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Abstract

The ever-increasing data sharing demands of modern technologies forces scientists
to adopt new methods that can surpass the approaching limits of classical physics.
Quantum optical communications and information, based on single-photon detectors
offer the most promising possibility to reach new levels of data rate and communi-
cation security. Superconducting nanowire single-photon detectors (SNSPDs) have
already been used in the past to demonstrate new protocols of quantum key distribu-
tion and are currently the best single-photon detection technology to enable quantum
optical communication. With the goal of creating a global quantum communication
network, both optical fiber and free-space optical communication technologies have
been explored. In addition, the scientific community started pursuing smaller and
cheaper cryogenic solutions to enable the use of SNSPDs on a large scale. In this
thesis, I describe the design and development of a cryogenic SNSPD receivers in
free-space and optical-fiber configurations for 1550-nm-wavelength. The first config-
uration was created with the goal of enabling optical communication in the mid-IR.
I present future steps to achieve this goal. The second configuration was designed to
enable a compact and scalable integration of multiple SNSPD channels in the same
system. Our approach has the potential of enabling SNSPD systems with more than
64 channels.

Thesis Supervisor: Karl K. Berggren
Title: Professor of Electrical Engineering and Computer Science

3



4



Acknowledgments

I would like to dedicate the work in this thesis to all the people that have been a part

of my personal and professional PhD career.

First and foremost I want to thank my thesis supervisor Prof. Karl K. Berggren

for the several years of guidance in my formation as a scientist. Karl took a chance

on me seven years ago, when I was only a Master student from abroad with little to

no lab experience. He then helped me become the engineer that I am now.

I would like to thank Prof. Isaac L. Chuang, who has been my academic advisor

during my time as a PhD. Throughout the years he pushed me to pursue several

opportunities that MIT offered outside of the lab.

Finally, in the MIT Faculty, I would like to thank Dr. Franco Wong and Prof.

Dirk R. Englund for being part of my thesis committee and for the several scientific

discussions.

I wouldn’t have been able to complete the work for my PhD thesis if it wasn’t for

the several friends who supported me. I need to thank particularly Andrew Dane, Dr.

Francesco Marsili, Dr. Dan Day, Kendall Nowocin, and Libby Mahaffy. In different

ways, these five people have made a significant difference in my life, especially when

they decided to share a meal or a beer with me.

A big shout-out goes to all the people I crossed path with in my time at the MIT

Graduate Student Council. My roles in the GSC have been the most important for my

non-technical professional formation. The Officers team of Kendall, Chris, Shabnam,

and I has been the group I enjoyed working in the most in my entire life. For my

future career, I can only hope to work with people like them.

At MIT, I also need to thank all the people that in the last seven years have been

a part of the Quantum Nanostructures and Nanofabrication group, and the people

from RLE facilities Al, Bill, Matt, and Jason, without whom all the work that we do

in the lab would never be possible.

Last but not least, I want to dedicate this thesis to my Italian family and to my

American family: my parents, Marco and Katia, my sister, Elena, my in-laws, Bill,

5



Linda, Billy, and Beth. Most importantly, I need to thank my lovely wife, Brittany,

and our beautiful daughter, Chiara, who have filled my life with love and care.

I’ll conclude thanking all the friends that I have had in my time in Boston. They

are too many, so I won’t even attempt to list all of them, also because I am sure that

I would forget quite a few. Thanks to all my friends of the Muddy, the IHOP, the

Young Europeans in Boston, Global Fellow Program, the Tokyo trip, and the French

connection.

6



Contents

1 Introduction to optical communications and single-photon detectors 19

1.1 Single-photon transmission . . . . . . . . . . . . . . . . . . . . . . . . 20

1.1.1 Optical-fiber communication . . . . . . . . . . . . . . . . . . . 21

1.1.2 Free-space optical communication . . . . . . . . . . . . . . . . 21

1.2 Single-photon detectors . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.1 Photomultiplier tube . . . . . . . . . . . . . . . . . . . . . . . 22

1.2.2 Single-photon avalanche photodiodes . . . . . . . . . . . . . . 23

1.2.3 Superconducting transition-edge sensors . . . . . . . . . . . . 23

1.2.4 Superconducting nanowire single-photon detectors . . . . . . . 24

1.3 SNSPD-based systems for infrared optical communication . . . . . . . 25

2 SNSPD design for optical communications 27

2.1 Design trade-offs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.1 Active area . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.1.2 Nanowire width . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.1.3 Pitch or fill factor . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.4 Superconducting material . . . . . . . . . . . . . . . . . . . . 32

2.1.5 Thickness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3 Cryogenic System - theory and design 35

3.1 Cryogenic engineering . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Vacuum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.2 Heat transfer and heat budget . . . . . . . . . . . . . . . . . . 38

7



3.1.3 Mechanical stability . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.4 Electrical connections . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.5 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2 Cryostat design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1 Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Top assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.3 Bottom assembly . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2.4 Heat budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Potential improvements . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3.1 Circular geometries . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3.2 Electron-beam welding . . . . . . . . . . . . . . . . . . . . . . 57

3.3.3 Gold plating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Free-space coupled configuration 61

4.1 Optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Cryogenic apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.1 Bottom assembly . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2.2 Heat budget . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3 Vibrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.1 Vibrations characterization through SNSPD count rate . . . . 72

4.3.2 Vibrations characterization through golden chip reflection . . . 77

4.4 Free-space coupling efficiency . . . . . . . . . . . . . . . . . . . . . . 80

4.4.1 Optical source calibration . . . . . . . . . . . . . . . . . . . . 81

4.4.2 Test device characterization . . . . . . . . . . . . . . . . . . . 82

4.5 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.5.1 Dark count rate increase . . . . . . . . . . . . . . . . . . . . . 84

4.5.2 Integrated cryogenic monochromator . . . . . . . . . . . . . . 85

4.5.3 WSi SNSPDs . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8



5 Multi-channel fiber-coupled configuration 89

5.1 Cryogenic apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.1.1 Top assembly . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.1.2 Cryogenic RF cables . . . . . . . . . . . . . . . . . . . . . . . 97

5.1.3 Flex-rigid coplanar-waveguide cables . . . . . . . . . . . . . . 100

5.1.4 Cryogenic amplifier . . . . . . . . . . . . . . . . . . . . . . . . 104

5.2 Optical-fiber array integration with SNSPD array . . . . . . . . . . . 105

5.2.1 SNSPD array design . . . . . . . . . . . . . . . . . . . . . . . 106

5.2.2 Fiber array alignment . . . . . . . . . . . . . . . . . . . . . . 107

5.3 System detection efficiency measurement . . . . . . . . . . . . . . . . 109

5.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6 Conclusion 111

9



10



List of Figures

2-1 Simplified electrical model of an SNSPD with bias current generator

and read-out load. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2-2 Scanning electron microscope picture of an SNSPD with design param-

eters labeled (courtesy of Di Zhu). . . . . . . . . . . . . . . . . . . . . 30

3-1 𝜖 factor dependence on the emissivity of two bodies. . . . . . . . . . . 41

3-2 Thermal radiation spectrum of a black-body at 300 K. . . . . . . . . 43

3-3 Electrical circuit model of the heat transferred through a solid. The

temperature (T ) is replaced by voltage, the heat flow (𝑄̇𝑐) becomes

current, the heat conductivity (λ) are treated like resistors, and the

heat capacities(Cp) become capacitors. . . . . . . . . . . . . . . . . . 44

3-4 Schematic of cryostat designed for this thesis, not including the sample

stage. The two temperature stages were made of oxygen-free high-

conductivity copper and were held together by G-10 bars. The sorption

fridge is shows as semi-transparent because it was used only for one of

the two experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3-5 (a) CAD design of the cryostat top assembly. The assembly is shown

with both the stainless steel chassis on the left, and without part of the

chassis and two of the radiation shield copper walls. (b) Photograph

of the complete top assembly. . . . . . . . . . . . . . . . . . . . . . . 51

3-6 Temperature measurement of two stage of the Freeze 4 sorption fridge.

The red line indicates the second temperature stage, while the black

line indicates the cold head of the fridge. . . . . . . . . . . . . . . . . 52

11



3-7 (a) CAD design of the cryostat bottom assembly. The assembly is

shown with both the stainless steel chassis on the left, and without

part of the chassis and two of the radiation shield copper walls. (b)

Photograph of the complete bottom assembly. . . . . . . . . . . . . . 54

3-8 Schematic of the tripod configuration for the cryostat. The current

cryostat is placed on the optical table. With this configuration the

cryostat can still be on the optical table but held from the top. In that

way parts can be easily removed from the bottom. . . . . . . . . . . . 57

4-1 (a) Picture of the complete optical set up used for imaging the chip

and focusing the light on the SNSPD. The SNSPD chip and Lens 3

were mounted inside the cryostat. The picture was selectively cropped

to highlight the relevant features. (b) Schematic of the optical set up

used for chip imaging and beam focusing. The green lines represents

the path of the light beam used by the imaging system. The red lines

represents the path of the light beam that is focused on the detector.

The polarizing beamsplitters are used only for the imaging system. For

the detection efficiency characterization, we use a quarter-wave and a

half-wave plate to maximize the transmission through the beamsplitters. 65

4-2 (a) Beam profile of the spot light focused by the focusing system mea-

sured with a beam profiler. The profile is fitted with a Gaussian profile

to extrapolate the beam waist. (b) Image of the SNSPD detector on

a 200 μm diameter field of view taken with the optical set up. The

bright dot is the beam from a λ= 635 nm laser focused on the chip.

The spotlight was moved to place it on the area where an SNSPD was

fabricated (inside the red rectangle). . . . . . . . . . . . . . . . . . . 67

4-3 Schematic of the cryostat. The entire system is also enclosed in a

stainless steel chassis. . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

12



4-4 CAD schematics (top) and photographs (bottom) of the bottom as-

sembly of the cryostat. The schematic and photographs are shown

without vacuum flanges and part of the radiation shield on purpose.

The top right figure shows the structure removed from the stainless

steel chassis. The bottom left shows the view in front of the RF con-

nectors. The bottom right figure show the side view with the walls of

the 4K shield removed. . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4-5 Photograph of the sample mount area in the bottom assembly of the

cryostat. The red bright dot is a laser beam spot focused on a mounted

SNSPD device. The inset shows the sample holder unmounted from

the cryostat. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4-6 (a) Count rate of the SNSPD as a function of time, measured at 0.2

s time intervals. The count rate was measured when the center of the

laser beam overlapped with the center of the detector. (b) Fast-Fourier

Transform (FFT) of the data shown in (a). The FFT was extrapolated

after the measurement with the software OriginLab. . . . . . . . . . . 73

4-7 (a) Count rate of the SNSPD as a function of time, measured at 0.2

s time intervals. The count rate was measured when the center of the

laser beam was 4.6 μm from the center of the detector. (b) Fast-Fourier

Transform (FFT) of the data shown in (a). The FFT was extrapolated

after the measurement with the software OriginLab. . . . . . . . . . . 74

4-8 Average count rate of the SNSPD as a function of the beam’s center

position respect to the center of the detector. The error bars indicate

the standard deviation of each measurement. . . . . . . . . . . . . . . 75

4-9 Count rate shown in Figure 4-8 mirrored respect to the 0 μm position

and curve fitting (red line) using Equation 4.2. . . . . . . . . . . . . . 76

4-10 (a) Picture of the optical set-up used to measure the vibration ampli-

tude of the sample stage. (b) Schematic of the optical set-up. . . . . . 78

13



4-11 Power reflected (black squares) from a Si chip with 50-nm-thick Au

layer as a function of the beam position as it is scanned across the

edge of the chip and curve fitting (red line) using equation 4.5. . . . . 79

4-12 (a) Oscilloscope trace measured at 500 ms/div when the cryostat was

ON. (b) Oscilloscope trace measured at 50 ms/div when the cryostat

was ON. (c) Fast Fourier Transform extrapolated from the data shown

in (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4-13 Schematic of the near-IR source used for the test of SNSPD described in

the main manuscript and the vibration amplitude test from the SNSPD

count rate. The yellow like indicate 1550-nm-wavelength single mode

optical fibers. The black line indicated electrical connection. . . . . . 82

4-14 (a) System dark count rate (SDCR, blue squares) and photon count

rate (PCR, red triangles) as a function of the bias current normalized

by the switching current of the SNSPD. The SDCR is determined by

measuring the count rate of the detector while the source is turned off;

no other filter is applied to the optical system. The PCR is determined

by measuring the count rate when the optical source is turned on and

by reducing it by the SDCR. (b) System detection efficiency (SDE )

and device detection efficiency (DDE ) as a function of the bias current

normalized by the switching current of the SNSPD. The SDE is deter-

mined as the photon count rate divided by the photon emission rate of

the source. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4-15 Black-body radiation from a T = 300 K object as a function of the ra-

diation bandwidth, expressed as the percent of the central wavelength.

The calculation was done for 3 and 5 μm central wavelengths. For the

calculation, we assumed the incident area to have a radius equal to the

central wavelength. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4-16 Schematic of the integration of the double-monochromator on the radi-

ation shield of the cryostat (left) and internal schematic of the double-

monochromator (right). . . . . . . . . . . . . . . . . . . . . . . . . . . 86

14



5-1 Schematic of the cryostat used for the multi-channel fiber-coupled ex-

periments. The sample stage was moved to the top assembly from

the bottom assembly for a better thermal connection to the pulse-tube

cryocooler.The sorption fridge was removed since it was not necessary

for NbN-based SNSPDs. . . . . . . . . . . . . . . . . . . . . . . . . . 92

5-2 (a) 3D CAD view of cryostat’s top assembly zoomed into the area

connected to the second temperature stage of the pulse-tube cryocooler.

The other section of the top assembly is unchanged from the design

described in Chapter 3. (b) Picture of the complete top assembly, on

the left, and zoom-in on the area shown in (a), on the right. . . . . . 94

5-3 CAD schematic and photograph of the sample stage. The photograph

shows an SNSPD chip mounted and wirebonded to the stage. The fiber

array is aligned and glued to the chip. . . . . . . . . . . . . . . . . . . 95

5-4 (a) Custom-made feedthrough with 8 single-mode fibers. (b) FC-

PC/FC-PC adapter mounted to the second temperature stage of the

pulse-tube cryocooler. . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5-5 (a) Study of the effect of thermal cycling on the transmission of optical

fibers. The left axis indicates the power measured at the output of a

calibration SMF-28 fiber and four pairs of the optical fibers connected

with FC-PC/FC-PC adapters when the second temperature stage of

the cryostat was at T = 2.9 K (red dots with error bars) and T = 300

K (black dots with error bars). The right blue axis indicates the ratio

between the powers indicated on the left axis 𝑃 (𝑇 = 2.9K)/𝑃 (𝑇 =

300K). (b) Power measured at the output of the optical cable set 4

and temperature of the second temperature stage as a function of time. 97

5-6 (a) BeCu RF cables mounted in the cryostat between the 35 K radiation

shield and the 2.9 K thermal link. (b) NbTi cables mounted between

the 2.9 K thermal link and the 2.9 K sample stage. . . . . . . . . . . 99

5-7 NbTi RF cable bent by hand using a 3D printed plastic disk. . . . . . 99

15



5-8 RF transmission (S21) of an NbTi RF cables before (red line and

squares) and after (black line and squares) being bent. . . . . . . . . 100

5-9 Coplanar waveguide ribbon cable designed for RF read-out in the cryo-

stat, 3D CAD design (top) and picture with SMPM connectors (bottom).101

5-10 Sonnet coplanar waveguide design. The conductor strips are in pink.

The dielectric layers are all transparent. . . . . . . . . . . . . . . . . 103

5-11 Simulation of the S21 of the CPW shown in Figure 5-10 for three differ-

ent conductors: copper (red circles), beryllium-copper (black squares),

and copper-nickel (green triangles). . . . . . . . . . . . . . . . . . . . 103

5-12 Measurement (black graph) and simulation (red graph) of the S21 of

the CPW shown in Figure 5-9. The conductor was copper and the

substrate was Kapton. The signal trace width was 9 mil, while the

signal-to-ground gap width was 5 mil. . . . . . . . . . . . . . . . . . . 104

5-13 (a) Photograph of the custom-designed cryogenic amplifier. (b) Mea-

surement of the S21 as a function of frequency. . . . . . . . . . . . . . 105

5-14 SEM image of a series 2-SNAP fabricated for the fiber array-coupled

experiments. The diameter of the circular area was ∼ 10 μm. . . . . . 107

5-15 (a) Schematic of the optical system used for the fiber array alignment

to the detectors. The fiber array was controlled on three translation

axis and one rotation axeis, while the SNSPD chip was controlled on

another rotation axis. The IR camera mounted on the microscope was

used for the rough alignment. (b) Schematic of the optics used for the

second step of the alignment. We monitored the light reflected by the

two fibers at the extremities of the array for the fine alignment. . . . 108

5-16 SDE as a function of bias current for five 10-μm-diameter series-2-

SNAPs aligned to an optical fiber array. . . . . . . . . . . . . . . . . 109

16



List of Tables

3.1 Heat load (𝑄𝑐) budget of the cryostat including heat transferred through

solids and through radiation. The table includes the single components,

their material, the temperature difference, and the heat transferred

through solids and radiation. . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Heat load (𝑄𝑐) budget of the sample stage and sample mount. . . . 71

5.1 Heat load (𝑄𝑐) and RF attenuation budget of the RF cables mounted

in the cryostat. The heat includes all the eight cables. . . . . . . . . . 98

5.2 Heat load (𝑄𝑐) budget of the different sheets. The table includes the

cable material, the heat transferred through the cable, and the tem-

perature difference. The sheets for the calculation were 25 mm wide,

0.05 mm thick, and 300 mm long. . . . . . . . . . . . . . . . . . . . . 102

17



18



Chapter 1

Introduction to optical

communications and single-photon

detectors

In the last two decades there has been an exponentially increasing interest in optical

communications, especially quantum communication, and in single-photon detectors

that enable this form of communication [1]. The advent of the internet and the ability

to rapidly exchange large packets of information has improved our lives in ways that

were unthinkable until a century ago. With the distribution of high-speed communi-

cation technologies at a commercial level and in more and more communities around

the world, the need for channels with larger data rate capacity is also increasing - to

the point that we are slowly reaching a maximum information exchange rate capacity

dictated by the fundamental laws of classical physics. To surpass this limit, scientists

have been studying for the past 20 years the use of the fundamental laws of quan-

tum mechanics in optical communication. Optical communication is largely used in

modern information technologies because of the light’s ability to transfer information

more quickly and more efficiently than electrical signal, over hundreds of kilometers.

In addition to that, quantum mechanics teaches us that light at its lowest energy

is discretized in single particles, photons, which can carry more information than

the classical 0 or 1, through modes in polarization, time, space, and more. These

19



properties of photons make them unique candidates for enabling quantum optical

communication (QOC).

Quantum optical communication based on single photons can enable communica-

tions with higher data rate, lower power consumption, and higher information security

[2]. Although light cannot move faster than its own speed, if we can embed more infor-

mation in a single information packet (photon), we are effectively increasing the data

rate. Additionally, by using only few packets of information instead of a regular light

beam, we consume less energy to exchange the same amount of information. Finally,

using single photons we can take advantage of some concepts unique to quantum

mechanics, such as quantum entanglement, to reach levels of communication security

higher than any classical channel. The most studied and developed form of secure

quantum optical communication is quantum key distribution (QKD), which used the

concepts of photon entanglement and no-cloning theorem to reach perfect security of

the communication channel, on paper. In reality, all QKD protocols developed so far

cannot guarantee perfect security because they have to take into account imperfec-

tions in the transmission and in the detection of the photons [2]. In this Chapter, I

will first discuss the two possible ways to transmit single-photons and the available

single-photon counting technologies. I will conclude by introducing the approach to

receivers for QOC in this thesis.

1.1 Single-photon transmission

There are fundamentally two ways in which we can transfer information using light:

through an optical fiber or through the atmosphere (free-space). Both methods have

their advantages and disadvantages. Choosing the correct one depends entirely on the

environment of the optical communication application. Optical fibers can transmit

light over more than a hundred kilometers without it being affected by external agents.

On the other hand, there are some situations in which it is highly inconvenient or just

impossible to use optical fibers. The use of free-space optics enables communication

over even longer distances than optical fibers. However, a direct line of sight between

20



the transmitter and the receiver is necessary, and that is not always possible. In the

field of quantum optical communications both methods have been used to demonstrate

QKD protocols [3, 4].

1.1.1 Optical-fiber communication

The use of optical fibers is the most reliable way to develop optical communications

on land. Optical fibers are already used commercially for internet technology. The

low attenuation of 0.2 dB/km at the wavelength of 1550 nm makes optical fibers

ideal to transport information over long distances. In QOC, the requirements for

optical fibers are even more stringent than in classical communications, since we are

not just trying to transmit all the photons from end to end but also to maintain

the photons’ properties. For that to happen, the light-matter interaction in the fiber

has to be minimized. Significant work has gone into reducing the attenuation even

further and maintaining the light polarization at 1550-nm-wavelength, which is the

wavelength already used for telecommunications [5, 6, 7, 8]. Although QKD-based

optical quantum communication has already been demonstrated with fiber lengths

over 400 km in laboratory [3], reproducing the same result in the outside world is not

as simple. External agents, such as temperature fluctuations or ground vibrations

can significantly affect the performance of the channel. Thus, current QOC systems

based on fibers would require a large communication network to perform at long

distance. Advances in the QKD protocols can further increase the distance of QKD-

based communications [9, 10, 11]. However, there are still some situations that require

the use of free-space optics.

