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Modular assembly of a protein 
nanotriangle using orthogonally 
interacting coiled coils
Won Min Park1, Mostafa Bedewy  2,5, Karl K. Berggren2,3 & Amy E. Keating1,4

Synthetic protein assemblies that adopt programmed shapes would support many applications in 
nanotechnology. We used a rational design approach that exploits the modularity of orthogonally 
interacting coiled coils to create a self-assembled protein nanotriangle. Coiled coils have frequently been 
used to construct nanoassemblies and materials, but rarely with successful prior specification of the 
resulting structure. We designed a heterotrimer from three pairs of heterodimeric coiled coils that mediate 
specific interactions while avoiding undesired crosstalk. Non-associating pairs of coiled-coil units were 
strategically fused to generate three chains that were predicted to preferentially form the heterotrimer, 
and a rational annealing process led to the desired oligomer. Extensive biophysical characterization and 
modeling support the formation of a molecular triangle, which is a shape distinct from naturally occurring 
supramolecular nanostructures. Our approach can be extended to design more complex nanostructures 
using additional coiled-coil modules, other protein parts, or templated surfaces.

Protein assembly is a versatile bottom-up approach for creating precise structures at the nanometer scale1. Such 
structures are critical to the development of novel materials and biologically functional devices. Short peptides 
provide minimal units for non-covalent association to mediate self-assembly, and substantial advances have 
been achieved using naturally derived or synthetic peptides to make fibers, nanotubes and mesh-like scaffolds2. 
Folded protein assembly is guided by shape- and chemical-complementarity that can establish highly specific 
non-covalent associations. Protein-protein interfaces can be harnessed or newly designed to build geometrically 
well-defined nanostructures, although the complex and cooperative interactions at interfaces are difficult to con-
trol rationally. Recently, computational methods have enabled stunning de novo design of protein nanostructures 
including two-dimensional arrays3 and cages with diverse structural features4–7. A rational approach to building 
with native components is to combine known folds into fused assembly units. Symmetric cages and cubes have 
been constructed in this way, with distinct domain interfaces aligned into controlled geometries by rigid helical 
linkers8–10. Similarly, protein assembly has been demonstrated using oligomeric protein domains connected by 
short linkers11, 12 biotin-streptavidin binding13, or metal-directed coordination14.

As an alternative to designing specialized components for each assembly task, a set of modular building blocks 
can potentially provide enhanced flexibility for constructing biomolecular nanostructures. For example, coiled coils, 
which are rod-like complexes of two or more supercoiled α-helices, have designable specificity, oligomeric state, length, 
and helix orientation. The interactions between helices in coiled coils is controlled by hydrophobic-polar and charge 
patterning of amino acids in a seven-residue repeat that is conventionally labeled abcdefg, with a and d positions typi-
cally hydrophobic15, 16. Based upon a rich understanding of coiled-coil sequence-structure relationships that has been 
obtained over the past ~25 years, de novo designed coiled-coil toolkits, i.e. sets of coiled-coil units with known interac-
tion properties, have been generated by using systematic search and/or rational17, 18 or computational approaches19–23. 
Because of their utility as short self-assembling protein modules, coiled coils have been used to construct a variety of 
assemblies, including fibers24, cages25, 26, and nanotubes27 with extended and geometrically irregular structures28.
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Modular design of coiled-coil assemblies with specific atomically definable three-dimensional structures28 has 
been challenging, and has only been demonstrated in few cases. In one striking example, multiple distinct coiled 
coils were arranged into a single chain that folds into a tetrahedron, with the final structure dictated by specific 
coiled-coil associations29. The single-chain design relied on a careful ordering of elements within the chain to 
control the topology, which may limit the broader utility of this approach. So far, no other single-chain folded 
shapes based on coiled-coil modules have been reported. A different method using coiled coils to create polygonal 
nanoscale objects was reported, in which linked coiled coils formed self-assembling structures30. Because only a 
single type of coiled-coil heterodimer was used in this work, control over the number of subunits was introduced 
using linker lengths, limiting modularity and potential generalizability.

