velocity
direction. Therefore, an electromagnetic alignment field would gen-
erate opposite forces in the forward and reflected beam, worsening the
alignment during resonance. Therefore, a double electrostatic octupole
system has been chosen to fulfill these requirements [57-59]. This
element exploits the superposition of quadrupole fields and azimuthally
antisymmetric dipole fields to simultaneously correct astigmatism and
misalignments.

Electron deflection is inversely proportional to the electron energy
E. Therefore, an alignment field can create a parasitic chromatic spread
effect, which translates in a different path length for electrons with
different energies. The QEM operation relies on interference
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phenomena, so it is extremely important for the reference and the
sample beams to maintain coherence. For this reason, it is crucial to
analyze the impact of the alignment potential on the path length dif-
ference between the two, and in turn on the temporal coherence. This
quantity defines the similarity between wave packets and determines
the degree of interference between them. To estimate this parasitic
chromatic spread effect, we can use a simple double condenser model.
Using this approach, it is possible to extract the relationship between
the Gaussian energy spread of the electron beam and the corresponding
positional spreading in x direction. Hypothesizing a small deviation in
the energy we can write:

1
1+ CTE/E

Where K is a geometrical constant, E is the central energy, V is the
deflection potential and og and o, are the standard deviations of energy
and position respectively. Once the E is fixed, we can conclude that
g, = Ky Vop; where K; = Ko/E? is a constant dependent on the geometry
and the central energy. The electron optical simulation of our deflection
system confirmed the validity of this model and, hypothesizing a
Gaussian distribution centered at 3 keV, we extracted the corresponding
constant K; = 5-107"m/(V-eV). Fig. 10(a) is a graphical representation
of this chromatic aberration phenomenon. It shows the distribution of
the electron density of an electron beam after passing through the
aligner as a function of the misalignment. The electron beam is initially
confined to a single trajectory but with AE ~ 20z = 0.7 eV. The resulting
spread is an important parameter to characterize the correct func-
tioning of the system. At each round trip, this phenomenon will worsen
the resolution by increasing the beam size due to chromatic aberration
d.. Therefore, the alignment precision during manufacturing should be
specified keeping in mind this effect that plays an important role in the
final resolution.

In order to analyze the impact of the alignment potential on the
temporal coherence, it is possible to define the temporal coherence
length [5] A¢ = vh/AE, where v is the electron velocity and h is the
Planck constant. In our case, Ac ~ 150 nm. When an alignment field is
applied, the beam deflection is not rigid, as in an ideal case, but it
occurs throughout a finite region. Due to the angle between reference
and sample beams, these beams experience different deflection lengths.
In particular, the beam whose bending is along the direction of the
alignment has a higher deflection length than the one that is aligned
against the deflection field. This results in a positive and negative path
length difference with respect to the reference beam path, respectively.
Fig. 10(b) shows the outcome of the simulation of this path length
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Fig. 10. (a) Graph showing the position spread of an electron beam in terms of its normalized electron density while varying the alignment potential. The electrons
composing the initial beam are localized in one trajectory, but they have AE = 0.7 eV energy spread. This lead to a spatial spread after passing through the aligner,
that depends on the alignment strength with the relationship: g, = 5-10~!-V-gg. (b) Simulation of the path difference between the two branches of the sample beam
and the reference beam due to the influence of the alignment field. This effect has to be considered in the calculation of the mechanical precision required to maintain
temporal coherence. Luckily the effect is compensated every two roundtrips so it does not worsen with the number of roundtrips. However, its magnitude increases
with the angle between reference and sample beam. (c) Path difference between the sample and the reference beams with the number of roundtrips for different
angles. The path difference is expressed in unit of temporal coherence length A.

difference for different alignment potentials, expressed in terms of the
correspondent misalignments that they correct. This simulation is per-
formed for a 0.02 mrad angle between reference and sample beams,
correspondent to a 1 pm periodicity of the grating and an electron
wavelength of Ay = 22 pm (E = 3 keV), but the effect becomes more
important for larger angles. This path difference must be added to the
unavoidable component coming from the fact that reference beam and
sample beams have different directions, but they experience reflection
at the electron gate on the same Gaussian plane. Therefore, they have
an intrinsic geometrical path length difference, positive for both dif-
fracted beams (m = +1) which we simulated, and is illustrated in
Fig. 10(c). In this picture, this path difference is shown for different
diffraction angles (different grating periodicities) while increasing N.
Both these components, the one due to the alignment and the one due
to the diffraction angle, add to the total path length difference between
the sample and the reference beams. Fortunately, the progression of the
path difference is linear with N and depends only on the angle, re-
gardless of the alignment because the alignment component compen-
sate every two roundtrips (it causes an alternation of positive and ne-
gative path difference). Therefore, the alignment component should be
taken into account but does not build up with N. In Fig. 10(c) the
vertical axis is scaled in A¢ units so the region of operation is limited to
the semi-plane below unity, which determines the maximum useful 6
and N. To determine a similar region in terms of maximum misalign-
ment we have to take into account also the component due to the
alignment potential. If we consider an angle of 0.02 mrad, for N = 10
we obtain a path difference of the order of 10 nm which is < A; ~ 150
nm, so temporal coherence is preserved in the system.

Quantum electron microscopy requires the electron beams to in-
teract with a phase grating multiple times and thus accumulate the
wavefront modulation, as graphically illustrated in Fig. 11. This re-
quires a good alignment between the grating and the modulated elec-
tron beam wavefront. A misalignment between the grating and the
wavefront will cause a phase error, which blocks the accumulation of
wavefront modulation. For example, consider a QEM with N = 13. The
misalignment reduces the magnitude of intensity transfer between the
sample beam and the reference beam, thus compromising the accuracy
of QEM in differentiating a white pixel and a black pixel. Fig. 12 shows
such a degradation of the intensity of the reference and the sample
beams for different values of the phase error.

A particularly important issue of this apparatus that has to be ad-
dressed in the future is the complexity of the diagnostics due to the
resonant nature of the system, which does not allow access to the beam
in the cavity. This problem is particularly significant for the aberration
correction where an assessment of the performance after the correction
would be ideal to modify the free parameters accordingly. This fact calls
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Fig. 11. Graphical illustration of the electron wavefunction incremental mod-
ulation passing through a phase grating multiple times. In our system, the
electron beam is reflected at the grating but the concept is equivalent to a
transmission grating.

for the definition of a diagnostic protocol, the necessity of an extremely
precise and reliable modeling of the system and strong machining and
alignment requirements.

5. Conclusion

In conclusion, it is possible to design a resonant electron cavity for a
QEM-in-SEM system employing ray-tracing methods to verify the beam
characteristics with the progression of the round-trips. Such a design
satisfies the practical design constraints and is able to maintain the
system stability and the coherence between the reference and sample
beams. It is also possible to compensate for the third-order spherical
aberrations inside the cavity using a hyperbolic mirror or a quadrupole-
octupole corrector, and to correct machining and assembly misalign-
ments by introducing an alignment unit. The realization of such a re-
sonant cavity would allow the proof-of-concept demonstration of a
system able to significantly reduce the radiation damage adopting an
interaction-free measurement scheme into an SEM. This work is part of
the ongoing effort for achieving direct imaging of macromolecules with
sub-nm resolution. Future work will include the experimental demon-
stration of the elements composing the cavity and of their integration to
build the complete system, as well as additional effort in improving the
performance of the cavity in terms of imaging resolution.
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