1.1.2 Free-space optical communication

Using free-space optics is the best way to perform quantum optical communications

for applications in which optical fibers are either impractical or impossible to use. If

we think about optical communications applied to naval bases or to satellites, it be-

comes immediately clear that we cannot rely on optical fibers. Besides, as we pointed
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out in the previous section, the optical fiber technology is not mature enough for quan-

tum optical communications at distance > 500 km. In that case, the atmosphere is

a better medium to transmit light without perturbations, because of its intrinsically

low refractive index and lack of birefringence. For free-space based optical communi-

cations, it may be most convenient to work at a near-infrared (near-IR) wavelength of

800 nm or at mid-infrared (mid-IR) wavelength of 3.5 or 10 μm, rather than at 1550

nm [12, 13]. Light at those wavelengths is less perturbed by the atmosphere in sev-

eral atmospheric conditions. For communications on land, the huge inconvenience of

free-space optical communications is the need of a line of sight, which is particularly

troublesome in densely populated areas [14]. That is why this type of technology has

been studied and used mostly in satellite-to-ground and ground-naval-base commu-

nications [15].

1.2 Single-photon detectors

Single-photon detectors represent a necessary technology for QOC, together with

single-photon sources. Since information packets are stored in single photons, we

have to be able to detect these photons. In addition, we have to be able to count

millions of photons per second, determine at what instant the photon arrived, and

assess reliably if what was received was a photon from the source. These requirements

determine the parameters that quantify the performance of a single-photon detector.

We will discuss these parameters and how they are affected by the design of single-

photon detector in Chapter 2. In this section, we will present the single-photon

detection technologies available for photon counting at 1550 nm wavelength. For a

more comprehensive discussion on these and other single-photon detectors, we refer

the reader to the review article from Prof. R. Hadfield on Nature [16].

1.2.1 Photomultiplier tube

The photomultiplier tube (PMT) is the first single-photon detector ever invented and

has been used for single-photon counting ever since the 1950s. PMTs are based on
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the photoelectric effect. A photon generates an electron at the cathode, which is

accelerated inside a vacuum tube by biased metal plates. The electron current is

amplified every time it hits a metal plate by secondary electron emission, and it is

measured at the anode. For use at 1550 nm wavelength, the sensing part of the PMT

is typically made of semiconductor materials, and the detector has to be operated at

low temperature (200 K). Their performance is poor compared to most single-photon

detectors at this wavelength, with a probability to detect a photon of only 2%, a noise

level of 200.000 counts per second (cps), and a time-of-arrival resolution of 300 ps.

1.2.2 Single-photon avalanche photodiodes

The single-photon avalanche photodiode (SPAD) is the other type of single-photon

detector working at telecommunication wavelength based on semiconductor materials.

These detectors are made of a p-n or p-i-n junction, where the interface or the intrinsic

part of the junction is the sensing element. An incoming photon creates an electron-

hole pair and is then accelerated in the junction by the bias voltage. SPADs are

able to detect single photons with probability of 20%, a noise level of 10 kcps, and

time-of-arrival resolution of 200 ps. SPADs have to be operated at low temperature,

just like PMTs, and can suffer from afterpulsing effect, which limits their ability to

reset to detection condition. Their performances are still superior to PMTs at 1550-

nm-wavelength, which is why they are one of the most used single-photon detectors

in QKD demonstrations. In addition to being used in the near-IR, SPADs allowed

detection of single photons in the mid-IR, employing parametric down-conversion,

with a probability of detection of 10−5%. That makes them not a great candidate for

mid-IR optical communications.

1.2.3 Superconducting transition-edge sensors

The superconducting transition-edge sensor (TES) is a single-photon detection tech-

nology that uses the sharp change in resistance at the superconducting transition of

a thin film. If a superconducting film is kept at a temperature close to the transition
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point, a single photon is able to trigger a large change in the resistance of the film.

By monitoring the resistance, we can thus detect single photons. The probability of

detecting a single photon at 1550 nm wavelength is as high as 95%. On the other

hand, TESs require ∼ 1 μs to reset to detection condition and have a time-of-arrival

resolution of just 100 ns [17]. In addition, a TES is typically made of a material with

low transition temperature, such as tungsten. Thus, these detectors require expensive

cryostats to be operated below 100 mK. This last point makes them less appropriate

for commercial use.

1.2.4 Superconducting nanowire single-photon detectors

The superconducting nanowire single-photon detector (SNSPD) was invented in 2001

by Golts’mann et al. [18], and it represents the most promising technology for high-

speed optical communications. SNSPDs can be fabricated with several types of su-

perconducting materials. Until the last decade SNSPDs were mainly fabricated with

NbN or NbTiN. They can detect 1550-nm-wavelength photons with a probability

of 70%, a noise level as low as 100 cps, and a time-of-arrival resolution of 30 ps

[19, 20, 21]. SNSPDs can also detect photons in the mid-IR [22] without requiring

frequency up-conversion, with a detection probability of ∼ 3%. These detectors are

typically operated at 1.5-4 K, which is not as low as the operating temperature of

TESs, and can be obtained with cheaper He-4 based systems. In the last five years,

WSi has risen as a promising material for SNSPDs. WSi-based SNSPDs can detect

photons at 1550 nm wavelength with a probability of 93% and have noise level of

< 0.1 cps [23]. The drawbacks of these SNSPDs are that they have to be operated

below 1 K and their time-of-arrival resolution is typically 120 ps. Our research group

fabricates SNSPDs based on NbN, which we used for the work in this thesis.

24



1.3 SNSPD-based systems for infrared optical com-

munication

In this thesis, we will describe the work done in creating two configurations of a cryo-

genic receiver for optical communications based on SNSPDs; the two configurations

were designed one for free-space optics and the other for optical fibers.

In Chapter 2, we will look at SNSPDs more in detail. In particular, we will describe

the parameters that quantify the performance of an SNSPD and the parameters that

we can modify when designing an SNSPD. Finally, we will look at how the design

parameters affect the performance parameters.

In Chapter 3, we will focus on the basic principles of cryogenic engineering and

on the design of the cryostat used for this thesis. We will discuss all the fields

of engineering that were involved in the design of optical cryogenic system, such

as vacuum engineering, heat transfer, optics, and choice of cables. We will then

discuss the design of the cryostat focusing on the cooling components and leaving the

customized sample stage assemblies to the following chapters. In particular, we will

show our work to integrate a sorption fridge unit inside the cryostat.

In Chapter 4, we will talk about the free-space configuration of the cryostat. Cus-

tomizing the sample stage assembly for free-space required a significant engineering

effort to reduce the heat load on the cryostat, to reduce the vibrations amplitude at

the sample stage, and to couple near-IR light to an SNSPD. We will then discuss

future steps to use the same system for mid-IR light optical communications.

In Chapter 5, we will discuss the creation of an 8-channel fiber-coupled SNSPD

receiver. Although, other fiber-coupled SNSPD receivers have been built in the past,

in this thesis we are proposing a compact and scalable process to couple a fiber array

to an array of SNSPDs. The final goal is to use this process for the creation of receiver

with 64 or more channels and enable novel quantum photonic experiments.
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Chapter 2

SNSPD design for optical

communications

When designing a receiver for optical communications there are typically some specifi-

cations that we need to meet in terms of minimum achievable data rate and maximum

acceptable bit error rate, and in most cases the parameters that we can modify have

opposing effects on these specifications. In single-photon detectors, these specifica-

tions are the maximum number of photons per seconds that can be detected and the

probability that a received photon is observed at the read-out. Although it would

be ideal to have a receiver that allows the highest possible photon rate while not

losing a single photon, we have to choose what specification is the most important for

our application and work within the boundary of our technology. For optical com-

munications, the goal is typically to achieve a count rate of millions or billions per

second [24], while we can afford to lose part of the light from the signal. Instead, for

astronomic imaging applications, in which the amount of light available is limited by

the large distance from the observed object, it is more critical to collect and detect

all the photon from the source, even if the detection time scale is of the order of μs.

For a photon to be detected by a superconducting nanowire single photon detector

(SNSPD) three conditions have to be met. The photon has to fall on the active area

of the detector; the photon has to be absorbed by the detectors; and the section of

the nanowire where the photon was absorbed has to pass from superconducting state
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to resistive state while the SNSPD is current biased. The probabilities of these three

processes to occur are quantified by the coupling efficiency (CP), the absorption (𝛼),

and internal quantum efficiency (𝜂IN) [25]. The product of these three quantities is

defined as the system detection efficiency (SDE ), or the probability that a photon

directed toward the receiver is detected by the user:

𝑆𝐷𝐸 = 𝐶𝑃 × 𝛼× 𝜂IN

Although the SDE is the quantity that truly characterizes the efficiency of a

receiver, it is common in literature to report another efficiency, called the device

detection efficiency (DDE ). The DDE is the product of 𝛼 and 𝜂IN, and it describes

the probability of detection for a device excluding the effect of the optical system

used for light coupling. This quantity is useful when we are trying to assess whether

the SDE can be increased by improving the optics in the receiver or the detector.

For optical communications, we also have to consider the SNSPD timing properties

of reset time and timing jitter. The reset time is the time that a detector needs after

receiving a photon to reset to the state in which it can detect another photon. The

maximum data rate for an SNSPD is inversely proportional to the reset time of

the detector [26]. The reset time depends mainly on the inductance of the detector

[27, 28, 29]. Figure 2-1 shows a simplified electrical schematic of an SNSPD. In first

approximation, we can treat an SNSPD as a simple RL circuit with a switch. The L is

the kinetic inductance of the nanowire, 𝑅n is the resistance of the section of nanowire

that switches to the resistive state, and 𝑅out is the input impedance of the read-out

circuit.

Without entering into the details of the detection mechanism of an SNSPD, which

can be found in [16], we will mention that the detection process of an SNSPD can

be separated in two phases. In the first phase the SNSPD is in a resistive state, the

switch is open, and the circuit has a time constant
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Figure 2-1: Simplified electrical model of an SNSPD with bias current generator and
read-out load.

𝜏1 =
𝐿

𝑅𝑛 + 𝑅𝑜𝑢𝑡

, while in the second phase the resistive section has reset to the superconducting

state, the switch is closed, and the circuit has a time constant

𝜏2 =
𝐿

𝑅𝑜𝑢𝑡

The sum of the times required for the two phases to be completed gives the total

reset time. Since typically 𝑅𝑛 ≫ 𝑅𝑜𝑢𝑡, 𝜏2 ≫ 𝜏1; the second phase dominates the reset

time. As the equation suggests, for a specific type of read-out circuitry, the reset time

depends on the inductance of the SNSPD.

Finally, the timing jitter of the receiver is the uncertainty in determining the time

of arrival of a detected photon. Although it has been theorized for a long time that

there is a physical limit of the order of 1 ps to how low the jitter of an SNSPD can

be, the jitter of current SNSPD-based receivers is limited by either the bias condition

of the detector or by the electronics used for the read-out, and it has not surpassed

18 ps [23, 30].

29



2.1 Design trade-offs

Figure 2-2 shows the design of a state-of-the-art SNSPD with the labels of the param-

eters that we can modify in the design of the detector. The nanowire is fabricated in a

meander to cover a square or circular area. In this section, I will briefly describe these

parameters and the way these parameters affect the detection and timing properties

of a detector.

Figure 2-2: Scanning electron microscope picture of an SNSPD with design parame-
ters labeled (courtesy of Di Zhu).

2.1.1 Active area

One of the important parameters to choose in the design of an SNSPD is the active

area since it affects both the coupling efficiency and the reset time of a detector. It

should be intuitive that a detector with a larger active area is able to collect more

light than a smaller detector, assuming a fixed beam-spot diameter. A large active

area also compensates for potential errors in the optical alignment. On the other

hand, we cannot increase the active area of a detector indefinitely. Because of the

SNSPD’s meander shape, detectors with larger active area have a longer nanowire.

Since the total inductance of an SNSPD is proportional to the length of the nanowire

(Equation 2.1), detectors with a larger active area have a larger inductance and higher

reset time (𝜏):
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𝐿 = 𝐿sh
𝑙

𝑤
, (2.1)

where 𝐿𝑠ℎ is the sheet inductance of the NbN film, l is the length of the nanowire,

and w is the width of the nanowire. In literature, the active area for an SNSPD

varies between 3 × 3 μ𝑚2 and 20 × 20 μ𝑚2. This value strongly depends on the

optics used for the photon coupling. Optical fibers have a fixed beam diameter while

lenses allow different beam-spot diameters depending on the numerical aperture. A

potential way to increase the detector’s active area without changing the reset time

is to use a parallel nanowire design known as superconducting nanowire avalanche

photodetector (SNAP) [28, 31]. Even using a SNAP design we can only increase the

active area by ∼10% without increasing the reset time of the detector.

2.1.2 Nanowire width

The nanowire width is equally important to the SNSPD’s active area, in the detector’s

design. As Equation 2 shows, the inductance of an SNSPD is inversely proportional

to the width of the nanowire. Ideally, we would prefer a wider nanowire to reduce the

reset time of the detector and increase the maximum data rate of the receiver. On

the other hand, it is known in the SNSPD community that the nanowire width affects

the sensitivity of a detector [32, 33, 34, 18]. In particular, detectors with narrower

nanowires either have a higher 𝜂IN at longer wavelengths or can reach maximum 𝜂IN,

known as saturation, at a lower bias current [35]. The latter point is particularly im-

portant because biasing a detector at a lower current means reducing the probability

that it will emit electrical pulses without receiving a photon, a phenomenon which is

known as false or dark counts. I’ll discuss this point more in details in chapters 4 and

5. Finally, the switching current of an SNSPD, which is defined as the maximum DC

current that a detector can withstand before switching to a sustained resistive state,

grows proportionally with the nanowire width. A higher switching current translates

in a higher SNSPD pulse amplitude, which reduces the electrical noise and, thus, the

timing jitter of the device. As the reader can understand choosing an appropriate
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nanowire width is important to meet the specifications for our application. For the

applications described in this thesis, we were using 1550-nm-wavelength sources. De-

tectors with a nanowire width 60-80 nm can reach maximum 𝜂IN at 70-80% of their

switching current at that wavelength.

2.1.3 Pitch or fill factor

The fill factor of an SNSPD determines both the absorption of an SNSPD and the

possibility to bias the detector at the highest possible current. In Figure 2-2 the fill

factor is referred to as pitch, since the two quantities are directly connected to each

other. Once the nanowire width is chosen, we divide it by the pitch to determine

the fill factor. Our group modeled SNSPDs as absorbing gratings and determined

that the higher the fill factor, the higher the absorption of the device, as it could be

expected. On the other hand, it was demonstrated in [36] that for fill factors higher

than 50%, the switching current of the device decreased as the fill factor increased

due to current crowding at the nanowire 180∘-turns [37].

2.1.4 Superconducting material

SNSPDs found in literature are typically made of NbN [18], NbTiN [38], or WSi

[39]. Although SNSPDs can be made out of any kind of superconducting thin film,

the material has to be easy to deposit and pattern, its kinetic inductance has to

enable few-ns reset time, and its superconducting energy gap has to be an order of

magnitude lower than the energy of the photons to be detected [40]. NbN, NbTiN,

and WSi offer a combination of these characteristics. NbN and NbTiN yield SNSPD

with almost identical characteristics [21, 19]. Both types of detectors are operated at

T = 2-4 K, have been used for system with SDE > 60 %, have a reset time of few ns,

and have timing jitter of 30-50 ps. Compared to these, WSi-based SNSPDs have the

advantages of being easier to deposit on any substrate since the film is amorphous,

having the highest internal quantum efficiency (𝜂IN > 93%), and having the lowest

dark count rate [23]. On the other hand, they have to be operated at T = 0.3-2.5 K,
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have a reset time > 10 ns, and a timing jitter > 60 ps.

Any of these materials can be chosen depending on the requirements that the

project has to fulfill. There have been examples of SNSPDs fabricated out of different

materials, but none of them could fit the requirements described above. Arpaia

et al. [41] fabricated SNSPDs out of YBCO that could detect photons at 1550-

nm-wavelength. Although the detectors could be operated above T = 10 K, the

fabrication process required several additional steps compared to standard SNSPD

fabrication processes [42]. Marsili et al. [43] have fabricated SNSPDs out of MgB2,

which could be operated at T > 10 K, but could not detect single photons at 1550

nm wavelength; only three photons at the time. Our group favors NbN because of its

combination of high sensitivity at 1550-nm-wavelength and its low kinetic inductance.

2.1.5 Thickness

Although the thickness of state-of-the-art SNSPDs has remained unchanged at 4-5 nm

in literature, it is worth mentioning its effect on a detector’s characteristics. Thicker

devices have a higher absorption when all other parameters are identical, and a lower

sheet inductance (𝐿𝑠ℎ), thus a lower reset time. With these two considerations in

mind, we could think that a thicker superconducting film would be a better choice.

However, it has been shown that as the thickness of the SNSPD increases the 𝜂IN or the

ability to reach saturation at any wavelength decreases [32]. In order to compensate

for the loss in sensitivity due to the increased thickness, we would need to reduce

the nanowire width to maintain the nanowire cross-section constant. Since we can

fabricate wider nanowires with higher yield, rather than narrower, it is preferable

to optimize the film quality for thin films and change the width of the nanowires

according to the application. For our devices, we determined that the optimal film

for SNSPDs was 4-nm-thick NbN, with sheet resistance of 450 Ω/2, and with (𝐿𝑠ℎ)

of 50 μH/2.
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Chapter 3

Cryogenic System - theory and design

Any type of experiment that involves operations at cryogenic temperatures requires

the use of a dedicated, and often customized, cryogenic system, or cryostat. Although

companies specialized in cryogenic systems sell lines of products, it is uncommon to

purchase a cryostat right off the shelf. Depending on the type of experiment that

needs to be performed a cryostat has to meet certain specifications [44, 45, 46, 47].

The cryogenic systems used for experiments with SNSPDs are not an exception. The

SNSPD is a technology that has reached state-of-the-art status only in the past decade

and that is still evolving in terms of superconducting materials used [23], geometries

[48], and on-chip configuration [49]. With each new evolution and experiment, a new

dedicated cryogenic system has to be designed. For the work in this thesis, I designed

a cryostat that could be used in two configurations for two different experiments. In

this chapter, I will describe the principles of cryogenic engineering that I followed to

design the cryostat for the use of SNSPDs in IR optical communications.

When designing or purchasing a new cryostat there are common constraints that

need to be taken into account, such as cooling method, base temperature, and cost,

and application-specific constraints, such as optical-coupling method. To operate

NbN-based and WSi-based SNSPDs for IR optical communications, I needed a cryo-

stat that could be cooled below T = 3 K, that would allow optical-fiber or free-space

coupling, that would cost less than $150.000, and that, preferably, would not be based

on cryogen flow (liquid gases). First, the temperature constraints could be easily un-
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derstood by considering the typical operating temperature of SNSPDs based on NbN

or WSi [18, 39], which are 1.5-4 K and 0.3-2.5 K, respectively. Many cryostats that

could reach T < 3 K had been invented [50], and some commercially available had

optical windows integrated [51]. However, those systems could not be cooled below

2 K. Second, including the optical coupling in the list of constraints for the cryostat

was critical because external illumination could compromise the performance of the

system, as we will see later in this chapter and in the next two chapters. Of the

cryogenic systems that we found in literature with a base temperature T < 2 K, none

of them included an optical window, unless they were based on constant flow of liquid

helium [52]. Third, I included the maximum cost of the cryostat since it limited my

options for a cryocooler and my ability to outsource the system design. We could

have built the system starting from a dilution refrigerator as it was done in the past

for fiber-coupled WSi SNSPDs [23] or we could have ordered the system custom-made

from a manufacturer, but either of those choices would have at least doubled the cost

of the project. We could have easily met all the three requirements specified above

using a liquid-helium based cryostat, with a smaller upfront cost [22, 53]. However,

the running costs of the system over a number of years would have surpassed the

upfront cost of the system. This will be of particular concern in the future due to the

rising cost of liquid helium [54].

I designed and built a vibration-isolating cryostat that could reach a base temper-

ature of the 2.9 K at the sample stage using a pulse tube cryocooler, that could be

further cooled to 1.7 K at the sample stage using a sorption fridge, and that measured

vibrations amplitude at the sample stage of less than 500 nm. When we first operated

the system without sample stage (without load) we could maintain the base temper-

ature at 0.8 K for 16 hours, which was two hours longer than the manufacturer. I

would like to acknowledge the help of Alyssa Cartwright who helped me develop the

system during her undergraduate period at MIT. In this chapter, I will first focus on

the basic principles of cryogenic engineering necessary to design a cryostat; second,

I will describe the design of the cryostat; and finally, I will discuss some potential

improvements for the cryostat.
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3.1 Cryogenic engineering

Cryogenic engineering is a multidisciplinary branch of engineering, which studies solu-

tions for low-temperature applications. To design the cryostat in this thesis, I had to

analyze and explore solutions for vacuum, heat transfer through solids and radiation,

mechanical stability, electrical connections, and optical coupling.