Here, we report a simple and rational design of a protein nanotriangle that exploits the modularity of multi-
ple orthogonally interacting coiled coils. The construction and characterization process involved: (1) design of 
appropriately linked coiled-coil modules; (2) recombinant production and purification of designed proteins; (3) 
mixing and annealing according to an optimized schedule; and (4) biophysical analysis of the assembled nanotri-
angle. Three previously characterized heterodimeric coiled-coil modules that specifically associate while avoid-
ing undesired crosstalk were arranged into self-assembling building blocks (Fig. 1). The assembly geometry was 
encoded by the strategic fusion of pairs of non-associating sequences in combinations that disfavored competing 
assemblies. Specific dimerization of the designed modules favored formation of coiled-coil edges connected into 
a triangular shape via flexible linkers.

Results
Design of a self-assembled protein nanotriangle. Three orthogonally interacting pairs of coiled-coil 
modules were selected from 23 previously reported synthetic heterodimeric coiled coils (SYNZIPs) (Fig. 1A)19–21. 
The three SYNZIP pairs 1:2, 3:4, and 5:6 (where a colon indicates non-covalent interaction) interact with high 
affinity (assay scores ~1.0) and are favored over weak undesired crosstalk with other SYNZIPs (assay scores < 0.8). 
The dissociation constants for the three binding pairs (KD < 30 nM) are at least an order of magnitude lower 
than those for any other pairwise interactions within this set of proteins (KD > 400 nM)19. Crystal structures 
indicate that complexes 1:2 (PDB ID: 3HE5) and 5:6 (PDB ID: 3HE4) are parallel, heterodimeric coiled coils 
(Fig. 1B)20. Complex 3:4 is also a parallel heterodimer, and the axial sequence alignment has been determined  
experimentally19, 20. Based on these characterizations, we built a structural model for 3:4 by comparative  
modeling31 and refined it by molecular dynamics simulation for 10 ns32. The model shows interactions between 
polar and charged residues at e and g positions, and hydrogen bonding of asparagine residues at the a–a′ positions 
(Figs 1B and S1) that are characteristic of many parallel coiled-coil dimers15.

Figure 1. Orthogonally interacting SYNZIPs underlie the design of a protein nanotriangle. (A) Pairwise 
interaction profiles of SYNZIPs (1 to 6) determined by protein microarrays (in vitro, lower left)20 and the yeast 
two-hybrid assays (in cells, upper right)19. Assay scores were normalized to a scale where 1.0 indicates tight 
binding. The corresponding KD values are <10, <30, and <15 nM for 1:2, 3:4, and 5:6, respectively, and are 
approximated to be >400 nM for 3:5, and 4:619. (B) Crystal structures of 1:2 (PDB ID: 3HE5) and 5:6 (PDB 
ID: 3HE4)20, and a model of 3:4; melting temperatures are given in parentheses. (C) Topology of the designed 
heterotrimeric protein nanotriangle composed of the orthogonal SYNZIPs. (D) The composition of individual 
linked-SYNZIP fusion proteins that self-assemble into the nanotriangle shown in panel C. (E) A two-step 
thermal annealing process for assembly of the linked-SYNZIP fusion proteins, and illustration of desired 
assemblies at each step.
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To design a protein nanotriangle, we explored all 16 possible ways that 6 SYNZIPs can be distributed in a 
three-chain topology (Fig. S2). Interactions between coiled coils that are covalently linked can lead to the formation 
of dead-end monomeric or homo-oligomeric complexes ranging from discrete oligomers to fibers30. Formation 
of such structures could compete with assembly of the desired triangle by serving as kinetic traps. To avoid this, 
we excluded designs composed of linked SYNZIPs for which even weak hetero-interactions were reported. After 
exclusion of these candidates, we selected a promising design composed of three chains of linked-SYNZIP fusion 
proteins: 1–6, 5–4, and 3–2 (Fig. 1D; a hyphen indicates a genetic fusion of two SYNZIP chains).