3.1.1 Vacuum

Establishing vacuum in the chamber of a cryogen-free cryostat is the first critical step

to ensure the proper functioning of the system [55]. As we will see in this chapter,

a cryostat is composed of a number of stages at different temperatures. For these

stages to remain at their desired temperatures, they have to be thermally insulated

from each other, and the best way to ensure this is to create vacuum in the system.

In normal ambient conditions, heat transfer between solids is mediated by gases and

vapors. Even when two objects are in physical contact with each other, the effective

area of contact between them is only a fraction of their total surface because of

surface roughness. However, the presence of gas and vapors at the interface between

the two objects allows for heat transfer across the whole surface. If we remove the gas

and vapor from the system, we reduce the heat transferred to a fraction of the total

interface between the solids. With this principle in mind, vacuum can be considered

the best possible thermal insulator. For this reason, the chassis of all cryostats is

made of a material that does not outgas and that can be easily welded. For my

system, I ordered the chassis to be made of 304 stainless steel and it was tested for

helium-gas leaks before being delivered.

Pump and seal choice

To create vacuum in the chassis, I used a two-pump system composed of a roughing

pump (Edwards E2M-12) for rough vacuum pre-pumping down to ≈ 100 mbar and a

turbo pump (Varian TV 70) for high vacuum down to ≈ 10−5 mbar, which is typically

the pressure that is needed for good insulation [55]. For the vacuum connections I
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used ISO-KF (Kleinflansch) and NW rubber O-ring flanges, since they are designed

for pressure from atmosphere to ≈ 10−8 mbar.

Nitrogen purging

Purging is a useful technique that can greatly reduce the time necessary for the

cryostat to reach base pressure. Gasses and vapors adsorption is a typical problem in

cryogenics because it increases the time it takes to vacuum the cryostat and sometimes

it can cause thermal shorts. That is the reason why we do not use materials that tend

to trap gas in cryostats, e.g. anodized aluminum. The purging technique is based

on filling a chamber with nitrogen gas and then pumping it out of the chamber [55].

Nitrogen gas is particularly good at desorbing gasses and vapors from all the surfaces

inside the cryostat, which would otherwise take a few hours to desorb.

3.1.2 Heat transfer and heat budget

The transfer of heat from room temperature to the cooling stages of a cryocooler,

through contact and radiation, is what determines the cooling performance of a

cryogen-free system [55]. The temperature stages of a cryocooler can withstand spe-

cific amounts of heat at certain temperatures, known as cooling power and which is

specified by the manufacturer of the cryocooler. The cryocooler can reach the tem-

perature at which the cooling power matches the heat load, which is the amount of

heat transferred from warmer stages to the cryocooler stages. Thus, we can estimate

the base temperature that the different parts of the cryostat will reach by comparing

the cooling power of a cryocooler at an arbitrary temperature to the heat load. We

call this comparison a heat budget.

Heat conduction through solids

The heat transferred by physical contact between the parts of a cryostat can be

described with the three concepts of thermal conductivity through a body, thermal

conductivity of an interface, and heat capacity. The first two quantities determine
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the base temperature that a cryostat can reach. The thermal conductivity through

a body depends entirely on the material properties and the geometry of the solid.

The thermal conductivity of an interface additionally depends linearly on the amount

of pressure applied to the interface. Finally, the third quantity determines how long

it takes for the cryostat to reach base temperature, and it depends on the material

properties and the geometry of the solid.

The equation below determines the heat transferred (𝑄̇𝑐) through a solid with the

extremities at temperatures 𝑇1 and 𝑇2.

𝑄̇𝑐 =
𝐴

𝐿

∫︁ 𝑇2

𝑇1

𝜆(𝑇 )𝑑𝑇 [W], (3.1)

where 𝐴 is the cross-section of the solid, 𝐿 is the length of the solid, and 𝜆 is the

thermal conductivity, which depends on the temperature of the solid. Luckily, in the

past century the heat conductivity as a function of temperature for the materials

most commonly used in cryogenics has been measured by multiple sources [55, 56].

It is more difficult to determine how much heat is transferred between two solids

because of the lack of literature on the topic. Ekin [55] collected data points from

literature of the thermal conductivity for interfaces that have been studied in the

past at a temperature of 4.2 K and contact force of 445 N and suggested the following

equation to convert the data points collected to any temperature and contact pressure:

𝑄̇𝑖(𝐹, 𝑇 ) = 𝑄̇𝑖(445𝑁, 4.2𝐾) ·
(︂

𝐹

445𝑁

)︂
·
(︂

𝑇

4.2𝐾

)︂𝛾

,

where 𝐹 is the applied force at the interface and 𝛾 is a non-linearity factor which

depends on the materials at the interface. The non-metallic interfaces in my design

were not reported in [55]. For those I used the data point of a copper-copper interface,

which is an overestimation since metal-metal contacts are typically better than metal-

nonmetal or nonmetal-nonmetal. As the equation above shows, the heat transferred

through an interface increases linearly with the force applied. Thus, when connecting

parts of the same temperature stages together, we should try using larger rather than

smaller bolts, within the limits of the space available. When that is not possible
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because of space constraints, it is common to use a thin layer (typically 10-μm-thick)

of Apiezon NTM grease, which increases the thermal conductivity of the interface by

filling the gaps due to surface roughness.

The equation below shows the relationship between the heat flow in a solid and

the change in the temperature of the solid as a function of time

𝑄̇𝑐 = −𝐴 · 𝐿 · 𝑐𝑃
𝜕𝑇

𝜕𝑡
, (3.2)

where 𝑐𝑃 is the volumetric heat capacity of the material. I used the equations pre-

sented in this section to determine the geometry and material selection for the parts

necessary to reach a base temperature below 3 K at the sample stage.

Radiative heat

Radiative heat, also known as black-body radiation, can dramatically change the

cooling performance of a cryostat [55]. A 25-mm-diameter circular body at 4 K sur-

rounded by a chamber at 300 K receives ≈ 0.5𝑊 , which is comparable to the cooling

power at the cold head of commercial pulse tube or Gifford-McMahon cryocoolers

[57, 58]. Thus, all of those cryocoolers are designed with two temperature stages.

The first stage cools down to around 40 K and has a higher cooling power, which is

used to cool down the radiation shield and protect the second temperature stage, or

cold head, and the sample stage from the radiative heat.

I determined the amount of heat transferred through radiation between the parts

of the cryostat using the Stefan-Boltzmann equation.

𝑄̇𝑟 = 𝜎𝜖𝐴(𝑇 4
2 − 𝑇 4

1 ), (3.3)

where 𝜎 is the Stefan-Boltzmann constant, 𝜖 is a factor that depends on the emissivity

of the two bodies, and A is the area of the smaller body or of the inner body, if the

two objects are one inside the other. The 𝜖 factor depends on the emissivity of the

two bodies 𝜖1 and 𝜖2 through the following equation:
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𝜖 =
𝜖1𝜖2

𝜖2 + 𝜖1 − 𝜖1𝜖2

The emissivity of a body varies between 0 and 1. For a polished metal 𝜖 is typically

0.01-0.05. For a non-polished or oxidized metal 𝜖 can be 0.1-0.6. For dielectric

materials the value of 𝜖 changes depending on the material. Figure 3-1 shows the

dependence of 𝜖 on the emissivity of the two bodies, and as we can see for the lowest

possible 𝜖, we need the lowest emissivity from both bodies.

Figure 3-1: 𝜖 factor dependence on the emissivity of two bodies.

The emissivity of a body determines its ability to diffuse radiative heat. As the

equation below shows the emissivity of a body is connected to the absorptivity (𝑎)

and reflectivity (𝑟) of the body.

𝜖1 = 1 − 𝑟1 − 𝑎1

For the many types of metals and materials used in cryogenics it is fair to assume

that the absorptivity is null or negligible compared to the other two factors, so the

equation is reduced to
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𝜖1 = 1 − 𝑟1

The higher the reflectivity, the lower the emissivity will be, which is the reason

why it is always desirable to have polished and reflective surfaces for all the parts in

the cryostat. Thus, it is good practice to polish and regularly clean the metal surfaces

in the cryostat that are often handled.

In addition to limiting the thermal effects of radiative heat, for the work in this

thesis, I minimized the radiative heat impinging on the sample stage because SNSPDs

were sensitive enough to detect the radiation of a body at room temperature. Heat

radiation is electromagnetic radiation, by nature, which means that a photodetector

can detect it if it is within its spectrum of sensitivity. Our group showed in the

past that SNSPDs can detect photons in the mid-IR wavelength range up to 5 μm

[22], and we have reasons to believe that they could detect photons up to 10 μm

[32, 33, 34]. All photons that do not come from the light source in the experiment are

considered noise and contribute to increasing the dark counts of the detector. Figure

3-2 shows that a 300-K-body emits photons already at 3-μm-wavelength and peaks

around 10 μm. Thus, I made sure that the radiation shield would completely screen

the sample stage from the chassis radiation, and I added a second shield around the

sample thermalized with the cold-head of the pulse-tube cryocooler to further reduce

the effects of stray radiation.

I used the following equation to evaluate the wavelength of the radiative heat peak

at any temperature, without plotting the entire spectrum.

𝜆𝑝𝑇 = 2900[μm K]

I observed that below 100 K the radiative emission would peak above 29-μm-

wavelength, which is outside the known range of sensitivity of an SNSPD. That

meant that the radiative photons coming from the radiation shield (typically below

70 K) did not contribute to the dark counts of the detector.
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Figure 3-2: Thermal radiation spectrum of a black-body at 300 K.

Superinsulation

The superinsulation is a stack of 10-80 layers of aluminized MylarTM alternated with

insulating spacer layers, and it is typically placed between objects at different tem-

peratures with large surface areas. Each layer of the superinsulation nominally halves

the amount the radiative heat transferred. For the cryostat described in this thesis,

I purchased Coolcat2TM 10-layer superinsulation sheets from RUAG. The sheets can

be cut and fused to form any shape with a soldering pen. I used the superinsulation

to cover all the walls of the first radiation shield and the sample area.

Electrical circuit analogy

The evaluation of the heat budget in a complex cryogenic system can be greatly

simplified if we look at the cryostat as an electrical circuit. The following section

shows how we can build a simple circuit model from a cryostat.

If we take the equation 3.1 for heat conductivity through a solid, we can rewrite

it as

𝑄̇𝑐 =
𝐴

𝐿
𝜆(𝑇2 − 𝑇1), (3.4)
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where 𝜆 is the mean thermal conductivity defined as

𝜆 ≡ 1

(𝑇2 − 𝑇1)

∫︁ 𝑇2

𝑇1

𝜆(𝑇 )𝑑𝑇

If we then compare the heat flow to a current flow and the temperatures to volt-

ages, equation 3.4 becomes Ohm’s law, for which the resistance has been defined as

𝑅 ≡
(︀
𝐴
𝐿
𝜆
)︀−1. In the same way, we can compare the equation 3.2 for the heat capacity

and the current-voltage relation for a capacitor with capacitance 𝐶𝑃 ≡ 𝐴𝐿𝑐𝑃 .

Based on this analogy we can now model the transfer of heat in a solid as in the

circuit shown in Figure 3-3 [59]. The cooling power of the cryocooler is represented

by the current generator. The solid is represented as a cascade of RC circuits be-

cause different sections of the solid have different temperatures (voltages). Finally,

the radiative heat can be added to the circuit as an additional current source using

equation 3.3.

Figure 3-3: Electrical circuit model of the heat transferred through a solid. The
temperature (T ) is replaced by voltage, the heat flow (𝑄̇𝑐) becomes current, the
heat conductivity (λ) are treated like resistors, and the heat capacities(Cp) become
capacitors.

For the work on the cryostat designed for this thesis, I used a simplified version

of that circuit. Since, I was more interested in the base temperature of the cryostat

rather than the time it was going to take to cool down the system, I treated the

circuit as in steady state, with no capacitance.

3.1.3 Mechanical stability

Along with ensuring that the cryostat could reach the desired base temperature, I

designed the structure and selected the materials to guarantee mechanical stability.
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Mechanical vibrations carry energy just like any other kind of wave. Considering the

long discussion in the previous section on energy minimization at the low-temperature

stage, it should be clear why mechanical vibrations coming from the environment

should be dampened before reaching the sample stage. In addition to that, when

working with photodetectors, mechanical vibrations can compromise the coupling

of the light source with the receiver. That is especially true for free-space optical

communications [60], as I will discuss in Chapter 4.

To dampen the mechanical vibration in my system, I chose rigid materials and

geometries when designing the structural components of the cryostat, and I chose

soft materials whenever I wanted to decouple the mechanical vibrations between two

components. With the cryogenic system mounted on an air-floated optical table, we

assumed that most of the vibrations would come from the gas movement in the cry-

ocooler and would be at low frequency (∼ 10 Hz). At those frequencies rigid structures

move as a single piece, while the soft parts deform following the vibration frequency

without transmitting the vibration. By connecting parts with soft component I could

decouple the vibrations.

3.1.4 Electrical connections

In a cryostat, choosing what electrical wires or cables to use is a compromise between

their electrical specifications and their heat conductivity. The DC and RF cables

regularly used at room temperature are not suitable for cryogenic applications. They

are made of materials with high electrical and thermal conductivity and have a large

cross-section, with the goal of minimizing the RF attenuation. Thus, they would load

the cryocooler with several Watts of heat. We need to use cables with lower thermal

conductivity at the cost of sacrificing maximum load current or RF attenuation.

DC lines

The DC lines in the cryostat designed in this thesis represented the smallest problem

since we were not using high currents. We used #36 AWG phosphor-bronze wires to
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connect to temperature sensors and heaters.

RF cables

Choosing the diameter and the material of the RF cables required a much more careful

analysis of the RF attenuation vs. heat load. Commercial RF cables made of regular

metals are typically more than 1 mm in diameter and have an RF attenuation of few

dB/m. Larger cables tend to have a lower RF attenuation; however, they carry more

heat. We noticed a similar tendency when comparing cables with same diameter and

different materials. In general, it was found that if the RF attenuation was lower,

then for the same cable diameter, the thermal conductivity was higher. We expected

to observe that trend, since most metals follow the Wiedemann-Franz law, which

correlates the thermal and the electrical conductivity of metals [61].

Cryogenic cables can be made of superconducting materials (such as NbTi), which

conduct less heat than regular metals but are only advantageous at cryogenic tem-

peratures.

From my analysis, I found that there was not a single type of cable that worked

for all cryostats. In addition, I observed that it was most convenient to separate each

RF line from ambient to cryogenic temperature into different cables and thermalize

the connections between the cables at each temperature stage. For the work on this

thesis, I experimented with both commercial cryogenic RF cables and home-designed

RF lines. The commercial cryogenic cables were semi-rigid cables and could guarantee

an RF attenuation < 10 dB/m at a frequency of 1 GHz. The downside was that they

cost $100-$500 a piece. Thus, they were not ideal for optical communication with

a large number of channels. In [62, 63], instead, the authors used home-designed

microstriplines fabricated on KaptonTM flexible tape. These ribbon cables could host

10 channels or more on a 1"-wide tape and guaranteed a lower heat conductivity

than commercial cryogenic cables. The downside was that they had a higher RF

attenuation. In Chapter 5, I will discuss more in details the commercial cryogenic

cables and my design of the RF ribbon cables.
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3.1.5 Optics

Since the cryostat was designed for single-photon-detector applications, I had to take

into account the possible effects of optical components on the cryostat’s performance.

As I explained in section 3.1.2, stray light affects both the performance of the cryostat

and the noise of an SNSPD. Introducing optical elements in the system intrinsically

increases the amount of stray light in the cryostat. Free-space optics requires a

line of sight between the source and the receiver, while optical fibers carry stray

radiation from the external environment to the samples. In forming a solution to this

problem, I took inspiration from more complex cryogenic systems designed for optical

measurements [44, 64] and adopted a few solutions for filtering the stray light. These

solutions will be discussed in detail in Chapters 4 and 5.

3.2 Cryostat design

Figure 3-4 shows a schematic of the cryostat that I designed for testing SNSPDs in

optical communications, both with free-space and with optical fiber coupling. I pur-

posely omitted the sample stage from the schematic because each experiment required

a different type of sample stage. Details of the sample stages will be discussed in the

respective chapters. For ease of explanation, I will describe the top assembly and the

bottom assembly of the cryostat separately. The top assembly was mainly responsible

for the cooling of the system. The cryostat was cooled to a base temperature lower

than 3 K by a pulse tube cryocooler PT415 from Cryomech. The cryocooler had

two temperature stages, the 35K-stage and the 3K-stage. For the free-space experi-

ment I included a sorption fridge Freeze4 from PhotonSpot, which was cooled to base

temperature and could be cycled to a base temperature of 0.8 K without load. The

temperature stages were made of oxygen-free high-conductivity (OFHC) copper and

were held together by G-10 support bars.
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Figure 3-4: Schematic of cryostat designed for this thesis, not including the sample
stage. The two temperature stages were made of oxygen-free high-conductivity copper
and were held together by G-10 bars. The sorption fridge is shows as semi-transparent
because it was used only for one of the two experiments.

3.2.1 Materials

I designed the inside of the cryostat almost entirely with copper and G-10 fiberglass.

Our goals were to minimize the heat load on the pulse-tube cryocooler and on the

sorption fridge and to minimize the mechanical vibrations at the sample stage.

Oxygen-free high-conductivity copper

I used oxygen-free high-conductivity copper for the cooling stages and to connect

parts that I wanted to keep at the same temperature. Copper is the most widely

used material in cryogen-free cryostats because of its high thermal conductivity and

machinability. It comes in different levels of purity, which are defined in percentage

or in residual-resistance ratio (RRR). The higher the purity, the higher the RRR, the

higher the thermal conductivity, and the higher the cost. OFHC copper is typically

graded at 99.99% purity or 𝑅𝑅𝑅 ≈ 150, and it guarantees a thermal conductivity

𝜆(𝑇 ) > 1000𝑊/(𝑚 · 𝐾) even at cryogenic temperature. The only other metal with

a comparable heat conductivity is 99.999% aluminum, which is almost an order of

magnitude more expensive [56, 55].
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G-10 fiberglass

I used G-10 fiberglass whenever I needed to rigidly connect stages at different tem-

peratures. G-10 is a widely used material in cryostats, just like copper. Although it

is hard and hazardous to machine, G-10 offers high rigidity and a thermal conduc-

tivity 𝜆(𝑇 ) = 0.1 − 1𝑊/(𝑚 ·𝐾) from room temperature to cryogenic temperatures.

Two alternatives to G-10 are stainless steel or Teflon, which are much easier and less

dangerous to machine. However, the former has a thermal conductivity one order of

magnitude higher than G-10, and the latter is softer. For these reasons, I decided to

use G-10 for parts with simple geometries. Parts with more complicated shapes were

made of 304 stainless steel.

3.2.2 Top assembly

Figure 3-5 shows the CAD design in Solidworks and photographs of the top assembly

of the cryostat, which was mainly responsible for the cooling of the system. The

stainless steel chassis was divided in a cylinder and a top plate, which were connected

by a NW320 flange with a rubber O-ring. Although the two components could be

bolted together, their weight and surface area were enough to guarantee a vacuum

seal. The top plate had seven flanges welded to it. The central flange was designed

with a 15 cm diameter to fit the flange of the pulse tube cryocooler. The other six

KF-40 flange were used to mount the feedthroughs for DC and RF lines and for optical

fibers. The bottom of the plate had six mounting blocks with clearance holes for 1/4"-

diameter screws, which were used to hang the structure inside the cryostat. I mounted

8.9-cm-long G-10 bars to the mounting blocks with 1/4-20 screws and stainless steel

washers. I mounted the copper radiation shield to the G-10 bars with stainless steel

L-brackets; G-10 L-brackets would have been unnecessarily hard to machine. The

radiation shield was thermally connected to the 35K-stage of the PT415 with soft

copper braids to decouple the vibrations of the cryocooler from the temperature

stage. The copper braids were soldered to copper plates with silver-based solder, so

that they could be easily bolted to the radiation shield and to the 35K-stage. The
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copper radiation shield was made of a top plate connected to the L-brackets and four

copper walls. The walls were mounted to the copper plate with 29-cm-long copper

bars. Two of the four walls were bent to fit the Freeze4 sorption fridge inside the

radiation shield. An additional 38-cm-long copper bar was bolted to the top copper

plate to allow a thermal link with the bottom portion of the radiation shield, which

I will describe in section 3.2.3. I used the top copper plate also as the first point

to thermalize the DC and RF lines. I wound the DC lines around a copper post

and secured them with Teflon tape. I connected the RF lines to SMA-SMA adapters

mounted on the plate. Finally, I used copper tape to cover the holes and the spaces

between the different parts, and I taped 10-layer superinsulation sheets to walls of

the radiation shield.

I designed the second temperature stage similarly to the first stage. I hung four

18.7-cm-long G-10 bars from the top copper plate, and I connected them to a second

copper plate using stainless steel L-brackets on both sides. I chose longer G-10 bars to

reduce the heat flux and to fit the Freeze4 sorption fridge. I thermally anchored the

copper plate to the 3K-stage of the cryocooler with the same type of copper braids

used for the top plate. I mounted the sorption fridge on this copper plate. Also here,

I wound the DC lines around a copper post and secured them with Teflon tape. This

section of the top assembly was modified for the optical-fiber coupled experiment,

and I will describe those changes in detail in Chapter 5.