Once this promising design was selected, we used a short, flexible protein segment ((Gly4Ser)2) to link each 
pair of SYNZIPs, and included an affinity purification tag (His6) at the C-terminus. Plasmids encoding each 
fusion protein were expressed separately in Escherichia coli, followed by purification using nickel-affinity chro-
matography under denaturing conditions (Fig. S3).

Self-assembly via thermal annealing. The separately prepared linked-SYNZIP fusion proteins were 
assembled into the designed heterotrimeric complex through thermal annealing. We devised a protocol to con-
trol the association of the three SYNZIP pairs via temperature-controlled cooling based on the reported melting 
temperatures (which are 47, 42 and 32 °C for 1:2, 3:4, and 5:6, respectively)20. After unfolding at 95 °C, mixtures 
of fusion proteins were cooled and incubated at 42 °C for 1 hr, followed by rapid cooling to 4 °C (Fig. 1E). This 
two-step process was intended to allow desired pairings to occur at 42 °C before lowering the temperature to 4 °C, 
where some undesired complexes might be kinetically trapped.

As confirmed by polyacrylamide gel electrophoresis under non-denaturing conditions (native PAGE), the 
fusion proteins formed a complex only when all three components required for the designed heterotrimer were 
present (Fig. 2). We observed a new band (indicated by the arrowhead) in which proteins migrated at a rate 
distinct from control samples in which only one (lane 1–3) or two (lane 4–6) components were included. This 
result supports formation of a protein complex composed of all the three linked SYNZIPs. After isolation using 
size-exclusion chromatography (SEC) (Fig. S4), we confirmed by mass spectrometry that the protein complex 
formed contained all three of the fusion proteins (Fig. S5). The isolated protein complex was stable for at least 
months at 4 °C and at submicromolar protein concentrations, as confirmed by biophysical characterization con-
ducted after purification (Figs 3–5).

According to the calculated net charges of the linked SYNZIPs (Table S2), 3–2 is predicted to carry a charge of 
+2.6 at pH 7.4. This explains why a protein band is not observed for this species in electrophoresis of negatively 
charged species (Fig. 2, lane 3). Also, we observed that 3–2 was poorly soluble and prone to aggregation, which 
could also contribute to poor mobility in the gel. The assembly of 3–2 and 1–6 might also be insoluble (Fig. 2, 
lane 6), whereas the protein band that corresponds to 5–4 (lane 5) indicates that 3–2 and 5–4 may not associate 
efficiently at an equimolar mixing ratio under these conditions. Based on the observation that excess 3–2 led to 
increased yields (lanes 8 and 9), we hypothesize that an aggregation process, which limits the availability of 3-2, 
competes with assembly into the nanotriangle.

In a control experiment, we annealed protein solutions by cooling to 25 °C and then to 4 °C, or cooling directly to 
4 °C. The results showed that under either schedule, more residual 5–4 remained (indicated by an arrow in Fig. S6). 
The fast cooling below 42 °C may favor folding of 5–4 that competes with formation of the desired intermediate, as 
illustrated in Fig. S7. These results are consistent with the pathway in Fig. 1E but don’t rule out alternatives.