In addition to the requirements for a regular cryostat, I designed the top assembly

to fit the Freeze 4 sorption fridge from PhotonSpot. As we can see in Figure 3-5 the

bars between the temperature stage were designed to closely fit the top part of the

sorption fridge. We chose the thickness of the copper plate of the second temperature

stage to be ∼ 3.2 mm so that it could withstand the 2 kg weight of the sorption

fridge. We tested the base temperature of the sorption fridge in the cryostat without

sample and with the optical window open. As we can see from Figure 3-6, the cold

head of the sorption fridge (black line) reaches a base temperature < 0.8 K, and

it can maintain that temperature for 16 hours, while the manufacturer indicated a

maximum hold time of 13 hours.
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(a)

(b)

Figure 3-5: (a) CAD design of the cryostat top assembly. The assembly is shown with
both the stainless steel chassis on the left, and without part of the chassis and two of
the radiation shield copper walls. (b) Photograph of the complete top assembly.

3.2.3 Bottom assembly

Figure 3-7 shows the CAD design in Solidworks and photographs [FIXME] of the

bottom assembly without the sample stage mounted. I designed the stainless steel

chassis to be mounted directly on an optical table. For the free-space coupling exper-

iment that was the best way to align the optical source to the chip in the cryostat and
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Figure 3-6: Temperature measurement of two stage of the Freeze 4 sorption fridge.
The red line indicates the second temperature stage, while the black line indicates
the cold head of the fridge.

to ensure no relative motion between the optical source and the receiver. I designed

the chassis with a cubic shape so that four NW250 flanges could be welded to the

walls of the chassis. The four flanges had an aperture of 25 cm, so I could easily

access the inside of the cryostat from almost any position. On the top of the chassis,

I added a NW320 flange to connect to the stainless steel cylinder of the top-assembly

chassis. I glued a 30 cm × 30 cm aluminum breadboard to the bottom of the chassis

as a base to mount the cryostat structure.

I used eight G-10 support bars with aluminum clevis ends that could be bolted to

aluminum brackets to support the radiation shield. The requirements on the support

bars for this portion of the radiation shield were more demanding than in the top

assembly. The cooling power from the 35K-stage was much lower for the bottom

assembly because of the physical separation from it. In addition, I could separate

the radiation shield only 4 cm from the breadboard, so the G-10 bars that I used

for the top assembly would not have worked. Finally, I had to guarantee mechanical

stability because the sample stage for the free-space experiment was going to be

mounted on the radiation shield. Thus, I designed these 15-cm-long support bars
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with the brackets, and mounted at angles that would ensure mechanical stability.

The radiation shield of the bottom assembly was a larger reproduction of the

radiation shield in the top assembly. A bottom copper plate was thermally anchored

to the copper plate in the top assembly with the long copper bar mentioned in the

previous section and flexible copper braid. The four vertical walls of the radiation

shield were mounted on the bottom plate with four copper bars. Two of the walls

were bent in the same shape as the walls at the top, so that the radiation shield in

the top assembly could fit inside the radiation shield of the bottom assembly, leaving

a 1 cm spacing between the two. This design minimized the space between the two

portions of the radiation shield and the amount of stray light inside the shield, while

allowing me to separate them. On one of the two planar walls I included a 2.5-cm-

diameter window for the free-space experiment. I also included tapped holes around

the window, so that I could install optical filters. Just as in the top assembly, I used

copper tape to cover the holes and space in the radiation shield, and I taped 10-layer

superinsulation sheets to the walls and the plate of the shield. Finally, I wrapped

the area between the bottom and top halves of the radiation shield with single-layer

aluminized Mylar to completely protect the inside from stray light.

3.2.4 Heat budget

Table 3.1 below shows the heat budget for the separate components of the cryostat;

the heat budget includes the materials used, the temperature gradient, and the heat

transferred by the part. The temperatures indicated were experimentally measured

in the cryostat. The initial heat budget estimation assumed that the two temperature

stages to be at 𝑇 = 50 K and 𝑇 = 3 K and a 𝜖-factor of 0.016, which was indicated

in literature for polished copper [55]. I recalculated the heat loads after measuring

the correct temperature for the radiation shield. The fact that the two portions of

the radiation shield had a 20 K temperature difference indicated a heat transferred

of 2.9 W through the copper bar connecting them. I could only explain this heat

being due to thermal radiation since I could not find any thermal short between the

chassis and the radiation shield. A higher radiative heat contribution than expected
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(a)

(b)

Figure 3-7: (a) CAD design of the cryostat bottom assembly. The assembly is shown
with both the stainless steel chassis on the left, and without part of the chassis and
two of the radiation shield copper walls. (b) Photograph of the complete bottom
assembly.

could only be explained by a higher 𝜖-factor. Since the exact heat flow reduction of

the superinsulation was not known, I was not able to estimate the correct value of

the 𝜖-factor. However, I could estimate that that level of radiative heat corresponded

to 𝜖 > 0.03. That 𝜖-factor can be reached with modest levels of oxidation of the
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copper walls, which could hardly be prevented since the cryostat had to be opened

to atmosphere several times to change samples and for re-purposing. In section 3.3.3,

I will discuss a way to prevent oxidation. The 35K-stage and the 3K-stage of the

PT415 cryocooler had a nominal cooling power of 40 W at 𝑇 = 45 K and 1.5 W at

𝑇 = 4.2 K, respectively.

Table 3.1: Heat load (𝑄𝑐) budget of the cryostat including heat transferred through
solids and through radiation. The table includes the single components, their mate-
rial, the temperature difference, and the heat transferred through solids and radiation.

Material Temperature
difference

𝑄𝑐

Top assembly
Hanger bars G10 300 K - 35 K 0.75 W

Chassis radiation with su-
perinsulation

RUAG Coolcat2 300 K - 35 K 5.94 W

Bottom cooling copper bar Copper 55 K - 35 K 2.9 W

Hanger bars G10 35 K - 3 K 12 mW

Top shield radiation with-
out superinsulation

Stainless steel/copper 35 K - 3 K 1.21 mW

Bottom shield radiation
without superinsulation

Stainless steel/copper 55 K - 3 K 4.62 mW

Bottom assembly
Clevis-end bars G10/aluminum 300 K - 55 K 56 mW

Chassis radiation with su-
perinsulation

RUAG Coolcat2 300 K - 55 K 2.84 W

3.3 Potential improvements

The cryostat design that I showed in this chapter met the specifications for the exper-

iments that we wanted to perform. In this section, I would like to share some ways in

which future colleagues may improve the system for experiments that demand better

cooling performances. I did not implement these improvements myself because their

cost could not be justified, since I had already met the requirements for the system.
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In addition, while some of these improvements require minimal effort since they can

be outsourced, other improvements involve a major redesign of the system, from the

chassis to the radiation shield.

3.3.1 Circular geometries

The temperature stages could be redesigned to have circular shapes and less detach-

able parts. One of the main flaws of my design is that it has many separate parts

bolted together. Separate parts create more thermal resistance and make the cry-

ocooler temperature stages less effective. In addition, regular maintenance on the

cryostat takes more time since every part needs to be unmounted. For instance, if in-

stead of a radiation shield made of four walls, we had a single cylinder we would pass

from eight components (including the support copper bars) to a single component.

The colder stage of the cryostat could be designed in a similar fashion.

Although the idea of the cylindrical radiation shield seems simple to implement on

paper, I did not use that design because of a lack of space and funding in the project

budget. When I first started the design of the cryostat, I inherited the external chassis

from a cryostat previously built by Dr. Adam McCaughan. I created a design for the

cryostat hosting the Freeze4 sorption fridge with a cylindrical radiation shield that

would fit inside the chassis. However, I realized that the radiation shield was only

few millimeters from the chassis inner wall, and that the sorption fridge was also few

millimeters away from the inner walls of the radiation shield, thus causing a risk for

thermal short between the temperature stages. The problem could have been solved

by moving the position of the PT415 cryocooler from the center of the cryostat to

the side by 4-5 cm. That modification would have required a complete redesign of

the top plate of the chassis, which was the most expensive part. Thus, I decided

to implement the design described in this chapter. I redesigned the chassis for the

bottom assembly, and I did not change the top plate because the project could not

afford the cost.

If anyone were to adopt the design using a radiation shield with a single cylindrical

wall, they would be better off with a cryostat that is held from the top plate and not
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sitting on an optical table. I could place the bottom chassis of my cryostat on the

optical table because the four walls of the radiation shield could be removed through

the four NW250 openings. With a radiation shield composed of cylinders, the entire

bottom chassis would have to be removed before removing the bottom radiation shield

to access the sample stage. Figure 3-8 shows a schematic of how the cryostat could

be redesigned. The top plate of the chassis would include attachments for a tripod

structure. The tripod legs could sit on an optical table. In that way the bottom

chassis and radiation shield could be easily detached and removed from the bottom.

Figure 3-8: Schematic of the tripod configuration for the cryostat. The current
cryostat is placed on the optical table. With this configuration the cryostat can still
be on the optical table but held from the top. In that way parts can be easily removed
from the bottom.

Considering the cost of material and manufacturing, I can project a budget of

$ 15.000 - $ 20.000 for the whole redesign. If our group was able to make such an

investment in the future, I would highly recommend implementing it since it would

considerably simplify the maintenance of the system and the user’s ability to work

on the sample stage.

3.3.2 Electron-beam welding

Electron-beam welding is a welding technique that creates the best possible joint

between metal parts made of the same material [65]. In e-beam welding, a high-
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energy electron beam is shot at the interface between two metal parts until they melt

together. The welding is done under vacuum, so that impurities in the metal are

released at the interface. With this welding technique we can effectively eliminate

the thermal resistance of the connection and actually create a higher purity, and thus

more conductive, junction. The cost of e-beam welding is of course much higher than

the cost of silver-based soldering.

This technique is particularly useful when copper braids are used in a cryostat.

Although the silver solder method that we used for this cryostat offered the thermal

conductivity that we needed, e-beam welding would improve the thermal conductivity

of each junction by two orders of magnitude.

3.3.3 Gold plating

Copper parts can be gold-plated to improve the cooling performances and durability of

the cryostat. Although gold plating can cost between $300-$400/sq.ft., it offers many

advantages for cryogenic systems. First, gold-plated parts do not oxidize. Once a

copper part is polished and gold-plated, we do not need to worry about maintenance

or a change in thermal conductivity. Second, the emissivity of gold will not change

over time, so the effect of radiative heat will also not change over time. Third, the

interface between gold-plated parts conducts 20 times more heat than the interface

between copper parts [55]. For these reasons, an investment of few thousands of

dollars could pay off in the long term creating a high-performance durable system.

3.4 Outlook

In summary, I designed and assembled a cryogenic system which combines two closed-

cycle cooling elements, a pulse-tube cryocooler and a sorption fridge. The system

reached a base temperature < 0.8 K for more than 16 hours with an optical window.

This system can enable the use of WSi-based SNSPDs for free-space optical com-

munications. In the next chapter, I will show the first results in the pursuit of this

application.
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I should also point out that the use of these cooling elements rather than a dilution

refrigerator heavily reduces the cost for the system, making it more affordable for

large-scale applications.
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Chapter 4

Free-space coupled configuration

Free-space quantum optical communication in the infrared (IR) [13] is an important

technology for applications such as naval operations that cannot rely on optical fibers.

The mid-infrared (mid-IR) range is particularly interesting because of a window of

transmission in the atmosphere at wavelength λ = 10 μm. These communications

require high speed single-photon detectors sensitive to mid-IR radiation. As discussed

in Chapter 1, superconducting nanowire single-photon detectors (SNSPDs) [18, 22]

represent one of the best detectors for this application, due to their single-photon

sensitivity, their high speed (few ns reset time), and their high time resolution (few

tens of ps time jitter). System detection efficiencies (SDE) greater than 67% [23, 19,

20] were demonstrated for SNSPDs at near infrared (near-IR) wavelength (λ = 1.55

μm). This demonstration was achieved not only by increasing the devices detection

efficiency but also by maximizing the coupling efficiency, i.e. the fraction of photons

emitted by the source that are coupled to the SNSPD. In all the cited cases, an

optical fiber was aligned to an SNSPD, either passively [23] or actively [19]. We

identified three main reasons why we cannot apply the same alignment method to

mid-IR optical communications. First, the dimensions of the detector depend on

the fiber used. An optical fiber has a fixed core diameter that consequently limits

the minimum diameter of the beam emitted by the fiber. To ensure high coupling

efficiency, the minimum dimension of the detector has to be larger than the beam

diameter; thus, this dimension is also limited. This requirement becomes a non-
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trivial issue for experiments in the mid-IR, which require optical fibers with a mode

field diameter MFD > 20 μm versus the typical active area of an SNSPD which is

≤ 15 × 15 μm2. SNSPDs with active area > 15 × 15 μm2 have been successfully

fabricated using parallel nanowire configuration to compensate for the loss in reset

speed [66, 67]. However, the reset time for large area SNSPDs reported is still >

20 ns, which limits the maximum count rate of the detector. Second, using mid-IR

fibers would limit the scalability of the system to multiple channels. Every channel

in the system requires an optical fiber; thus, for a large array of detectors a bundle

of fibers is required, and integrating this bundle into a cryostat with tight spaces can

make the design challenging. Finally, mid-IR optical fibers are more rigid and fragile

than near-IR fibers, and the only commercially available prototypes are multi-mode:

there is a long term bend radius of > 40 mm for mid-IR fibers vs a long term bend

radius of > 13 mm for near-IR fibers. Thus, it would be more difficult to thermalize,

cleave, or integrate a mid-IR fiber with components affected by thermal contraction.

In addition, the lack of single mode 10 μm wavelength fibers makes them less desirable

for optical communication.

An optical system based on free-space optics solves these three problems. In

diffraction optics, an optical beam can be focused on a spot with a minimum diameter

smaller than the wavelength of the beam itself, if the optical system has a large enough

numerical aperture. In addition, a free-space optical system can host several channels

in a single optical path as long as there is no cross-talk at the receiver. Depending on

the spot dimension achieved and the diffraction limit of the system, we can determine

how many channels in parallel the system can accommodate.

To date we could not find any demonstration of a cryogenic system with free-

space high coupling efficiency to a single SNSPD at 1.55-μm-wavelength or higher.

Free-space coupling to cryogenic detectors was proposed in the past for astronomical

imaging [68, 69] and spectroscopy [44, 70], and for quantum communications [71,

72]. Some of these proposals used semiconductor devices. These detectors could be

fabricated in arrays with an area four orders of magnitude larger than an SNSPD;

however, they were not single photon sensitive. In addition, the base temperature
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needed for these devices to operate (∼ 6 K [68], ∼ 50 K [44]), allowed the use of

cryostats with a cooling power that is not available below 4.2 K. Other systems used

cryogenic detectors to receive quasi-optical millimeter and sub-millimeter radiation

[71]. In this case, it is possible to build in plane antennas that can efficiently focus the

radiation onto the detector. Thus, the active area of the receiver is effectively mm2

scale. Mazin et al. [70] achieved free-space coupling to superconducting detectors

at a base temperature of 100 mK using an adiabatic demagnetization refrigerator,

but they limited the wavelength detection range up to 1.1 μm. Verevkin et al. [72]

used free-space coupling for SNSPDs, but they state that “the working area of our

detectors is always smaller and often much smaller than the incident photon beam

size”. Finally, Allman et al. [69] coupled a 1.55 μm wavelength beam in free-space to

a 64-pixel SNSPD array for imaging purposes, while we were interested in coupling to

individual SNSPDs for optical communications. We propose here a cryogenic set-up

for superconducting single photon detectors built to achieve high efficiency (> 50%)

free-space coupling on a single device.

We designed and built a vibration isolating cryostat with free-space optical access

able to reach a base temperature T = 2.9 K, with an additional stage that can cycle

the sample stage to T = 1.7 K for 1.5 hours; we measured vibrations amplitudes of

498±98 nm at the sample stage. The optical system focused light on a detector with

a minimum spot waist of 6.6±0.11 μm at λ= 1.55 μm, which can allow high coupling

efficiency on a state-of-the-art SNSPD. For a mid-IR wavelength system, the same

beam waist could be obtained only with larger numerical aperture lenses. One of the

two lenses was mounted and thermalized inside the cryostat, and it was aligned to

the SNSPD chip before the cooldown. We used an 8×7.3 μm2 area NbN on sapphire

SNSPD based on 100 nm wide nanowires 50% fill factor to calibrate our set-up. We

biased the detector at 97% of its switching current. At this set point, we measured

a dark count rate of 95 ± 3.35 kcps. At the same bias current we measured an SDE

of 1.64% ± 0.13%. By characterizing the dimension of the beam at the detector, we

estimated a coupling efficiency of 56.5% ± 3.4%. From the ratio between the two

efficiencies, we calculated that the SNSPD’s device detection efficiency (DDE ) was
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2.9% at the same bias current. In this chapter, I will describe the optical and cryogenic

system designed, the characterization of vibrations and system detection efficiency,

and finally some potential upgrades for mid-IR operation. The work described in this

chapter was published in the scientific journal Optics Express [60].

4.1 Optics

With the free-space optical system, I achieved coupling efficiency > 50% at 1.55-

μm-wavelength while maintaining low stray-photon rate impinging on the detector;

in addition, I designed the cryogenic portion so that it could be used in the mid-IR

wavelength range (λ> 3 μm). The final goal for the project was to demonstrate

single-photon communication at λ= 3 − 5 μm. I decided to initially develop the

system for λ= 1.55 μm, since our group already had extensive experience operating

SNSPDs at that wavelength. As I will explain in section 4.5, operating SNSPDs at

mid-IR wavelength added a whole new set of challenges to the project. I preferred

to focus on creating and debugging the cryogenic and optical systems first. By the

time we completed the first phase, the program had run out of funding, and we

could not upgrade the system to mid-IR operations. I laid down the theoretical

groundwork, which I will discuss in section 4.5, that can be used by my colleagues in

future programs.

I designed a three lens optical system to image the surface of the SNSPD chip and

to focus a test beam from a laser source on a detector. A picture and schematic of

the system are shown in Figure 4-1. The imaging system was designed to achieve a

field of view of ∼ 200 μm. Imaging the SNSPD chip allowed us to align the optical

beam to the detector and to place Lens 3 at the correct focal distance. Even though

the ultimate goal was to use the optical system at mid-IR wavelengths, for this first

demonstration I created an optical system able to focus a beam spot of 12.7 μm in

diameter at λ= 1.55 μm.

I designed a two lens telescope to couple > 90% of the light coming from the source

onto the active area of the detector; because of the large numerical aperture required

64



Figure 4-1: (a) Picture of the complete optical set up used for imaging the chip and
focusing the light on the SNSPD. The SNSPD chip and Lens 3 were mounted inside
the cryostat. The picture was selectively cropped to highlight the relevant features.
(b) Schematic of the optical set up used for chip imaging and beam focusing. The
green lines represents the path of the light beam used by the imaging system. The
red lines represents the path of the light beam that is focused on the detector. The
polarizing beamsplitters are used only for the imaging system. For the detection
efficiency characterization, we use a quarter-wave and a half-wave plate to maximize
the transmission through the beamsplitters.

to couple λ= 10 μm light on an SNSPD, I had to mount Lens 3 inside the cryostat.

The yield in the fabrication process and the constraints in the detector’s speed due to

the kinetic inductance of the NbN [26, 27], limit our SNSPDs maximum dimensions.

An NbN SNSPD with a 15× 15 μm2 active area, 80 nm wide nanowires and 40% fill

factor typically showed a reset time < 50 ns, which is as high as we wanted to go for

20 MHz optical communications. I determined from Gaussian optics that in order

to have 90% of the source power impinging on an active area of 15 × 15 μm2, the

beam waist had to be no larger than 7.5 μm. As a consequence, I determined that

at λ= 10 μm I needed a numerical aperture of 𝑁𝐴 = 0.41 at Lens 3; thus, for a 25

mm diameter lens, rather than a larger lens, the maximum acceptable focal length

is 𝑓Lens3 ∼ 28 mm. I chose a 25-mm-diameter lens because increasing the aperture

of the optical system not only would have increased the stray light impinging on the

detector, but it would have also compromised the cooling ability of the cryostat, due

to the increased incoming thermal radiation. In addition, because of the short focal
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length of Lens 3, I mounted it inside the cryostat, as shown in Figure 4-1a. From the

commercially available lenses, I selected an aspheric lens for Lens 3 with 𝑓 = 20 mm

with IR anti-reflective coating (1050 - 1700 nm).

Starting from the selection for Lens 3 and design wavelength, I picked Lens 1 from

commercially available lenses. As I mentioned earlier, for the test described in this

document I used a fiber coupled coherent light source at λ = 1.55 μm, as a signal.

I characterized the beam profile at the output of the optical fiber, and I observed a

Gaussian beam with a beam quality 𝑀2 = 1.35 and a beam waist of 8.3 ± 0.05 μm.