Characterization of size, folding, assembly, and shape. The protein triangle in solution was highly 
monodisperse with a hydrodynamic diameter (dH) of 8.25 ± 0.14 nm, as determined by dynamic light scattering 
(DLS) (Fig. 3A). Guinier analysis of small-angle X-ray scattering (SAXS) data was used to determine radius of 

Figure 2. Native-PAGE analysis of interactions between linked-SYNZIP fusion proteins after thermal 
annealing. For lanes 1–6, one or two of constructs 1–6, 5–4 and/or 3–2 (20 µM each) were mixed and annealed. 
For lanes 7–9, 1–6 and 5–4 were mixed and annealed with varying concentrations of 3–2 (20, 40, or 60 µM). The 
red arrow indicates the band corresponding to the triangle.
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gyration (Rg) of 36.0 ± 2.5 Å (Fig. 3B). These measurements are consistent with the expected size of the nanotri-
angle, given that the SYNZIP coiled-coil edges have lengths of 6.7, 5.7, and 5.5 nm (Fig. 1B). The data also confirm 
that the assembly does not form aggregates.

The helicity of the folded protein triangle was quantified using circular dichroism (CD) spectroscopy. Peaks 
at 208 and 222 nm in the CD spectrum indicated a helical structure consistent with the designed coiled-coil 
edges (Fig. 3C). The helix content estimated from the mean residue ellipticity (θ222 = −27.0 × 103 deg cm2 
dmol−1) was 79%, which is consistent with the value of 81% calculated based on the design. To estimate the 
expected helicity, we used SYNZIP crystal structures20 and homology models (see Methods), and assumed that 
the linker regions connecting SYNZIPs do not adopt a helical conformation. Unfolding with heat showed a 
cooperative structural transition with a melting temperature (Tm) of ~50 °C (Fig. S9), which is slightly higher 
than the Tm of 47 °C for 1:2 (42 °C for 3:4 and 32 °C for 5:6)20. In contrast, each of the unmixed, annealed 
fusion proteins showed less ellipticity at 222 nm than the nanotriangle (Fig. 3C); the low solubility of 3–2 may 
contribute to the lower CD intensity for this protein. Interestingly, 5–4 showed evidence of a partially helical 
structure, θ222 = −21.4 × 103 deg cm2 dmol−1, despite the fact that interactions were not previously reported 
between SYNZIPs 5 and 4. A helical structure is apparently populated by joining these sequences in the same 
chain. Although we did not perform detailed characterization of folded 5–4, SEC experiments indicate that this 
protein elutes as expected for a dimer that is mixed with, or exchanging with, a smaller population of monomer 
(Fig. S10).

The molecular weight determined by analytical ultracentrifugation (AUC) was consistent with the value 
expected for the designed heterotrimer. Sedimentation velocity analysis was performed on samples at concen-
trations of 13, 25, and 38 μM, and we calculated sedimentation coefficient distributions c(s)33. The average s 
value for peaks measured at different concentrations was 2.5 ± 0.1 S (Fig. 3D), corresponding to a molecular 
weight of 34.9 ± 1.0 kDa. The deviation from the value predicted based on protein sequences (35.8 kDa) was less 
than 3% (Table S3). We also determined the molecular weight from SAXS data using an analysis that makes no 

Figure 3. Characterization of size, folding, and assembly of the protein nanotriangle. (A) The hydrodynamic 
diameter (dH) of the protein nanotriangle as determined by DLS. (B) Guinier plot to determine Rg from SAXS 
measurements at 44 μM (black dots; Fig. S8). The fit (red line with residuals in green) is for data in the low-q 
range (q × Rg < 1.3). (C) CD spectra for 1–6, 5–4, and 3–2 and the purified assembly (triangle) (5 μM of each 
protein and 15 μM total for mixtures, 20 °C). (D) Distributions of sedimentation coefficient (s), in Svedbergs (S), 
for the protein nanotriangle at concentrations of 13, 25, and 38 μM, estimated from interference boundary fits 
(Fig. S11).

http://S9
http://S10
http://S3
http://S8
http://S11


www.nature.com/scientificreports/

5Scientific REPORtS | 7: 10577  | DOI:10.1038/s41598-017-10918-6

assumptions about shape (Fig. 3B). The method we employed defines and uses the volume of correlation, Vc, a 
SAXS invariant derived from the scattered intensities34. The molecular weight determined using this approach 
was 32.6 kDa, which is within the reported error range of this method (~10%)34.