Thus, I chose an aspheric lens with 𝑓Lens1 = 26 mm, so that the demagnification of

the telescope was 1.3×. In Figure 4-2(a), I show the profile of the Gaussian beam at

the output of the telescope characterized with a beam profiler. I obtained a minimum

Gaussian beam waist of 4.82 ± 0.04 μm, which was close to the 4.8 μm waist that we

obtained from theoretical calculations [17]. The 𝑓Lens4 was selected to obtain a field

of view of 200 μm. In Figure 4-1a, the green lines represent the path followed by the

incoherent visible light (λ = 635 nm) in the imaging system. The light back reflected

by the SNSPD chip is focused through a telescope formed by Lenses 2 and 3 on a

CCD camera. The active area of the camera chip is 12.5×12.5 mm2 ; thus, for a field

of view of 200 μm we needed a magnification of 25×. Because 𝑓Lens3 = 20 mm, we

used 𝑓𝐿𝑒𝑛𝑠4 = 500 mm. Figure 4-2(b) shows an image acquired with the optical set-up

and centered on an SNSPD. Because of the imaging system, I was able to align the

focusing system to the SNSPD in two separate steps [73]. First, Lens 3 was aligned

to center the image on the selected SNSPD. In a second step, I aligned the optical

source and Lens 1 so that the beam spot was centered on the detector. The use of

two separate optical systems allowed me also to verify that Lens 1 was at the focal

distance from the SNSPD chip; in particular, I was able to verify that the image was

focused on the same plane where the beam from Source 2 was focused.
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Figure 4-2: (a) Beam profile of the spot light focused by the focusing system measured
with a beam profiler. The profile is fitted with a Gaussian profile to extrapolate the
beam waist. (b) Image of the SNSPD detector on a 200 μm diameter field of view
taken with the optical set up. The bright dot is the beam from a λ= 635 nm laser
focused on the chip. The spotlight was moved to place it on the area where an SNSPD
was fabricated (inside the red rectangle).

4.2 Cryogenic apparatus

Figure 4-3 shows a complete schematic of the cryostat designed for this thesis in free-

space coupled configuration. As discussed in Chapter 3, there are two temperature

stages that cool the radiation shield and the system to a base temperature of 2.9 K, to

which I added a sorption fridge. The cold head of the sorption fridge could reach 0.8

K without any heat load, and it was used to cool-down the sample. The sample stage

and Lens 3 were mounted on the bottom assembly of the cryostat. The top assembly

was already described in Chapter 3, with the only difference being the addition of a

copper cap mounted at the second temperature stage around the cold head of sorption

fridge. I added that cap to protect the cold head from thermal radiation. In the next

subsection, I will describe the bottom assembly of the cryostat.

4.2.1 Bottom assembly

Figure 4-4 shows the CAD designs and the pictures of the bottom assembly of the

cryostat in free-space configuration. In Figure 4-4(a), we can see the IR filter mounted

to the wall of the radiation shield with a copper ring. In Figure 4-4b, I inserted Lens
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Figure 4-3: Schematic of the cryostat. The entire system is also enclosed in a stainless
steel chassis.

3 in a lens tube and mounted it to an XY translation stage attached to 25-mm-

diameter stainless steel post; the post was fixed to the bottom plate of the radiation

shield with a clamp. With this assembly, I could align the lens to the SNSPD at

room temperature. Any misalignment due to thermal contraction of the components

could be fixed by changing the position of the optical source on the optical table. The

sample stage was mounted within a copper enclosure indicated as 4K shield, which

was thermally connected to the second temperature stage through a copper bar and

a copper braid as shown in Figure 4-3. Just like in the radiation shield, the copper

braid was used to damp the mechanical vibrations from the top assembly. The 4K

shield protected the sample from thermal radiation. As we will see in section 4.2.2,

even the radiation from the radiation shield could have affected the temperature of the

system. In Figure 4-4, we can see how the 4K shield was mounted to the bottom of the

radiation shield with G-10 support bars just like those used underneath the bottom

plate of the radiation shield (see Chapter 3). Because of the smaller temperature

gradient, I could use shorter bars. I designed the 4K shield with one hole at the front

for the sample illumination, one hole at the top for the thermal connection to the cold

head of the sorption fridge and two holes in back to mount RF SMA adapter. These
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adapters where also used at the radiation shield in the top assembly to thermalize

the RF cables before they reached the sample mount.

Figure 4-4: CAD schematics (top) and photographs (bottom) of the bottom assembly
of the cryostat. The schematic and photographs are shown without vacuum flanges
and part of the radiation shield on purpose. The top right figure shows the structure
removed from the stainless steel chassis. The bottom left shows the view in front of
the RF connectors. The bottom right figure show the side view with the walls of the
4K shield removed.

Figure 4-5 shows two pictures of the sample holder attached and detached (figure

inset) from the cryostat. The sample holder was attached to the 4K shield with a
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support mount made of a copper plate and a G-10 L-shaped stand. The copper plate

was connected to the cold head of the sorption fridge with a copper braid. I installed

a Ruthenium Oxide temperature sensor on the copper plate to measure the correct

temperature of the SNSPD chip. The sample holder was bolted to the copper plate.

The SNSPD chip was mounted at the center of the sample holder with two Teflon

clamps. I designed and fabricated a bare-copper PCB for the read-out of a maximum

of 4 devices. In Figure 4-5 you can notice the 0.86-mm-diameter RF cable with a

copper core and aluminum shield that I used for the device read-out. I used a flexible

RF cable, even though it was not ideal for a cryogenic set-up, since the initial test

was on a single device. If I had gotten to testing multiple devices at the same time,

I would have replaced that type of cable with a cryogenic RF cable. I will discuss

there types of cables in chapter 5.

Figure 4-5: Photograph of the sample mount area in the bottom assembly of the
cryostat. The red bright dot is a laser beam spot focused on a mounted SNSPD
device. The inset shows the sample holder unmounted from the cryostat.
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4.2.2 Heat budget

Table 4.1 shows the heat budget for the components of the free-space configuration

that were not included in chapter 3. First, we can notice how the clevis-end bars

transport an amount of heat that is orders of magnitude below the 1.5 W cooling

power of the second temperature stage. The radiation shield at 𝑇 = 55 K carries

a heat load of 5.6 mW through contact and 0.93 mW through radiation, which is

higher than the heat load that the sorption fridge can sustain. That is the reason

why I covered the sorption fridge with a copper can and the sample stage with the 4K

shield. In addition, I designed the sample stage so that the copper bar connecting the

4K shield to the second temperature stage had a heat conductivity ∼ 100× higher

than the sample mount in series to the copper braid connected to the cold head of

the sorption fridge. In that way the second temperature stage would absorb all the

heat from the radiation shield. We calculated that the 6.46 mW heat load from the

radiation shield increased the temperature of the 4K shield by 52 mK compared to

the second temperature stage. Finally, from the temperature difference between the

sample mount and the cold head of the sorption fridge, I calculated that the copper

braid carried a heat load of 1.21 mW, which could not come from the sample stage,

as I explained in this paragraph. Thus, I conclude that the excessive heat came from

radiation heat absorbed by the copper braid.

Table 4.1: Heat load (𝑄𝑐) budget of the sample stage and sample mount.

Material Temperature
difference

𝑄𝑐

Sample assembly
Clevis-end bars G10/aluminum 55 K - 3 K 5.6 mW

Radiation shield
radiation with
superinsulation

RUAG Cool-
cat2

55K - 3 K 0.93 mW

Sample stage cop-
per bar

Copper 3 K 6.46 mW

Support mount G10/copper 3 K - 1.7 K 70 𝜇W

Cold head braid Copper 1.7 K - 0.8 K 1.21 mW
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4.3 Vibrations

Another requirement for the cryostat was to reduce the mechanical vibrations between

the optical system and the SNSPD below 3 μm. Mechanical vibrations with amplitude

> 3 μm can reduce the average coupling efficiency of the optical set-up by more

than 10%. When the Cryomech pulse-tube was operated without modification, the

second temperature stage vibrated with an RMS amplitude of 10 μm (manufacturer

specifications). As shown in Figure 4-3, the cryocooler was rigidly fixed at the top

to the external chassis of the cryostat and to the optical table. Because of the large

mass of the entire system (600 kg including the optical table) the vibrations were

damped at the top of the cryostat. However, the cryocooler acted like a vertical

cantilever, so that the two pulse-tube stages still vibrated. We further isolated the

vibrations by using a combination of OFHC copper bars and braids to connect the

pulse-tube stages to copper plates at the top and bottom of the cryostat. The copper

bars guaranteed high heat conduction, while the soft braids decoupled the detector

from the cantilevered vibrations from the pulse-tube.

4.3.1 Vibrations characterization through SNSPD count rate

We determined that the amplitude of the vibrations at the sample stage was 498

± 98 nm by using the time dependence of the count rate from the detector. We

used an 8 × 7.3 μm2 area NbN on sapphire SNSPD based on 100-nm-wide nanowires

50% fill factor fabricated in-house by Dr. Faraz Najafi for this test. We focused a

1.55-μm-wavelength CW laser beam on the SNSPD, and we determined the beam

width by scanning the beam on the active area of the detector and measuring the

count rate from the detector. We determined a beam waist of 6.6±0.11 μm. From the

oscillation of the count rate we observed vibrations of 498 ± 98 nm at 1.5 Hz. For this

measurement, we used the optical set-up shown in Figure 4-1, used to characterize

the system detection efficiency. The beam had been aligned to the detector before

the cool down using the imaging system. A finer alignment to the detector was

then performed after the cool-down by maximizing the count rate measured on the
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detector. The counts were also maximized by optimizing the polarization with the

wave plates. We determined the vibrations amplitude by measuring the oscillation in

the count rate while the beam was aligned to the edge of the detector’s area. When

the beam was aligned to the center of the detector we could not observe any particular

oscillation frequency. Figure 4-6(a) shows a graph of the counts recorded as a function

of time for the case the beam was centered at the detector, and Figure 4-6(b) shows

the Fourier transform of the graph in Figure 4-6(a). The count rate changed 3% at

most, and the Fourier transform graph did not reveal any characteristic frequency

of the system. We concluded that the vibrations amplitude was significantly smaller

than the diameter of the laser beam.

Figure 4-6: (a) Count rate of the SNSPD as a function of time, measured at 0.2
s time intervals. The count rate was measured when the center of the laser beam
overlapped with the center of the detector. (b) Fast-Fourier Transform (FFT) of
the data shown in (a). The FFT was extrapolated after the measurement with the
software OriginLab.

We observed the oscillations generated by the cryocooler’s engine by misaligning

the beam with respect to the detector’s center. We moved the translation stage in the

vertical direction by 6 μm, and we observed as a periodical oscillation in the count

rate that we recognized being synchronous with the noise produced by the engine

of the pulse-tube cryocooler. Figure 4-7(a) shows a graph of the counts recorded

as a function of time, and Figure 4-7(b) shows the Fourier transform of the graph

in Figure 4-7(a). The Fourier transform graph clearly shows a peak at 1.5 Hz. In
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addition, we observed that by misaligning the beam from the detector the average

count rate decreased, as could be expected. Thus, if we could characterize the change

in the count rate as a function of the beam position, we could translate the count

rate oscillation into the vibration amplitude.

Figure 4-7: (a) Count rate of the SNSPD as a function of time, measured at 0.2 s
time intervals. The count rate was measured when the center of the laser beam was
4.6 μm from the center of the detector. (b) Fast-Fourier Transform (FFT) of the data
shown in (a). The FFT was extrapolated after the measurement with the software
OriginLab.

We recorded the count rate of the detector as a function of the position of the beam

source. Starting from the position of highest count rate, we moved the translation

stage of the beam source of 15 1-μm-steps in the vertical direction. This translation

changed the beam position on the detector by a quantity demagnified of ×0.77 by

the optical system. After recording the count rate for 30 seconds at each position,

we calculated the average count rate and the standard deviation at each position.

Figure 4-8 shows the plot of the average count rates at each position, with the error

bar indicating the standard deviation. As we expected, the standard deviation was

higher for the positions in which the slope of the curve was larger.

We derived an expression of power impinging on the active area of the detector as

a function of the beam position respect to the center of the detector. By fitting the

count rate data collected, we extrapolated the beam width. We then used the beam
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Figure 4-8: Average count rate of the SNSPD as a function of the beam’s center
position respect to the center of the detector. The error bars indicate the standard
deviation of each measurement.

width to calculate the vibrations amplitude from the standard deviation of the count

rate.

Under the assumption that the laser beam is Gaussian, we integrated the expres-

sion of intensity distribution over the rectangular area of the detector and obtained

the expression of the expected count rate:
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where A and B are the half lateral dimensions of the SNSPD active area, 𝐼0 is the

maximum intensity of the beam, 𝑤0 is the half beam waist. Equation 4.1 assumes

that the laser beam center is coincident with the center of the SNSPD. The more

generic expression, in which the count rate depends on the position of the beam

in one direction relative to the center of the SNSPD can be found be changing the

boundary conditions of integration:
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where 𝑥0 is the displacement of the beam respect to the center of the SNSPD. It is

easy to verify that if 𝑥0 = 0, Equation 4.2 becomes Equation 4.1.

Figure 4-9 shows the data plotted in Figure 4-8, fitted using Equation 4.2 (red

curve). For the negative beam positions, we mirrored the data from the positive

position after verifying that the average counts were symmetric respect to the center

of the beam. The fitting software (OriginLab) extrapolated from the fitting that the

beam waist was 𝑤 = 6.58 μm.

Figure 4-9: Count rate shown in Figure 4-8 mirrored respect to the 0 μm position
and curve fitting (red line) using Equation 4.2.

We calculated the vibrations amplitude from the count rate oscillation with the

expression:

∆𝑥 =
∆𝐶𝑅(︀
𝜕𝐶𝑅
𝜕𝑥

)︀ , (4.3)

where ∆𝐶𝑅 is the standard deviation of the count rate, ∆𝑥 is the vibrations oscilla-
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tion, and the third term is the derivative of the expression in Equation 4.2 divided

by the energy of the photons. From the derivation of Equation 4.2, we found:

𝜕𝐶𝑅
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From the value of standard deviation shown in Figure 4-8, we found on average a

vibration amplitude of ∆𝑥 = 498 ± 98 nm.

4.3.2 Vibrations characterization through golden chip reflec-

tion

We measured the vibrations of the sample stage at higher frequencies by using the

oscillations in the power of the light reflected by a highly reflective chip. Similarly

to the previous section, we focused an IR beam on the edge of a highly reflective

chip and measured the oscillations in the power of the light reflected by the chip. We

scanned the beam across the edge of the chip and measured the power reflected at

different positions. From the dependence of the power reflected as function of the

beam position and the power oscillations, we determined vibrations at ∼ 2 Hz and

19 Hz with amplitudes of 170 ± 50 nm and 91 ± 50 nm, respectively.

For these measurements we used a silicon chip with a 50-nm-thick layer of gold

deposited on top of it. We cleaved the chip out of a 75-mm-diameter silicon wafer.

When we imaged the chip with the free-space cryostat imaging system, we did not

observe any traces of roughness.

Figure 4-10 shows a picture of the set-up that we used to measure the vibrations.

The set-up is similar to the optical system shown in the main manuscript, used to

align a laser beam to an SNSPD and to measure the detection efficiency of the SNSPD.

On the left, an optical fiber carrying the signal is mounted on a three-axis stage, and

an aspheric lens is used to collimate the beam. On the far right, inside the cryostat,

another aspheric lens focuses the beam on the chip. We use two beamsplitters to

image the chip. The beamsplitter on the right sends the light from an LED source

and the collimated beam on the chip, and the beamsplitter on the left collects the
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light reflected from the chip and sends it to a lens which focuses it on a CCD camera.

Figure 4-10: (a) Picture of the optical set-up used to measure the vibration amplitude
of the sample stage. (b) Schematic of the optical set-up.

The beam was focused on the chip in two steps: using the imaging system and

using the signal coming from the oscilloscope. Both the LED source and the optical

fiber used visible red light during the imaging. We observed on the camera both

the edge and the fiber beam, and therefore we performed an initial alignment and

focusing of the beam on the edge of the chip.

After aligning the beam with the imaging system, we switched the fiber source to

the 1.55-μm-wavelength CW laser shown in section 4.1, we turned off the LED source,

and we replaced the camera with a fast free-space photodetector (bandwidth DC -

460 kHz). The photodetector was connected to a LeCroy 1 Gsample/s oscilloscope.

When we aligned the photodetector to the beam, we verified that, moving the beam

across the edge with the translation stage (x-direction), the signal on the oscilloscope

reached a flat minimum and a flat maximum. The difference between the minimum

and the maximum signal was six divisions at 1 V/div. We further improved the focus

of the beam by minimizing the travel on the translation stage necessary to move the

oscilloscope signal between 16% and 84% of the maximum.

We replaced the photodetector with a power sensor, and we measured the profile

of the power reflected by the chip to calibrate the oscillations measurements. Figure
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4-12 shows a graph of the power registered by the power meter as a function of the

position on the x-direction (black line and squares) and the curve fitting the data

measured (red line). From Gaussian optics, we derived the expression of the power

reflected as a function of the beam position relative to the edge of the reflective chip:

𝑃 (𝑥) = 𝑃0

[︃
1 + 𝑒𝑟𝑓

(︃√
2(𝑥− 𝑥0)

𝑤

)︃]︃
, (4.5)

where the fitting parameters 𝑃0, 𝑤, and 𝑥0 are the power reflected when the center

of the beam is on the chip edge, the beam waist, and the position of the chip edge,

respectively.

Figure 4-11: Power reflected (black squares) from a Si chip with 50-nm-thick Au layer
as a function of the beam position as it is scanned across the edge of the chip and
curve fitting (red line) using equation 4.5.

By fitting the curve, we extrapolated a beam waist of 7.93 μm. This value was

larger than the 6.6 μm that we obtained from the measurement described in section

4.3.1. We identified two possible reasons to explain this discrepancy: (1) the beam

was not perfectly focused; the count rate of an SNSPD offered a more sensitive tool to

focus the beam; (2) the edge of the chip was not perfectly sharp; some imperfection

scattered the light at the edge and the beam appeared larger than it actually was.
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Similarly to the process described in section 4.3.1, we calculated the vibration

amplitude from the oscillations of the oscilloscope trace with the expression:

∆𝑥 =
∆𝑦
𝜕𝑦
𝜕𝑥

, (4.6)

where ∆𝑦 is the standard deviation of the count rate, ∆𝑥 is the vibrations oscillation,

and the third term is the derivative of the expression in Equation 4.5. From the

derivation of Equation 4.5, we found:

𝜕𝑦

𝜕𝑥
= 𝐼0

√︂
𝜋

2
𝑤0 𝑒

− 2𝑥2

𝑤2
0 . (4.7)

Figure 4-12 shows two sample traces that we recorded from the oscilloscope when

the cryostat was ON, with 500 ms/div time scale (Figure 4-12(a)) and 50 ms/div time

scale (Figure 4-12(b)), and the Fourier transform of the first trace.

In Figure 4-12(a), the oscillations have periodicity of ∼ 500 ms and amplitude of

170 ± 50 nm. The oscillations in Figure 4-12(b) had a periodicity of ∼ 50 ms and

amplitude of 91±50 nm. To confirm the presence of these oscillations, we took a Fast

Fourier Transform trace from the oscilloscope. Figure 4-12(c) shows the FFT of the

signal measured at 500 ms/div. We observed a peak ∼ 2 Hz, which corresponds to the

cryocooler’s oscillations discussed in the previous paragraph. The slight mismatch in

the frequency can be due to either the different measurement set-up or the different

sampling time of the detectors used. We observed a peak at 19 ± 1 Hz. These new

vibrations were not observed in the count rate measurement, because the sampling

time was 0.1 s.

4.4 Free-space coupling efficiency

In Section 4.3.1 we proved that we could couple near-IR light with free-space optics

on an 8 × 7.3 μ𝑚2 area NbN SNSPD based on 100 nm wide nanowires and 50% fill

factor. We tested the SDE using the same detector. The SDE is calculated as the

ratio between the photon count rate (PCR) registered by the detector (excluding dark
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Figure 4-12: (a) Oscilloscope trace measured at 500 ms/div when the cryostat was
ON. (b) Oscilloscope trace measured at 50 ms/div when the cryostat was ON. (c)
Fast Fourier Transform extrapolated from the data shown in (a)

counts) and the photon flux measured in fiber at the optical source. The count rate

measured when the optical source is off is the system dark count rate (SDCR).

4.4.1 Optical source calibration

I calibrated the optical source to determine a reliable value of SDE and extrapolate

from it the DDE. Figure 4-13 shows a schematic of the optical source set up. A 1550-

nm-wavelength CW laser is coupled in fiber to a digital attenuator with attenuation

range from 0 to 80 dB. The laser from the attenuator’s output is coupled to one input

of the 50:50 in fiber beamsplitter. We measured that the correct ratio between the

two output ports was 0.97:1. One of the outputs of the beamsplitter is coupled to a
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700 - 1800 nm power sensor (THORLABS, S120C). The signal from the power sensor

is read out by a calibrated power meter (THORLABS, PM100D). The other output

of the beamsplitter is coupled to a stack of fiber attenuators, with total attenuation

of 50 dB. The attenuation of the stack was measured with the same power sensor

and power meter in the set-up. Finally, the beam is coupled in fiber, and the end

of the fiber is mounted on a 3-axis translation stage with movement resolution of

0.5 μm. All the fibers used in the set up are 1550-nm-wavelength single-mode fibers

(THORLABS, SMF 28).

Figure 4-13: Schematic of the near-IR source used for the test of SNSPD described in
the main manuscript and the vibration amplitude test from the SNSPD count rate.
The yellow like indicate 1550-nm-wavelength single mode optical fibers. The black
line indicated electrical connection.

4.4.2 Test device characterization

In Figure 4-14, we plotted SDCR (blue squares) and PCR (red triangles) as a function

of the bias current, 𝐼bias, applied to the detector normalized by its switching current

(𝐼sw). As we can see from the graph, SDCR < PCR for 𝐼bias up to 97% of 𝐼sw at

1.7 K. Thus, we can reliably extract PCR from the total counts and the SDE, which

we plotted in Figure 4-14 as a function of 𝐼bias applied to the detector normalized

by 𝐼sw. The system reached a maximum SDE of 1.64% ± 0.13%. For this test,
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we used a coherent light source with λ= 1.55 μm with a power of 710 ± 37 fW

measured in fiber outside the cryostat, which corresponds to a total photon rate of

5.53±0.29 Mphoton/s. From the beam waist measurement described in Section 4.3.1

(𝑤 = 6.6 ± 0.11 μm) and the active area of the detector, we calculated that the

coupling efficiency (CP) of the system was 56.5% ± 3.4%. Thus, we can calculate

the maximum device detection efficiency 𝐷𝐷𝐸 = 𝑆𝐷𝐸/𝐶𝑃 = 2.9%. The low DDE

measured is due to the poor quality of the test detector used, and to the absence of

on optical cavity to enhance the absorption.

Figure 4-14: (a) System dark count rate (SDCR, blue squares) and photon count rate
(PCR, red triangles) as a function of the bias current normalized by the switching
current of the SNSPD. The SDCR is determined by measuring the count rate of
the detector while the source is turned off; no other filter is applied to the optical
system. The PCR is determined by measuring the count rate when the optical source
is turned on and by reducing it by the SDCR. (b) System detection efficiency (SDE )
and device detection efficiency (DDE ) as a function of the bias current normalized
by the switching current of the SNSPD. The SDE is determined as the photon count
rate divided by the photon emission rate of the source.

4.5 Outlook

The scope of this work was to create a free space coupled cryogenic system and

demonstrate coupling efficiency CP > 50% at a base temperature < 1.7 K. The use of

free-space optics allows us to adapt the optical set-up for a different wavelength range

by replacing the lenses. Our demonstration showed promising results of obtaining

SDE > 50%. In particular, if we were to use a 10 × 10 μm2 active area detector,
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we would achieve a CP = 76%, and with a DDE > 65% (already demonstrated for

optical cavity integrated NbN SNSPDs) we would obtain a receiver with SDE > 70%.

In addition, our measurements showed that we can reliably characterize the DDE of

an SNSPD.

Our ultimate goal was to demonstrate high coupling efficiency with mid-IR optics

at λ = 3-5 μm. The use of free-space optics allowed to adapt the optical set-up for

a different wavelength range by replacing the lenses. For future experiments at 3-

and 5-μm-wavelength, the plan was to replace the optical components with materials

compatible with the mid-IR, such as germanium or zinc-selenide. In addition, Lens

1 could be replaced with a larger focal length lens, while keeping Lens 3 at the same

focal length, because of the stronger demagnification needed at mid-IR wavelength.

We estimated the losses due to these components’ reflections to be around 9%. Fur-

thermore, we planned to replace the CCD camera with a near-IR camera to image

the SNSPD chip. It is important to point out that moving to mid-IR wavelengths

would have required a substantial engineering effort to filter parasitic radiation. In

particular, we proposed to use a double-monochromator integrated in the cryostat

instead of commercial filters.

4.5.1 Dark count rate increase

The most challenging issue of performing single-photon detection at mid-IR wave-

length in free-space is countering the stray photons originating from any room-

temperature body. As I discussed in section 3.1.2, a body at T = 300 K, starts

emitting photons at around 2 μm of wavelength, with an intensity peak around 10

μm. That means even the internal walls of the cryostat chassis emit photons that

an SNSPD can detect and that can be filtered only by components internal to the

cryostat. For both experiments at 3- and 5-μm-wavelength, the photon emission is

high enough that it could raise the dark count rate to non-negligible levels.

One way to limit the stray photons impinging on the detector would be to use a

spatial filter, or pinhole, rather than a window in the radiation shield of the cryostat.

The smaller the size of the pinhole, the smaller number of modes per wavelength
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of radiation that can enter inside the radiation shield. Using the Stefan-Boltzmann

equation, we calculated the photon rate from a room temperature body impinging on

a 10-μm-diameter pinhole, with an angular aperture equal to the numerical aperture

of the optical system. A pinhole of that size let through billions of photons per second

which would be coupled directly to the SNSPD through the optics inside the radiation

shield. An optical bandpass filter was necessary to further the stray radiation. The

effect of a filter with arbitrary bandwidth was evaluated once more with the Stefan-

Boltzmann equation.

Figure 4-15 shows a the stray photon rate, passing through a 10-μm-diameter

pinhole, impinging on an SNSPD with active area of 10 × 10 μm2 as a function of

the radiation bandwidth for 3 and 5 μm central wavelengths. Commercial bandpass

filters in the mid-IR typically have a bandwidth of 3%, which consequently indicates

millions or hundreds of millions of photons impinging on the SNSPD active area. That

amount of stray light is clearly not acceptable for optical communication applications.

Reducing the bandwidth of the system requires something more complex than a simple

filter.

4.5.2 Integrated cryogenic monochromator

Lucy Archer, from our group, and I propose a double-monochromator solution to

reduce the amount of stray photons impinging on a detector by at least an order

of magnitude. Figure 4-16 shows a schematic of the monochromator fitting inside

the cryostat and the design of the monochromator. The incoming light is reflected

on a blazed grating which disperses the light. The dispersed beam passes through

a slit of arbitrary width, hits a second blazed gratings for added dispersion. The

light is then collimated through a collecting lens and reflected on the output slit.

We can regulate the bandwidth of the outgoing light by changing the slit width.

We found commercially available mid-IR gratings with dispersion of 1.6 nm/mrad

at 3.1-μm-wavelength. With those gratings even a 1.5-mm-wide slit can reduce the

signal bandwidth to 1%, and with smaller slits we can obtain smaller bandwidths.

The double-monochromator doubles the effect of a single system, thus halving the
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Figure 4-15: Black-body radiation from a T = 300 K object as a function of the radi-
ation bandwidth, expressed as the percent of the central wavelength. The calculation
was done for 3 and 5 μm central wavelengths. For the calculation, we assumed the
incident area to have a radius equal to the central wavelength.

bandwidth. For the double-monochromator we could also use movable mirrors to

compensate for the thermal shift effect [74].

Figure 4-16: Schematic of the integration of the double-monochromator on the radia-
tion shield of the cryostat (left) and internal schematic of the double-monochromator
(right).
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4.5.3 WSi SNSPDs

Finally, we planned to operate SNSPDs based on WSi [23], instead of NbN. The reason

for this consideration is that WSi is a material with a lower band-gap than NbN, so

it is more sensitive to low energy photons [39]. As the band-gap in WSi is lower than

in NbN, proportionally the critical temperature of WSi is lower. A temperature T

< 2 K is required to operate thin-film WSi SNSPDs. This choice of material comes

with a significant drawback in the speed of the devices. SNSPDs based on WSi have

a larger kinetic inductance compared to SNSPDs based on NbN. Marsili et al. in

[23] demonstrated high-detection-efficiency WSi SNSPD with 15×15 μm2 active area

with 120 ns reset time. We expect that finding a compromise between active area

and reset time will represent the biggest engineering challenge on the detectors.
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Chapter 5

Multi-channel fiber-coupled

configuration

In addition to the mid-IR communications discussed in Chapter 4, transmission

through optical fibers remains to date to be the most reliable way to transport in-

formation at high data-rate over a large distance on land (> 100 km [12]). Besides

their diffused use in commercial technologies for internet and networks, optical-fiber-

based systems have shown promising results in long-distance quantum key distribution

(QKD) modules for secured communications [2, 75, 76]. In addition, the ability to

efficiently couple photons from optical fibers to on-chip optical waveguides (and vice

versa) facilitates interfacing with integrated photonic chips and expands the potential

of the field of quantum computing [77, 78]. In both QKD and quantum computing,

the SNSPD represents one of the most promising receiver technologies because of its

fast reset time [24], its low timing-jitter [35], and its ability to be integrated on nu-

merous types of substrates [39, 49]. With the increasing demands in data rate and in

computation rate in any field of technology, it is crucial that SNSPD-based receivers

are designed to contain > 100 detectors in a compact and scalable way.

We found several examples of compact ways to couple optical fibers to SNSPDs in

literature, but none of them seemed realistically scalable for large detector arrays. In

his thesis [50], Dr. C. M. Natarajan proposed a compact packaging that would hold

a single-mode IR fiber in alignment with an SNSPD using a mechanical copper cap
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held by brass screws. Although the proposed idea showed > 50 % coupling efficiency

with no effects from thermal cycling, we recognized that this design required a new

packaging for every new channel integrated into the system, thus making it spatially

unfeasible for large arrays. A similar solution was adopted by NIST in the creation

of a compact packaging for WSi-based SNSPDs [79]. While coupling efficiency > 90

% was achieved by combining the precision of commercial fiber ferrules with the sub-

μm-resolution of micro- and nano-fabrication techniques, packaging size continued to

be a limitation in this case as well. R. Cheng et al. [80] aligned single-mode fibers to

SNSPDs and SNAPs by etching trapezoidal pits on the back of an SNSPD chip before

fabricating the detectors on the front. The fibers were then glued at the bottom of

the pits. Although that process is similar to the approach described in this thesis, we

thought that it would be impractical to separately align every fiber to the detectors,

especially for arrays of > 100. Finally, high coupling efficiency was obtained at Lincoln

Laboratory by actively maintaining the alignment at cryogenic temperature using a

piezoelectric stage [19]. The main problem with this approach is that piezoelectric

motors and actuators can cost several tens of thousands of dollars, making them too

expensive for most potential users to implement. In light of these shortcomings, we

explored a compact and scalable method to integrate multiple optical-fiber channels

with SNSPD arrays for high-data-rate optical communications.

We propose to align fiber arrays to SNSPD arrays with matching separation

through front illumination and use cryogenic compatible epoxy to hold them in place

during thermal cycling. Fiber arrays currently represent the most compact and ro-

bust way to densely pack multiple optical fibers, with a distance between the fiber

cores as small as 40 μm, with a lateral positioning error < 1 μm [81]. SNSPDs can

be fabricated to match one-to-one the same pattern of any 2D-fiber array since their

active area has a lateral dimension of < 15 μm. Thus, we could pack a several chan-

nels in a few-mm2-area. Another advantage of using a fiber array over a bundle of

individual fibers is that we only need to align two fibers to two detectors to align the

whole array, which can significantly reduce the assembling time. Additionally, the

increasingly common use of glues at cryogenic temperatures has made it possible to
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find commercially available cryogenic compatible glues with low thermal expansion

coefficients.

Along with the need for compact solutions for optical channels, a scalable multi-

channel SNSPD system needs to address the scalability of the RF electrical read-

out. For this project, we explored the use of both cryogenic RF cables and in-house

designed flexible-rigid ribbon cables. As was mentioned in Chapter 3, when designing

a multi-channel cryogenic system, it is important to select the correct type of RF

cables. Commercially available cryogenic cables are engineered to combine low RF

attenuation and low thermal conductivity. However, their cost and size make them

poor candidates for systems with multiple channels. To overcome this problem, A. I.

Harris et al. [62] designed and fabricated multiple copper microstriplines on Kapton

tape. In a similar fashion, we designed multiple copper coplanar waveguides (CPW)

on Kapton tape to offer better signal shielding than microstriplines and had them

fabricated at an external manufacturer. With this approach, we noticed that the size

of the RF connectors was the only limiting factor in the scalability of the RF read-

out channels. To compensate for the higher attenuation of the RF line, we explored

the possibility of integrating a cryogenic amplifier on the rigid part of the ribbon

cable. We selected and purchased RF semi-rigid cryogenic cables to compare their

performance with the performance of our ribbon cables.

In this chapter, I will discuss the change in design of the cryostat, and the proposed

method for scalable electrical and optical connections. Finally, I will focus on the

measurements performed of system detection efficiency (SDE ) and some potential

improvements to achieve higher coupling efficiency and detectors’ speed.

5.1 Cryogenic apparatus

For the optical-fiber coupled system, I transferred the sample stage from the bottom

assembly to the top assembly, and explored the use of two different RF read-out

lines for multiple SNSPDs. Figure 5-1 shows a schematic of the cryostat designed for

this project. We removed the sorption fridge from the cryostat because we needed

91



NbN-based SNSPDs. Unlike the free-space coupled project, which required cryogenic

temperatures < 2 K to accommodate WSi-SNSPDs, for this project the main require-

ments were highest possible count rate and lowest possible timing jitter, which are

achieved with NbN-based SNSPD. Since NbN-based SNSPDs only require tempera-

tures < 3 K, we preferred to remove the sorption fridge. In addition, since optical-fiber

coupling is less affected by the vibrations of the sample stage, we moved the sample

stage to the top assembly and mounted it directly to the second temperature stage,

which has a higher cooling power, for a better thermal contact.

Figure 5-1: Schematic of the cryostat used for the multi-channel fiber-coupled exper-
iments. The sample stage was moved to the top assembly from the bottom assembly
for a better thermal connection to the pulse-tube cryocooler.The sorption fridge was
removed since it was not necessary for NbN-based SNSPDs.

5.1.1 Top assembly

Figure 5-2 shows the CAD design and a photograph of the top assembly used for the

multi-channel fiber-coupled configuration. The sample stage was mounted on block

of copper hanging from the second temperature stage. We removed the 4K shield

described in the previous chapter because the cooling power at the sample stage was

orders of magnitude higher than the heat radiation from the radiation shield and

because we wanted to make the sample stage as accessible as possible. We mounted
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eight FC-PC/FC-PC adapters to a copper sheet attached to the second temperature

stage to thermalize and connect the fibers from the fiber array to the eight fibers

connected to the optical components at room temperature. Finally, we added a PCB

with SMP adapters and thermally connected it to the second temperature stage to

create a thermal short for the RF cables. In this way the heat from the radiation

shield was absorbed by the second thermal stage before reaching the sample stage.

Sample stage

Figure 5-3 shows the CAD design and the photograph of the sample stage unmounted

from the cryostat. We designed the sample stage so that after gluing the SNSPD chip

to it, we could align the fiber array to the detectors and wirebond the detectors

to the pads of a PCB. The SNSPD chip was glued directly on the copper mount

to guarantee better thermal contact with the temperature stage. We included a

rectangular hole in the sample stage in correspondence to the position of the chip to

image the detectors from the back during the fiber array alignment. In addition, the

sample stage included two cylindrical extrusions to align the PCB. The PCB with

SMP-mini (SMPM) connectors was bolted to the copper piece with two #4-40 screws.

The detectors used for the experiment were wirebonded to the PCB gold pads. The

white shield shown in Figure 5-2 was 3D-printed to fit around the top part of the

sample stage. It served to both protect the chip and the wirebonds from any type

mechanical contact and to shield the chip from any unexpected stray radiation.

Optical fibers

Figure 5-4 shows the vacuum feedthrough for optical fibers fabricated in-house with

the help of Dr. Jake Mower, the single-mode fibers mounted in the cryostat, and

the eight FC-PC/FC-PC adapters cooled by the second temperature stage. We con-

cluded that commercially available feedthroughs were not a scalable solution for sev-

eral reasons. In addition to a cost of at least $400 per fiber, commercial feedthroughs

typically have insertion losses around 2 dB because of their connectors, and they have

a maximum of four optical fibers.
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(a)

(b)

Figure 5-2: (a) 3D CAD view of cryostat’s top assembly zoomed into the area con-
nected to the second temperature stage of the pulse-tube cryocooler. The other
section of the top assembly is unchanged from the design described in Chapter 3. (b)
Picture of the complete top assembly, on the left, and zoom-in on the area shown in
(a), on the right.

As an alternative, we made the feedthroughs in-house by drilling holes in a blank

vacuum flange. We cut in half eight single-mode fibers (SMF-28 from THORLABS)

with FC-PC connectors on both sides and passed the bare ends of one set of halves
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Figure 5-3: CAD schematic and photograph of the sample stage. The photograph
shows an SNSPD chip mounted and wirebonded to the stage. The fiber array is
aligned and glued to the chip.

through the holes of the flange, keeping the FC-PC connectors on the vacuum side of

the flange. We then spliced the two halves of each of the eight fibers back together

and applied vacuum-compatible epoxy to seal the holes in the flange. The fibers inside

the cryostat were fixed with Teflon tape to the long copper bar used for cooling the

bottom radiation shield. Thermalizing the optical fibers along as much of their length

as possible significantly reduces the dark counts registered by SNSPDs because the

thermal radiation that escapes the fibers is absorbed by the cooling element instead

of being reflected back into the fiber. We then connected the eight fibers to the fiber

array through the FC-PC/FC-PC adapters. We decided to use the fiber adapters

because they facilitated easy exchange of samples during the alignment process.

Since we were connecting optical fibers at cryogenic temperatures, we needed

to verify that the thermal contraction was not going to affect their alignment and

increase the insertion loss. We tested the effect of a thermal cycle on the optical

fibers’ transmission and observed no significant change. We connected the eight fibers

in pairs with FC-PC/FC-PC adapters at the cryogenic stage to form four optical fiber

cables. We measured the power transmitted from a 1550-nm-wavelength CW laser

through the four cables and through another SMF-28 optical fiber using an IR power

sensor (S122C from THORLABS) when the second temperature stage was at T = 300
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(a) (b)

Figure 5-4: (a) Custom-made feedthrough with 8 single-mode fibers. (b) FC-PC/FC-
PC adapter mounted to the second temperature stage of the pulse-tube cryocooler.

K and at T = 2.9 K. Figure 5-5a shows the power measured for the four cables and for

the calibration fiber at room temperature (black dots) and at cryogenic temperature

(red dots) with the respective error bars. The error bars indicated the fluctuation in

the power read by the power meter due to the light source instability and other factors.

Although the calibration fiber was not at cryogenic temperature, we measured the

power transmitted through it while the four cables were at cryogenic temperature to

confirm that the power of the laser had not drifted with time. Figure 5-5a shows the

ratio between the power registered when the second temperature stage was at T =

2.9 K and when it was at T = 300 K (blue squares). As we can notice, there is not

a clear effect of thermal cycling on the fiber transmission. While we would expect a

consistent change in the fiber transmission for all the four cables, cable 4 is the only

set with a lower power transmitted, while cables 2 and 3 seem to actually transmit

more power. For the cable set 4, we registered the power transmitted throughout

the entire system cool-down. Figure 5-5b shows the power transmitted by the optical

cable and the temperature of the second temperature stage as a function of time.

The power transmitted is reduced by 6 % as the stage cools down and plateaus when

the system cools below 50 K. We suspect from the measurement that the main effect

of the thermal cycle on the fibers is due to thermalization by the copper bar for the

radiation shield and not to the FC-PC/FC-PC connectors at T = 2.9 K.
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(a) (b)

Figure 5-5: (a) Study of the effect of thermal cycling on the transmission of optical
fibers. The left axis indicates the power measured at the output of a calibration SMF-
28 fiber and four pairs of the optical fibers connected with FC-PC/FC-PC adapters
when the second temperature stage of the cryostat was at T = 2.9 K (red dots with
error bars) and T = 300 K (black dots with error bars). The right blue axis indicates
the ratio between the powers indicated on the left axis 𝑃 (𝑇 = 2.9K)/𝑃 (𝑇 = 300K).
(b) Power measured at the output of the optical cable set 4 and temperature of the
second temperature stage as a function of time.

5.1.2 Cryogenic RF cables

I purchased and mounted eight sets of cryogenic RF cables that would limit the RF

attenuation to 0.43 dB at frequency of 1 GHz and the heat transferred orders of

magnitude below the cooling power of the pulse-tube cryocooler. As discussed in

Chapter 3, commercial RF cables can be found in several materials that may be

categorized as copper alloys (CuNi, BeCu), plated metals, or superconductors. The

different materials are optimal for different temperature ranges. We thermalized the

RF cables at each temperature stage (T = 2.9 K and T = 35 K) using RF adapters

and selected three types of cables for three temperature gradient sections. For our

system we selected NbTi (core and cladding) cables for the coldest temperature section

and BeCu (core and cladding) cables for the other two sections, selecting different

diameters, 1.19 mm and 2.19 mm. For electrical connections at T = 2.9 K, we used

SMPM connectors for a higher cables density, while for the T = 35 K stage and for

room temperature we used SMA connectors because more space was available.
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Table 5.1 shows the heat budget for all eight RF channels and the attenuation of

each RF cable at the three temperature gradients. Since we had initially considered

the use of NbTi RF cables with the sample stage mounted directly to the cold head

of the sorption fridge, the temperature gradient in the last line of the table was 2.9

K - 0.8 K. It should be noted that, had we decided to keep the sorption fridge, the

heat load from the cables would have been within its cooling power. We decided to

keep NbTi cables even after removing the sorption fridge, thus without any thermal

gradient, because we wanted all the heat transferred by the BeCu cables from 35 K to

be removed at the thermal link at 2.9 K before reaching the sample stage. A different

type of cable would have leaked a larger amount of heat in the sample stage. For

the other two stages, we selected BeCu cables because of their great balance between

heat transferred and RF attenuation. RF cables made of pure copper would have

increased the heat transferred to each stage by an order of magnitude. We would like

to point out how the two sets of BeCu cables have different diameters even though

they are both 45 cm long. Once again, the reason is the heat transferred - the huge

temperature gradient between room temperature and the radiation shield required a

smaller cable diameter. In Figure 5-6 we show the larger BeCu (5-6a) and the NbTi

(5-6b) RF cables mounted in the cryostat.