We used atomic force microscopy (AFM) to image the designed protein assembly. Height images showed 
monodisperse nano-objects (Fig. 4A), consistent with the dH value determined by DLS (Fig. 3A). Imaged objects 
appeared triangular in close-up images (Fig. 4B), with an average height of 0.51 ± 0.12 nm (Fig. 4C and D). The 
unimodal distribution indicated that the nanotriangles were uniform in height and thus likely to be discrete single 
particles (Fig. 4D). We observed a few tall particles with heights of ~1 nm, which we assumed to be aggregates or 
overlapped nanotriangles (see Fig. 4D inset). The average height for imaged particles was close to the previously 
measured height of a dimeric coiled coil on a mica substrate (~0.6 nm)35.

Structural modeling with SAXS data. To further investigate the conformation of the protein nano-
triangle in solution, we built all-atom models representing many different conformations and tested which 
models were consistent with the SAXS data. Using the crystal structures of 1:2 and 5:620 and the homology 
model of 3:4, we built models of the heterotrimer as described in the methods and, for each model, compared 
the predicted SAXS profiles for that structure to the experimental data36. We assessed agreement using the χ 
value, which has a value of 1.0 for models that fit the data within the accuracy of the experimental noise and 
larger values for less-good fits. Among 1996 diverse comparative models, which included highly collapsed and 
maximally expanded arrangements of coiled coils, the distribution of Rg values ranged from 26 to 47 Å, and χ 
values ranged from 1.01 to 3.77 (see Figs 5A and S12). Guinier analysis of the SAXS data gave Rg = 36.0 ± 2.5 Å 
(Fig. 3B), and it is apparent in Fig. S12 that most of the models with χ ≤ 1.05 had Rg values consistent with that 
range of values. Fig. 5C shows two models (i and ii) that are an excellent match to the data, with χ values of 
1.01 and 1.03 and Rg values of 36.7 and 35.2 Å, respectively (Fig. 5B). In contrast, Fig. 5D shows models (iii and 
iv) with extreme values of Rg that had high χ values (2.46 and 3.77) and were clearly not consistent with the 
experimental SAXS profile shown in Fig. 5B. Given the flexible linkers used in the design, the triangle struc-
ture is best described as an ensemble of many different conformations. A two-structure ensemble consisting 
of 64% of model i and 36% of model ii agrees with the experimental observations within the noise level. Many 
other ensembles would also be consistent with the SAXS observations. However, our analysis rules out high 

Figure 4. Characterization of the shape of the protein nanotriangle by AFM imaging. Height images of the 
triangles at low (A) and high magnifications (B), and a three-dimensional AFM image of a single assembly (C). 
(D) A histogram of the heights of the particles shown in panel A, and an image of a “tall” particle with height of 
~1 nm (inset).
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occupancy of extremely compact structures in which the coiled-coil units themselves are strongly associating 
(as in Fig. 5D, iii), and also shows that the ensemble is not composed exclusively of highly expanded structures 
(Fig. 5A).

Discussion
We designed and characterized a monodisperse, two-dimensional protein nanotriangle with a characteristic 
dimension of ~10 nm. To our knowledge, this is the first confirmed design of a protein structure with this topol-
ogy. In prior work30, supramolecular assemblies were designed using a single type of heterodimeric coiled coil. 
Linkers of variable lengths were used to control the mode of assembly, from fibers to discrete nanoscale objects. 
One of the designs was predicted to adopt a triangular shape, although its shape was not directly characterized30.