Table 5.1: Heat load (𝑄𝑐) and RF attenuation budget of the RF cables mounted in
the cryostat. The heat includes all the eight cables.

Material Diameter Temperature difference 𝑄𝑐
Attenuation
at 1 GHz

BeCu 1.19 mm 300 K - 35 K 138 mW 0.23 dB

BeCu 2.19 mm 35 K - 2.9 K 20.44 mW 0.14 dB

NbTi 1.60 mm 2.9 K - 0.8 K 6.2 × 10−3 mW 0.06 dB

The RF semi-rigid cables were bent by hand as it is shown in Figure 5-7 using

plastic disks designed in-house and 3D printed. Semi-rigid cables cannot be easily

bent without tools because once they are bent they cannot be straightened again.

Since semi-rigid cables are produced in standard diameters, there are commercial
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(a) (b)

Figure 5-6: (a) BeCu RF cables mounted in the cryostat between the 35 K radiation
shield and the 2.9 K thermal link. (b) NbTi cables mounted between the 2.9 K
thermal link and the 2.9 K sample stage.

tools available to help bend semi-rigid cables at arbitrary angles; however, those tools

typically cost > $1000. Thus, we decided to 3D-print disks for 25-mm-diameter and

12.5-mm-diameter bends ourselves. Since we were using a custom-made tool, we were

concerned how the RF transmission of the cables changed after being bent.

Figure 5-7: NbTi RF cable bent by hand using a 3D printed plastic disk.

We tested the RF transmission of all the three sets of cables over the frequency

range of 0.5 to 5 GHz before and after bending the cables. Figure 5-8 shows the

comparison of an NbTi RF cable before and after being bent. As we can see there

is not significant change in the S21. The reader should ignore the low value of the

transmission compared to the values shown in Table 5.1 - the large attenuation is

due to the in-house made cable adapters that we fabricated to test the cables and
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to a lack of calibration in the network analyzer. Despite these systematic errors, the

measurement was still valid since we were using the same set-up before and after

bending the cables.

Figure 5-8: RF transmission (S21) of an NbTi RF cables before (red line and squares)
and after (black line and squares) being bent.

5.1.3 Flex-rigid coplanar-waveguide cables

We designed a four-channel coplanar waveguide (CPW) flexible-rigid printed circuit

board for the read-out of SNSPDs. We found examples of multiple channel systems

with cryogenic detectors that used microstriplines made of copper [62] or NbTi [63] on

Kapton tape. We were concerned that integrating a high density of microstriplines

on a cable could induce crosstalk between channels and RF noise coupled to the

signal. Thus, we decided to design copper CPWs on Kapton tape, which have higher

attenuation but better shielding from noise and crosstalk.

Figure 5-9 shows the 3D design and photograph of the CPW cable that we de-

signed. The circuit was designed with Altium Designer software and manufactured at

Hughes Electronics. The narrow strip in the middle is flexible, while the extremities

have rigid layers glued to them for mechanical stability. The SMP connectors were
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soldered in-house. The ground vias in the flexible part of the ribbon cable are spaced

25 mm away from each other. A rule of thumb for RF circuits design is to space the

vias on the ground planes by one eighth of the wavelength of the electromagnetic wave

in the dielectric of the circuit. For Kapton tape, the dielectric constant is 𝜖𝑟 = 3.8,

and at 1 GHz frequency the wavelength is ∼ 25 mm.

Figure 5-9: Coplanar waveguide ribbon cable designed for RF read-out in the cryostat,
3D CAD design (top) and picture with SMPM connectors (bottom).

The first step in the design of the flex-rigid cables was to determine which material

to use. We selected Kapton for the substrate since it is the flexible-rigid circuit

industry standard. For the conductor, the manufacturer could offer either copper,

BeCu, or CuNi. If we had wanted to experiment with different materials, we were

required to find a third party to laminate the conductor sheet to the Kapton tape.

As an example, the Mazin group at UCSB developed a method to laminate NbTi

sheets on Kapton tape; however, we observed from the heat load calculations that

the metals available at the manufacturer were sufficient for our purpose. Table 5.2

shows that heat transferred by a 25-mm-wide, 0.05-mm-thick, and 300-mm-long sheet

of Kapton, copper, CuNi, and BeCu for two temperature gradients. For the copper,

we assumed a residual resistance ratio RRR = 50, which is the typical purity of
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commercial copper wires. For the CuNi, we could only find the heat conductivity at

cryogenic temperature for a 60:40 alloy. The results clearly showed that the Kapton

tape did not represent a concern in the heat budget. In addition, it became clear that

all of the values of heat load calculated for the metals were well within the cooling

power of the cryostat. As a result, the heat conductivity was not a good parameter

to select a conductor.

Table 5.2: Heat load (𝑄𝑐) budget of the different sheets. The table includes the cable
material, the heat transferred through the cable, and the temperature difference. The
sheets for the calculation were 25 mm wide, 0.05 mm thick, and 300 mm long.

Material 𝑄𝑐
Temperature
difference

Kapton tape 0.173 mW

300 K - 35 KCopper (𝑅𝑅𝑅 = 50) 179.1 mW
CuNi (60:40) 15.7 mW

BeCu 29.9 mW
Kapton tape 0.009 mW

35 K - 2.9 KCopper (𝑅𝑅𝑅 = 50) 76.2 mW
CuNi (60:40) 1.2 mW

BeCu 2.54 mW

Since the heat load did not represent a large concern for any of the materials

available, we chose to use copper on Kapton because it showed the best RF power

transmission at all simulated frequencies. We simulated the S-parameters of the CPW

ribbon cables for all the conductors on Kapton using the simulation software Son-

net. The Kapton tape used by the circuit manufacturer came in different thicknesses

ranging from 12.5 μm to 100 μm thick; the dielectric constant for the Kapton tape

was 𝜖𝑟 = 3.8 and the dissipation factor was tanδ = 0.03. We selected the thickest

tape because it gave the lowest RF attenuation, in simulation. Figure 5-10 shows

a 3D view of the simulated CPW. The conductor is shown in pink color, while the

dielectric in between the two conducting layers is completely transparent. We set

the signal strip width and the gap between the signal and the ground traces as the

parameters for the optimization. The manufacturer required a minimum trace width

and spacing of 4 mils (100 μm). We simulated several combinations of parameters
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above the manufacturer restriction, looking for the combinations that produced an

input impedance ∼ 50 Ω and the highest S21 between 0.4 and 5 GHz of frequency.

All the CPWs simulated were 2.5 mm long. Figure 5-11 shows the S12 for the best

combination of trace width and gap for all the three conductors considered, 5 mil gap

and 9 mil trace width. Since copper clearly showed the best RF transmission and

spools of copper-laminated Kapton tape are commercially available, we chose copper

as the conductor.

Figure 5-10: Sonnet coplanar waveguide design. The conductor strips are in pink.
The dielectric layers are all transparent.

Figure 5-11: Simulation of the S21 of the CPW shown in Figure 5-10 for three different
conductors: copper (red circles), beryllium-copper (black squares), and copper-nickel
(green triangles).

Figure 5-12 shows the measurement of the S21 for a copper on Kapton trace from
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the cable shown in Figure 5-9; the measurement is compared with the S21 simulation

from Figure 5-11. The graph confirms the results already obtained in simulation. The

dips in the measured S21 are reflection at the SMP connectors. From back-of-the-

envelope calculation, it is possible to verify that the spacing of the dips corresponds

to a wavelength close to the length of the cable.

Figure 5-12: Measurement (black graph) and simulation (red graph) of the S21 of the
CPW shown in Figure 5-9. The conductor was copper and the substrate was Kapton.
The signal trace width was 9 mil, while the signal-to-ground gap width was 5 mil.

5.1.4 Cryogenic amplifier

To compensate for the attenuation introduced by the custom-made ribbon cables, we

designed an amplifier that could operate at cryogenic temperatures. Since the large

cryogenic system required read-out cables as long as 0.5 m, the attenuation of the

ribbon cables could become as high as 10 dB at frequencies between 0.5 to 3 GHz,

which are the main frequencies composing an SNSPD signal. Consequently, we needed

a cryogenic amplifier that could amplify the signal in that frequency range. Since

commercially available amplifiers satisfy those criteria for a cost of few thousands of

dollars, we designed a cryogenic amplifier in-house to avoid the cost.
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Figure 5-13 shows the photograph of the custom-made cryogenic amplifier and the

measured S21 as a function of frequency between 0.5 and 5 GHz. The amplification is

above 10 dB between 0.5 and 1.5 GHz, and drops at higher frequencies. As requested,

the amplification remained positive up to 2.5 GHz.

(a)

(b)

Figure 5-13: (a) Photograph of the custom-designed cryogenic amplifier. (b) Mea-
surement of the S21 as a function of frequency.

5.2 Optical-fiber array integration with SNSPD ar-

ray

We propose to couple an optical-fiber array to an SNSPD array to minimize the

surface area necessary for multiple optical-fiber-to-SNSPD channels. The fiber arrays

that we used for this project have a pitch of 150 μm. We could use fiber arrays

with a pitch of 75 μm (2D square-pattern arrays) and 45 μm (2D hexagonal-pattern

arrays) for a higher cost. However, we wanted to perfect the fiber array alignment

process before using more expensive components. Once we will reach a reproducible

alignment process with a coupling efficiency > 50 %, we will begin using denser arrays.

As opposed to the etching process by Cheng et al. [80] , which required additional

fabrication, our process relies on front alignment of the fiber array to the detectors
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to minimize the distance between them. The downside of using front alignment is

that traditional cavities used to enhance the absorption are made of a dielectric layer

plus a metal reflector [19, 23, 20], which are not compatible with traditional high-

temperature NbN-deposition processes. To overcome this issue in the future, we

will start using SNSPDs made out of NbN films deposited at room temperature and

wafers with dielectric reflectors designed for 1550-nm-wavelength [82]. Andrew Dane

from our group is currently optimizing the room-temperature deposition process for

SNSPDs.

5.2.1 SNSPD array design

Di Zhu, from our group, and I designed the SNSPD array of independently read-out

detectors with a pitch that matched the fiber array pitch and an active area that

guaranteed a coupling efficiency > 50 %. The single-mode fibers in the fiber array

used for the first prototype had a mode-field-diameter of 10.6 μm at λ= 1550 nm.

We designed the detectors as a series-2-SNAPs with a circular active area with a

diameter of 10 μm, which allowed for a coupling efficiency ∼ 80% with a fiber-to-

detector distance within the Rayleigh range. Series-2-SNAPs have demonstrated in

[35] a reduced reset time and timing jitter compared to traditional SNSPDs with the

same active area and nanowire width. From the same publication, series-2-SNAPs

based on 60-nm-wide nanowires could reach detection efficiency saturation at 80%

of their switching current. As discussed in Chapter 2, the percentage of switching

current required to achieve saturation is important in limiting the dark count rate

of a detector. We decided to fabricate the detectors in rows of 32 despite the fiber

array having only eight fibers to compensate for the fabrication yield ∼ 70 %. We

calculated that we needed a row of 32 detectors to guarantee eight adjacent detector

with a probability > 95 %. From the detector active area, nanowire width, and

sheet inductance of the NbN film, we calculated that the SNSPD would have had a

reset time of ∼ 15 ns, which is above the desired maximum of 10 ns. We identified

two solutions that we could implement for the final system. First, we could use

pigtailed small core fiber arrays with mode field diameters down to 3.2 μm. Those
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fibers would allow the use of detectors with a smaller active area, maintaining the

same coupling efficiency, which would reduce the reset time, as discussed in Chapter

2. Due to the higher cost of these arrays, we will employ them only once we have

perfected the alignment process. In addition, we could use wider nanowires. In

[35], we demonstrated that 80-nm-wide nanowire series-2-SNAPs can reach saturated

detection efficiency at 85% of their switching current. While this approach may

increase the dark count rate of the detector because of the higher biasing current, it

would also reduce the reset time. Once we have maximized the SDE with the current

design, we will experiment with both solutions.

Figure 5-14: SEM image of a series 2-SNAP fabricated for the fiber array-coupled
experiments. The diameter of the circular area was ∼ 10 μm.

5.2.2 Fiber array alignment

Figure 5-15a shows a schematic of the system used for the alignment of the fiber array

as it was designed by Hyeongrak (Chuck) Choi and I. The sample stage was mounted

upside-down on a rotation stage to control the rotation around the z-axis and was

imaged through the Si substrate with a microscope attached to an IR camera. The

fiber array was aligned from underneath to the front of the chip; it was mounted on a

three axis translation stage, with a rotation stage to control the rotation about the x-

axis. The rotation about the y-axis was not actively controlled because it represented
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the least critical degree of freedom. Besides, the addition of a control unit on this

sixth degree of freedom would have majorly complicated the alignment system.

(a) (b)

Figure 5-15: (a) Schematic of the optical system used for the fiber array alignment to
the detectors. The fiber array was controlled on three translation axis and one rotation
axeis, while the SNSPD chip was controlled on another rotation axis. The IR camera
mounted on the microscope was used for the rough alignment. (b) Schematic of the
optics used for the second step of the alignment. We monitored the light reflected by
the two fibers at the extremities of the array for the fine alignment.

We aligned the fiber array to the SNSPD array in two steps, first using a micro-

scope system with an IR camera and then reading the power reflected by the SNSPD

chip. We initially tried to align the fiber array only using the IR camera, following

the method described in [50]. However, the contour of the detector was difficult to

observe through the Si substrate, and we obtained a coupling efficiency < 1 %. Thus,

we decided to use the optics shown in Figure 5-15b for finer alignment. We shone

incoherent light through the two fibers at the extremities of the array, and we mea-

sured the reflections coupled back into the fibers with two separate power meters.

As we moved the fiber array over the detector’s area, we could clearly observe an

increase in the light reflected. We aligned the angle of the sample stage and fiber

array until we could observe the same simultaneous change in the light reflected. The

great advantage of this alignment method is that the SNSPD chip design allowed the

entire array to be aligned by aligning the two outer fibers. Finally, we looked for the

maximum in the power reflected, and we used UV light to cure the glue that had
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been previously added to the facet of the fiber array. We used the smallest possible

amount of glue to minimize misalignment due to its expansion and contraction during

the thermal cycle.

5.3 System detection efficiency measurement

In Figure 5-16, we plotted the system detection efficiency as a function of the bias

current of five series-2-SNAPs aligned to five single-mode optical fiber from a fiber

array. We aligned an eight-channel optical fiber array to a row of eight series-2-

SNAPs. One of the optical channels broke before we could test the SDE ; the electrical

connection for the other two detectors opened during the cool-down. As we can see,

four out of the five detectors plotted in the figure reach SDE saturation around 1%.

The similar results across multiple detectors indicate a similar CP for all the devices

and thus a good alignment between fibers and detectors. The fifth detector does not

reach saturation, which typically indicates a constriction in the detector. However, it

should be noticed how the maximum achieved SDE is close to the value for the other

four detectors, confirming a good optical alignment all across the array.

Figure 5-16: SDE as a function of bias current for five 10-μm-diameter series-2-SNAPs
aligned to an optical fiber array.
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From our calculations, we expected a maximum SDE of ∼ 2% using randomly

polarized light assuming perfect alignment. From simulations, we estimated a maxi-

mum absorption of 15% for polarized light. Using randomly polarized light reduces

the absorption up to three times. In addition, we measured a loss in the optical

channel of ∼ 5 dB before aligning and gluing the fiber array. For future tests, we plan

to use low-loss optical fibers to reduce the losses, and polarized light to maximize the

absorption.

5.4 Outlook

In this first prototype of a multi-channel SNSPD receiver, we showed that our fiber-

coupling method allowed for simultaneous alignment of multiple optical fibers and

SNSPDs that could be maintained at cryogenic temperatures. In light of this progress,

it is worthwhile to discuss the next steps for the second prototypes that can increase

both the system detection efficiency and the speed of the receiver. The first improve-

ment was already discussed in Section 5.2.1. We will use fiber array with pigtailed

fibers and a mode field diameter of 3.2 μm. This will allow us to use smaller de-

tectors and increase the detector’s speed by an order of magnitude, or increase both

the speed and the system detection efficiency. In addition, we will start using 2D

fiber arrays with smaller pitch for a higher channel density. Using more fibers will

require additional read-out RF channels, which can be created by expanding on the

work presented in Section 5.1.3. Thanks to high resolution of modern flexible circuit

fabrication, we can fit up to 20 channels on a 25-mm-wide copper-on-Kapton tape.

As a result, the most significant space limitation would come from the type of RF

connectors used. Finally, we will include optical cavities in the design of the detector’s

chip. It has been shown that dielectric filters and reflectors can be engineered to work

at cryogenic temperatures [82, 64], and we are currently experimenting with NbN film

deposition on these optical stacks. These cavities will nearly triple the absorption of

the detectors [20], increasing the SDE to over 50 %.
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Chapter 6

Conclusion

With the ever-increasing demand of information sharing all over the world, we are

striving to find new technologies and protocols to transmit data at higher speed and

more securely. Modern technology is already using the classical properties of light

and the low attenuation of optical fibers for high-speed internet technology. The high

demand of information sharing is bringing current technology the fundamental limits

of classical physics. The use of quantum mechanics principles is the most promising

way to break the limits of correct technology and allow faster and intrinsically secure

communications. In quantum mechanics, light can be described with fundamental

discretized particles, photons. The great advantage of using single photons in com-

munications is that photons can carry large amount of information thanks to their

properties, such as polarization or spatial mode. In addition, properties unique to

quantum mechanics, such as entanglement, can enable secure communications with

single photons. To use single photons in optical communications, we need to single-

photon generators and single-photon detectors. Our work focused on single-photon

detector systems.

The SNSPD is the most promising single-detector detector technology for optical

quantum communications because of its combination of high sensitivity on a broad

wavelength spectrum, high speed, and high timing resolution. SNSPDs have already

been used in the past do demonstrate high data-rate communications both in lab and

in satellite to ground communications. In addition, it has been demonstrated that
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SNSPDs can be sensitive to single-photons both at telecommunication wavelengths

and at mid-IR wavelengths. Fiber-coupling based receivers with SNSPDs work at

1550 nm wavelength and can be found commercially. This type of technology is the

most reliable for on-land communication. Mid-IR wavelengths are particularly useful

for communications transmitting through the atmosphere. This type of technology

is most useful for Earth-to-satellite or naval communications. After almost 15 years

of improvements, the SNSPD technology is mature enough to be used in the real

world. New cryogenic systems are necessary to enable large-scale optical quantum

communications.

In this thesis, we achieved three main results. First, we were able to integrate a

sorption fridge in the cold stage of cryostat while leaving an optical window open for

an IR light source. The sorption fridge in our system was able to maintain a base

temperature of 0.7 K for 14 hours, which was even longer than what the manufacturer

could achieve. Second, We coupled near-IR light in free space with an efficiency >

50% to an SNSPD mounted in the cryostat from a light source on an optical table.

Third, we proposed a new scalable and compact way to align a fiber array to an

SNSPD array in front illumination.

We believe that the results obtained will be the stepping stones for the field of

cryogenics and quantum optical communications. A sorption fridge integrated inside

a cryostat with a optical window could enable the use of SNSPDs in satellites, thus

allowing a two way satellite communications. Free-space quantum communications in

the mid-IR could be the technology that complements fiber-based communication, in

the creation of a global quantum-secured optical network. Finally, using fiber arrays

we could push current eight-channel SNSPD receivers to even larger systems and

enable even larger data rate.

112



Bibliography

[1] Jessica Cheung, Alan Migdall, and Maria-Luisa Rastello. Introduction. J. Mod.
Opt., 56(2-3):139–140, 2009.

[2] Nicolas Gisin and Rob Thew. Quantum communication. Nat Phot., 1(3):165–
171, 2007.

[3] Hua-Lei Yin, Teng-Yun Chen, Zong-Wen Yu, Hui Liu, Li-Xing You, Yi-Heng
Zhou, Si-Jing Chen, Yingqiu Mao, Ming-Qi Huang, Wei-Jun Zhang, Hao
Chen, Ming Jun Li, Daniel Nolan, Fei Zhou, Xiao Jiang, Zhen Wang, Qiang
Zhang, Xiang-Bin Wang, and Jian-Wei Pan. Measurement-Device-Independent
Quantum Key Distribution Over a 404 km Optical Fiber. Phys. Rev. Lett.,
117(19):190501, 2016.

[4] Tobias Schmitt-Manderbach, Henning Weier, Martin Fürst, Rupert Ursin, Felix
Tiefenbacher, Thomas Scheidl, Josep Perdigues, Zoran Sodnik, Christian Kurt-
siefer, John G. Rarity, Anton Zeilinger, and Harald Weinfurter. Experimental
demonstration of free-space decoy-state quantum key distribution over 144 km.
Phys. Rev. Lett., 98(1):1–4, 2007.

[5] Philip St J Russell. Photonic-Crystal Fibers. J. Light. Technol., 24(12):4729–
4749, 2006.

[6] Hiirokazu Kubota, Satoki Kawanishi, Shigeki Koyanagi, Masatoshi Tanaka, and
Shyunichiro Yamaguchi. Absolutely Single Polarization Photonic Crystal Fiber.
IEEE Photonics Technol. Lett., 16(1):182–184, 2004.

[7] Jacob Folkenberg, M Nielsen, N Mortensen, C Jakobsen, and H Simonsen. Po-
larization maintaining large mode area photonic crystal fiber. Opt. Express,
12(5):956–960, 2004.

[8] K Suzuki, H Kubota, S Kawanishi, M Tanaka, and M Fujita. Optical proper-
ties of a low-loss polarization-maintaining photonic crystal fiber. Opt. Express,
9(13):676–680, 2001.

[9] Quntao Zhuang, Zheshen Zhang, Justin Dove, Franco N C Wong, and Jeffrey H
Shapiro. Floodlight Quantum Key Distribution: Breaking The One-Photon-Per-
Bit Barrier. 2015.

113



[10] K. Inoue, E. Waks, and Y. Yamamoto. Differential-phase-shift quantum key
distribution using coherent light. Phys. Rev. A, 68(2):022317, 2003.

[11] Damien Stucki, Nicolas Brunner, Nicolas Gisin, Valerio Scarani, and Hugo
Zbinden. Fast and simple one-way quantum key distribution. Appl. Phys. Lett.,
87(19):1–3, 2005.

[12] P. Zoller, Th Beth, D. Binosi, R. Blatt, H. Briegel, D. Bruss, T. Calarco,
J. I. Cirac, D. Deutsch, J. Eisert, A. Ekert, C. Fabre, N. Gisin, P. Grangiere,
M. Grassl, S. Haroche, A. Imamoglu, A. Karlson, J. Kempe, L. Kouwenhoven,
S. Kröll, G. Leuchs, M. Lewenstein, D. Loss, N. Lütkenhaus, S. Massar, J. E.
Mooij, M. B. Plenio, E. Polzik, S. Popescu, G. Rempe, A. Sergienko, D. Suter,
J. Twamley, G. Wendin, R. Werner, A. Winter, J. Wrachtrup, and A. Zeilinger.
Quantum information processing and communication: Strategic report on cur-
rent status, visions and goals for research in Europe. Eur. Phys. J. D, 36(2):203–
228, 2005.

[13] Haim Manor and Shlomi Arnon. Performance of an optical wireless communica-
tion. Appl. Opt., 42(21):4285–4294, 2003.

[14] Debbie Kedar and Shlomi Arnon. Urban Optical Wireless Communication Net-
works: The Main Challenges and Possible Solutions. (May):52–57, 2004.

[15] Matthew Grein, Eric Dauler, Andrew Kerman, Barry Romkey, Bryan Robinson,
Daniel Murphy, and Don Boroson. A superconducting photon- counting receiver
for optical communication from the Moon. pages 2–4, 2013.

[16] Robert H. Hadfield. Single-photon detectors for optical quantum information
applications. Nat. Photonics, 3(12):696–705, dec 2009.

[17] Antia Lamas-Linares, Brice Calkins, Nathan A. Tomlin, Thomas Gerrits, Adri-
ana E. Lita, Jörn Beyer, Richard P. Mirin, and Sae Woo Nam. Nanosecond-scale
timing jitter for single photon detection in transition edge sensors. Appl. Phys.
Lett., 102(23):1–5, 2013.

[18] G. N. Gol’tsman, O. Okunev, G. Chulkova, a. Lipatov, a. Semenov, K. Smirnov,
B. Voronov, a. Dzardanov, C. Williams, and Roman Sobolewski. Picosecond
superconducting single-photon optical detector. Appl. Phys. Lett., 79(6):705,
2001.

[19] D Rosenberg, a J Kerman, R J Molnar, and E a Dauler. Nanowire Single Photon
Detector Array. 21(2):1440–1447, 2013.

[20] Taro Yamashita, Shigehito Miki, Hirotaka Terai, and Zhen Wang. Low-filling-
factor superconducting single photon detector with high system detection effi-
ciency. Opt. Express, 21(22):27177–84, nov 2013.

114



[21] Shigehito Miki, Taro Yamashita, Hirotaka Terai, and Zhen Wang. High perfor-
mance fiber-coupled NbTiN superconducting nanowire single photon detectors
with Gifford-McMahon cryocooler. Opt. Express, 21(8):10208–10214, 2013.

[22] Francesco Marsili, Francesco Bellei, Faraz Najafi, Andrew E Dane, Eric a Dauler,
Richard J Molnar, and Karl K Berggren. Efficient Single Photon Detection from
500 nm to 5 𝜇m Wavelength. Nano Lett., 12(9):4799–804, sep 2012.

[23] F. Marsili, V. B. Verma, J. a. Stern, S. Harrington, a. E. Lita, T. Gerrits,
I. Vayshenker, B. Baek, M. D. Shaw, R. P. Mirin, and S. W. Nam. Detecting sin-
gle infrared photons with 93% system efficiency. Nat. Photonics, 7(3):210–214,
feb 2013.

[24] Eric a. Dauler, Bryan S. Robinson, Andrew J. Kerman, Vikas Anant, Richard J.
Barron, Karl K. Berggren, David O. Caplan, John J. Carney, Scott a. Hamilton,
Kristine M. Rosfjord, Mark L. Stevens, and Joel K. W. Yang. 1.25-Gbit/s photon-
counting optical communications using a two-element superconducting nanowire
single photon detector. Proc. SPIE, 6372:637212–637212–8, 2006.

[25] Vikas Anant, Andrew J Kerman, Eric A Dauler, K W Joel, Kristine M Rosfjord,
and Karl K Berggren. Optical properties of superconducting nanowire single-
photon detectors. Opt. Express, 16(14):46–52, 2008.

[26] Andrew J. Kerman, Eric a. Dauler, William E. Keicher, Joel K. W. Yang, Karl K.
Berggren, G. Gol’tsman, and B. Voronov. Kinetic-inductance-limited reset time
of superconducting nanowire photon counters. Appl. Phys. Lett., 88(11):111116,
2006.

[27] Andrew J. Kerman, Eric a. Dauler, Joel K. W. Yang, Kristine M. Rosfjord,
Vikas Anant, Karl K. Berggren, Gregory N. Gol’tsman, and Boris M. Voronov.
Constriction-limited detection efficiency of superconducting nanowire single-
photon detectors. Appl. Phys. Lett., 90(10):101110, 2007.

[28] Francesco Marsili, Faraz Najafi, Charles Herder, and Karl K. Berggren. Elec-
trothermal simulation of superconducting nanowire avalanche photodetectors.
Appl. Phys. Lett., 98(9):18–21, 2011.

[29] Joel K W Yang, Andrew J Kerman, Eric A Dauler, Vikas Anant, Kristine M
Rosfjord, and Karl K Berggren. Modeling the Electrical and Thermal Response
of Superconducting Nanowire Single-photon Detectors. Phys. Rev., 17(2):581–
585, 2007.

[30] F. Najafi, F. Marsili, E. Dauler, R. J. Molnar, and K. K. Berggren. Timing
performance of 30-nm-wide superconducting nanowire avalanche photodetectors.
Appl. Phys. Lett., 100(15):152602, 2012.

[31] Francesco Marsili, Faraz Najafi, Eric Dauler, Francesco Bellei, Xiaolong Hu,
Maria Csete, Richard J Molnar, and Karl K Berggren. Single-photon detectors

115



based on ultranarrow superconducting nanowires. Nano Lett., 11(5):2048–53,
may 2011.

[32] a Engel, J J Renema, K Il’in, and a Semenov. Detection mechanism of
superconducting nanowire single-photon detectors. Supercond. Sci. Technol.,
28(11):114003, 2015.

[33] F. Marsili, M. J. Stevens, A. Kozorezov, V. B. Verma, Colin Lambert, J. A.
Stern, R. D. Horansky, S. Dyer, S. Duff, D. P. Pappas, A. E. Lita, M. D. Shaw,
R. P. Mirin, and S. W. Nam. Hotspot relaxation dynamics in a current-carrying
superconductor. Phys. Rev. B - Condens. Matter Mater. Phys., 93(9):1–10, 2016.

[34] A. G. Kozorezov, C. Lambert, F. Marsili, M. J. Stevens, V. B. Verma, J. A.
Stern, R. Horansky, S. Dyer, S. Duff, D. P. Pappas, A. Lita, M. D. Shaw, R. P.
Mirin, and Sae Woo Nam. Quasiparticle recombination in hotspots in super-
conducting current-carrying nanowires. Phys. Rev. B - Condens. Matter Mater.
Phys., 92(6):1–16, 2015.

[35] F Najafi, A Dane, F Bellei, Zhao Qingyuan, K A Sunter, A N McCaughan, and
K K Berggren. Fabrication Process Yielding Saturated Nanowire Single-Photon
Detectors With 24-ps Jitter. Jstqe, 21(2):1–7, 2015.

[36] Joel K W Yang, Andrew J Kerman, Eric A Dauler, Bryan Cord, Vikas Anant,
Richard J Molnar, and Karl K Berggren. Suppressed Critical Current in Super-
conducting Nanowire Single-Photon Detectors With High Fill-Factor. 2009.

[37] John Clem and Karl Berggren. Geometry-dependent critical currents in super-
conducting nanocircuits. Phys. Rev. B, 84(17):1–27, nov 2011.

[38] T. Yamashita, S. Miki, K. Makise, W. Qiu, H. Terai, M. Fujiwara, M. Sasaki,
and Z. Wang. Origin of intrinsic dark count in superconducting nanowire single-
photon detectors. Appl. Phys. Lett., 99(16):16–19, 2011.

[39] Burm Baek, Adriana E. Lita, Varun Verma, and Sae Woo Nam. Superconducting
a-W[sub x]Si[sub 1âĹŠx] nanowire single-photon detector with saturated internal
quantum efficiency from visible to 1850 nm. Appl. Phys. Lett., 98(25):251105,
2011.

[40] a Engel, J J Renema, K Il’in, and a Semenov. Detection mechanism of super-
conducting nanowire single-photon detectors. Supercond. Sci. Technol., 28(11),
2015.

[41] R. Arpaia, M. Ejrnaes, L. Parlato, F. Tafuri, R. Cristiano, D. Golubev, Ro-
man Sobolewski, T. Bauch, F. Lombardi, and G. P. Pepe. High-temperature
superconducting nanowires for photon detection. Phys. C Supercond. its Appl.,
509(February):16–21, 2015.

116



[42] J K W K W Yang, E Dauler, A Ferri, A Pearlman, A Verevkin, G Gol’tsman,
B Voronov, R Sobolewski, W E E Keicher, and K K Berggren. Fabrication
Development for Nanowire GHz-Counting-Rate Single-Photon Detectors. IEEE
Trans. Appiled Supercond., 15(2):626–630, 2005.

[43] Francesco Marsili, Daniel P Cunnane, Ryan M Briggs, Andrew D Beyer,
Matthew D Shaw, Boris S Karasik, M A Wolak, N Acharya, and X X Xi. Su-
perconducting Nanowire Detectors Based on MgB 2. pages 10–11, 2015.

[44] Kenneth H Hinkle, Randy Cuberly, Neil Gaughan, Julie Heynssens, Richard
Joyce, Stephen Ridgway, Paul Schmitt, and Jorge E Simmons. Phoenix : A
Cryogenic High-Resolution 1-5 micron Infrared Spectrograph. 3354(March):810–
821, 1998.

[45] D W Paty, J J F Oger, L F Kastrukoff, S A Hashimoto, J P Hooge, A A Eisen,
K A Eisen, S J Purves, M D Low, V Brandejs, W D Robertson, and D K B.
Li. MRI in the diagnosis of MS: A prospective study with comparison of clinical
evaluation, evoked potentials, oligoclonal banding, and CT . Neurol., 38(2):180,
feb 1988.

[46] The LHC Study Group. Conceptual design, 1995.

[47] F Stellari, P Song, and A J Weger. Single Photon Detectors for Ultra Low
Voltage Time-Resolved Emission Measurements. Quantum Electron. IEEE J.,
47(6):841–848, 2011.

[48] Qing Yuan Zhao, Di Zhu, Niccolò Calandri, Andrew E Dane, Adam N Mc-
caughan, Francesco Bellei, Hao Zhu Wang, Daniel F Santavicca, and Karl K
Berggren. Superconducting nanowire single âĂŘ photon imager. ArXiv, pages
1–24.

[49] Faraz Najafi, Jacob Mower, Nicholas C. Harris, Francesco Bellei, Andrew Dane,
Catherine Lee, Xiaolong Hu, Prashanta Kharel, Francesco Marsili, Solomon As-
sefa, Karl K. Berggren, and Dirk Englund. On-chip detection of non-classical
light by scalable integration of single-photon detectors. Nat. Commun., 6:5873,
2015.

[50] Chandra Mouli Natarajan. Superconducting Nanowire Single-Photon Detectors
for Advanced Photon-Counting Applications. (May), 2011.

[51] Oxford Instruments. Cryogen free optical cryostat 3 K, OptistatDry âĂŞ the
BLV model, 2016.

[52] Janis Cryostat. ST-100 Optical Cryostat, 2016.

[53] Alexander Korneev, Yury Vachtomin, Olga Minaeva, Alexander Divochiy, Kon-
stantin Smirnov, Oleg Okunev, Gregory Gol’tsman, C. Zinoni, Nicolas Chauvin,
Laurent Balet, Francesco Marsili, David Bitauld, Blandine Alloing, Anhe Li, An-
drea Fiore, L. Lunghi, Annamaria Gerardino, Matthäus Halder, Corentin Jorel,

117



and Hugo Zbinden. Single-photon detection system for quantum optics applica-
tions. IEEE J. Sel. Top. Quantum Electron., 13(4):944–950, 2007.

[54] Adrian Cho. U.S. Senate Passes Bill to Head Off Helium Shortage. Sci. Insid.,
pages 1–7, 2013.

[55] Jack W. Ekin. Experimental Techniques for Low-Temperature Measurement. Ox-
ford University Press Inc., New York, 2006 edition.

[56] NIST. Cryogenic Material Properties Index, 2013.

[57] Cryomech. Cryomech - refrigerators, 2016.

[58] Sumitomo Cryogenics. Sumitomo - cryocoolers, 2016.

[59] A F Robertson and Daniel Gross. An Electrical-Analog Method for Transient
Heat-Flow Analysis. J. Res. Natl. Bur. Stand. (1934)., 61(2):105–115, 1958.

[60] Francesco Bellei, Alyssa P. Cartwright, Adam N. McCaughan, Andrew E. Dane,
Faraz Najafi, Qingyuan Zhao, and Karl K. Berggren. Free-space-coupled su-
perconducting nanowire single-photon detectors for infrared optical communica-
tions. Opt. Express, 24(4):3248, 2016.

[61] Alan M. Kadin. Universal minimum heat leak on low-temperature metallic elec-
trical leads. AIP Conf. Proc., 850:1655–1656, 2006.

[62] A. I. Harris, M. Sieth, J. M. Lau, S. E. Church, L. A. Samoska, and K. Cleary.
Note: Cryogenic microstripline-on-Kapton microwave interconnects. Rev. Sci.
Instrum., 83(8):16–19, 2012.

[63] Alex Walter, Benjamin A Mazin, and Miguel Daal. Microstripline Simulations
for Cryogenic Microwave Interconnects. 2015.

[64] Taro Yamashita, Kentaro Waki, Shigehito Miki, Robert A. Kirkwood, Robert H.
Hadfield, and Hirotaka Terai. Superconducting nanowire single-photon detectors
with non-periodic dielectric multilayers. Sci. Rep., 6(October):35240, 2016.

[65] G W John. Electron beam welding, 1963.

[66] Francesco Mattioli, Mikkel Ejrnaes, Alessandro Gaggero, Alessandro Casaburi,
Roberto Cristiano, Sergio Pagano, and Roberto Leoni. Large area single photon
detectors based on parallel configuration NbN nanowires. J. Vac. Sci. Technol.
B Microelectron. Nanom. Struct., 30(3):031204, 2012.

[67] Alessandro Casaburi, Andrea Pizzone, and Robert Hugh Hadfield. Large area
superconducting nanowire single photon detector arrays.

[68] Takashi Onakaa, Yoshikazu Sugiyamab, and Shinji Miurac. Telescope system of
the infrared imaging surveyor ( IRIS ). 3354(March):900–904, 1998.

118



[69] M. S. Allman, V. B. Verma, M. Stevens, T. Gerrits, R. D. Horansky, A. E.
Lita, F. Marsili, A. Beyer, M. D. Shaw, D. Kumor, R. Mirin, and S. W. Nam.
A near-infrared 64-pixel superconducting nanowire single photon detector array
with integrated multiplexed readout. Appl. Phys. Lett., 106(19):192601, 2015.

[70] B A Mazin, S R Meeker, M J Strader, P Szypryt, D Marsden, J C van Eyken,
G E Duggan, A B Walter, G Ulbricht, M Johnson, B Bumble, K O’Brien, and
C Stoughton. ARCONS: A 2024 Pixel Optical through Near-IR Cryogenic Imag-
ing Spectrophotometer. Publ. Astron. Soc. Pacific, 125(933):1348–1361, 2013.

[71] Thomas H Buttgenbach and Student Member. An Improved Solution for Inte-
grated Array Optics in Quasi-Optical mm and Submm Receivers : the Hybrid
Antenna. 41(10):1750–1761, 1993.

[72] A Verevkin, J Zhang, W Slysz, Roman Sobolewski, A Lipatov, O Okunev,
G Chulkova, A Korneev, and G N Gol. Superconducting Single-Photon Detectors
for GHz-Rate Free-Space Quantum Communications. 4821:447–454, 2002.

[73] T. Wolf J. Geist, N. Foerster, D. Hengstler, S. Kempf, E. Pavlov, C. Pies, P.
Ranitzsch, S. Schäfer, V. Schultheiss and C. Enss L. Gastaldo, A. Fleischmann.
Low Temperature Particle Detectors with Magnetic Penetration Depth Ther-
mometers, 2013.

[74] Mirrocle. Mirrorcle Technologies MEMS Mirrors âĂŞ Technical Overview. Mir-
rocle Technolonies Inc., pages 1–7, 2016.

[75] D. Stucki, N. Walenta, F. Vannel, R. T. Thew, N. Gisin, H. Zbinden, S. Gray,
C. R. Towery, and S. Ten. High rate, long-distance quantum key distribution
over 250 km of ultra low loss fibres. New J. Phys., 11, 2009.

[76] Danna Rosenberg, Jim W. Harrington, Patrick R. Rice, Philip A. Hiskett,
Charles G. Peterson, Richard J. Hughes, Adriana E. Lita, Sae Woo Nam, and
Jane E. Nordholt. Long-distance decoy-state quantum key distribution in optical
fiber. Phys. Rev. Lett., 98(1):1–4, 2007.

[77] A. Sugita, A. Kaneko, K. Okamoto, M. Itoh, A. Himeno, and Y. Ohmori. Very
low insertion loss arrayed-waveguide grating with vertically tapered waveguides.
IEEE Photonics Technol. Lett., 12(9):1180–1182, 2000.

[78] Y. Shani, C. H. Henry, R. C. Kistler, K. J. Orlowsky, and D. A. Ackerman.
Efficient coupling of a semiconductor laser to an optical fiber by means of a
tapered waveguide on silicon. Appl. Phys. Lett., 55(23):2389–2391, 1989.

[79] Aaron J Miller, Adriana E Lita, Brice Calkins, Igor Vayshenker, Steven M Gru-
ber, and Sae Woo Nam. Compact cryogenic self-aligning fiber-to-detector cou-
pling with losses below one percent. Opt. Express, 19(10):9102–9110, 2011.

119



[80] Risheng Cheng, Xiang Guo, Xiaosong Ma, Linran Fan, King Y. Fong, Menno
Poot, and Hong X. Tang. Self-aligned multi-channel superconducting nanowire
avalanche photodetector. 2016.

[81] V I Kopp, J Park, M S Wlodawski, E Hubner, J Singer, D Neugroschl, A Z
Genack, P Dumon, J Van Campenhout, and P Absil. Ultra-dense Silicon Pho-
tonics Optical Interface. pages 4–6, 2014.

[82] Xiaoyan Yang, Hao Li, Weijun Zhang, Lixing You, Lu Zhang, Xiaoyu Liu, Zhen
Wang, Wei Peng, Xiaoming Xie, and Mianheng Jiang. Superconducting nanowire
single photon detector with on-chip bandpass filter. Opt. Express, 22(13):16267,
2014.

120