In our simple strategy, self-assembly of a protein nanostructure was directed by the modularity of protein 
association, and a triangle structure was formed efficiently using a mixing and annealing procedure. Although 
we encountered some obstacles, such as unexpected folding of 5–4, and limited solubility of unassembled pro-
teins, these were overcome by modulating the annealing process and increasing the relative concentration of the 
poorly soluble component 3–2. Flexibility in mixing and annealing procedures are advantages of our approach 
that here allowed us to realize a successful design. Our strategy has other advantages compared to alternatives for 
supramolecular assembly. For example, folding of a single protein chain into a tetrahedron, in prior work, was 
directed by six different coiled-coil modules, with the structure encoded in the ordered arrangement of sequences 
in the protein chain29. The fact that intra- over intermolecular interaction is favored at high dilution allowed for 
the formation of a complex structure. Micromolar concentrations lead to aggregation, as expected due to the 
propensity for self-association that is part of the design, and the strategy is not easily generalized. The design of 
cages or arrays using globular oligomeric domains requires symmetry matching, along with geometrical align-
ment of the domains using rigid8–10 or flexible linkers with optimal spacing11, 13. This is non-trivial to accomplish, 
and small differences can lead to the wrong stoichiometry9 or an infinite rather than finite assembly30. Finally, 
for some applications, it may be advantageous to trigger assembly at a specific time; in our scheme, this can be 
accomplished by mixing the components at a controlled time.

In this work, the pairwise interactions of three parallel, heterodimeric SYNZIPs were sufficient to direct supra-
molecular assembly. 23 SYNZIPs have been described19, 20, and binding pairs such as 10:22 and 17:18 could 
be useful as additional modules because their interactions are reported as stronger than potentially competing 
associations with any of SYNZIPs 1–6. Furthermore, synthetic coiled coils beyond SYNZIPs, as well as large sets 
of coiled - coil homo- and heterodimers from animal bZIP transcription factors that have been comprehensively 
tested for associations provide candidates for extended sets of orthogonal coiled coils17, 18, 23, 37, 38. With larger sets 
of coiled-coil modules that display strong interaction preferences, our approach may be extended to design more 
complex structures that can potentially be linked together in 2- or 3-dimensions, functionalized, attached to sur-
faces or incorporated with other designed elements into increasingly complex nanoassemblies.

Figure 5. Structural models of the trimeric assembly and their agreement with experimental SAXS data. (A) 
Rg values for 1996 models plotted against χ values. Structures for representative models are shown next to 
the corresponding red dots. (B) Experimental data (black dots) and single-conformation or ensemble fits for 
structure models shown in panels C and D (colored lines). (C) Models with low χ values (i and ii) and the 
weights that define the ensemble in panel C. (D) Models with high χ values (iii and iv).
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Methods
Design of a protein nanotriangle. We designed a protein nanotriangle assembled from three chains of 
genetically linked SYNZIPs19–21. There are 16 candidate designs of this type that differ in which SYNZIPs are con-
nected (Fig. S2A). We excluded designs that linked hetero-associating SYNZIPs, because such constructs could 
form complexes such as homo-oligomers and/or fibers that would compete with triangle assembly30. SYNZIP 
pairs 4:6, 3:5, 3:6, and 1:5 are also known to interact weakly (Fig. 1A). Although the affinities of these pairs are 
orders of magnitude lower than the binding pairs (1:2, 3:4, and 5:6), the interactions may become significant 
when protein chains are linked together, increasing effective concentrations and potentially leading to kinetic 
traps. For example, linked-SYNZIP fusion proteins 4–6 or 3–5 can potentially form homodimers, with remain-
ing coiled-coil segments forming heterodimers such as 5–2/1–3 (or 4–2/1–6); Fig. S2B illustrates some of these 
possibilities. We therefore excluded designs containing 3–5, 5–3, 4–6, 6–4, 3–6, 6–3, 1–5, or 5–1. Among the 
remaining four designs (in the top row of Fig. S2A), we chose to make the three chains 1–6, 5–4, and 3–2. A 
flexible linker of tetraglycine-serine repeats (Gly4Ser)2 was placed between SYNZIPs, and an affinity purification 
tag (His6) was placed at the C-terminus of each polypeptide (Fig. 1D). The final sequences are given in Table S2.

Construction of plasmids. We used standard molecular biology techniques to construct three plasmids 
that express the linked-SYNZIP fusion proteins. The genes encoding SYNZIPs were PCR-amplified using for-
ward and reverse primers listed in Table S1. The amplified fragments were assembled into the designed DNA 
constructs, which were further amplified by PCR. After digestion by the restriction enzymes NdeI and XhoI (New 
England Biolabs), the inserts were ligated into an expression vector, pET-43.1a (Novagen). The resulting plasmids 
were sequenced to confirm insertion. Plasmids encoding individual SYNZIPs are available via AddGene (www.
addgene.org).

Protein expression and purification. Plasmids were separately transformed into E. coli strain 
BL21(DE3) cells (Agilent). Cell cultures for each fusion protein (1 L) were grown at 37 °C in Luria-Bertani 
liquid medium containing ampicillin (100 mg/L). At an optical density at 600 nm (OD600) of 0.6, isopropyl 
β-D-1-thiogalactopyranoside (IPTG) was added to induce protein expression (final concentration 1.0 mM). After 
5 hours at 37 °C, cells were harvested by centrifugation. The harvested cells were resuspended in lysis buffer (8 M 
urea, 10 mM Tris-HCl, and 100 mM Na2HPO4 pH 8.0) and lysed by a cycle of freezing-thawing and sonication. 
The cell lysate was cleared by centrifugation, and incubated with nickel-nitrilotriacetic acid resin (Qiagen). In 
buffers containing 8 M urea, 10 mM Tris-HCl, and 100 mM Na2HPO4, the fusion proteins were washed at pH 6.3 
and collected by elution at pH 4.5. The purified proteins were dialyzed into deionized water.

Size-exclusion chromatography (SEC). The annealed mixture of linked-SYNZIP fusion proteins was 
prepared at a total protein concentration of 100 µM (molar ratio of 1–6, 5–4, and 3–2 was 1:1:3) in 50 mM 
Tris-HCl pH 7.4, 150 mM NaCl. Samples (10 mL) were run on a fast protein liquid chromatography sys-
tem over a Superdex 75 26/60 column (GE Healthcare) at a flow rate of 0.5 mL/min. Purity was confirmed by 
native-polyacrylamide gel electrophoresis (Native-PAGE).

Circular dichroism (CD) spectroscopy. CD spectra were recorded on an AVIV 420 spectropolarimeter 
(Aviv Biomedical, Inc.). Protein solution samples were prepared in 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 1 mM 
ethylenediaminetetraacetic acid (EDTA). Measurement was performed at 5 μM of each protein (15 μM total pro-
tein) in a 0.1-cm-length cuvette. The spectra were obtained at 20 °C in 1 nm increments in a wavelength range 
from 200 to 260 nm, averaging for 30 s at each wavelength. The α-helical content was estimated from the mean 
residual ellipticity at 222 nm, using the following equation39:

θ θ= × × − . nHelical content (%) ([ ] 100)/{[ ] (1 2 57/ )}obs helix

where [θ]obs and [θ]helix are the ellipticities of a helix of n and infinite residues, respectively. We used a [θ]helix value 
of − 34,546 deg·cm2·dmol−1, which we computed based on the CD signal for SYNZIP1:SYNZIP2 and the number 
of helical residues observed in crystal structure (PDB ID: 3HE5)20. The thermal unfolding curve was determined 
by measuring ellipticity at 222 nm from 10 to 80 °C in 2 °C steps, with an averaging time of 30 s and an equilibra-
tion time of 1.5 min.

Dynamic light scattering (DLS). The hydrodynamic diameter of the protein nanotriangle was measured 
on a DynaPro NanoStar (Wyatt Technology), with a laser operating at a wavelength of 658 nm and at a detection 
angle of 90°. Protein solution (100 μl) was prepared in a cuvette, and measurements were performed at 25 °C. 
The raw correlation data were processed to generate a size distribution using DYNAMICS Software (Wyatt 
Technology).

Analytical ultracentrifugation (AUC). Sedimentation velocity AUC was performed using a Beckman 
XL-I centrifuge with interference optics. Protein samples were prepared at concentrations of 13, 25, and 38 μM 
in 50 mM Tris-HCl pH 7.4, 150 mM NaCl, and 1 mM EDTA. The samples were dialyzed against the same buffer 
overnight. All measurements were made at 20 °C with a rotor speed of 42,000 rpm. Data were analyzed using 
SEDFIT (http://www.analyticalultracentrifugation.com)33, and sedimentation coefficient distributions c(s) were 
obtained. Parameters required for data analysis (protein partial specific volume, buffer viscosity, and buffer den-
sity) were calculated using the SEDNTERP web server (Biomolecular Interaction Technologies Center, http://
sednterp.unh.edu).
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Atomic force microscopy (AFM). Freshly cleaved mica was incubated with poly-L-lysine (Sigma, MW 
1,000–5,000) dissolved in deionized water (0.015 w/v %) for 10 min. The protein nanotriangle in 50 mM Tris-HCl 
pH 7.4, 150 mM NaCl, and 1 mM EDTA, and at a concentration of 500 nM, was deposited onto the mica treated 
with poly-L-lysine for 1 min. The mica was washed with 1 mL of MilliQ-filtered deionized water and blown dry 
in a stream of nitrogen gas.

Imaging was carried out using the Asylum Research Cypher microscope at the Center for Nanoscale Systems 
(CNS) at Harvard University. Imaging was done in air for topography measurement, using tapping mode in the 
repulsive interaction regime. Tapping parameters were tuned such that the tip started tracking the surface in 
the attractive interactions regime, and then the strength of interactions was increased gradually, into the repul-
sive regime, at which point high-resolution AFM images were obtained. We used AFM tip AC240BSA-R3 from 
Asylum Research (f = 75 kHz, k = 2 N/m).

Biological small-angle X-ray scattering (BioSAXS). The protein nanotriangle solution samples were 
prepared in 50 mM Tris-HCl pH 7.4, 150 mM NaCl, and 1 mM EDTA, and at concentrations of 11, 22, and 44 μM. 
Synchrotron X-ray scattering data was collected at the G-line of the Cornell High Energy Synchrotron Source 
(G1)40, 41. Area Detector System CCD was used to collect the scattering patterns, and data analysis was done using 
BioXTAS RAW (version 1.0.0) to determine Rg and molecular weight.

Modeling. A comparative protein structure model for 3:4 was built with MODELLER31, using structures of 
coiled coils (PDB ID: 1KD8, 1KD942, and 3HE420) as templates. Using this model as a starting structure, molecu-
lar dynamics (MD) simulations were performed using the NAMD 2.11 package43 and the CHARMM22 all-atom 
force field44. The protein nanotriangle was solvated within a 60.7 × 95.2 × 85.2 Å3 water box, using periodic 
boundary conditions. The system was simulated in the constant temperature and pressure ensemble at 298 K for 
over 10 ns.

Comparative structure models for the protein nanotriangle were built using MODELLER31 and fit to experi-
mental SAXS data using the FoXS/MES web server software (https://modbase.compbio.ucsf.edu)36. As templates 
for modeling, we used x-ray structures for 1:2 and 5:6 (PDB ID: 3HE5 and 3HE4)20. For 3:4, we used the two 
coiled-coil structures 1KD8 and 1KD942. We confirmed that models of the coiled-coil part of 3:4, in the context 
of the triangle models, agreed well with structures from the MD simulation (at 10 ns) shown in Fig. S1 (backbone 
atom RMSD < 3.5 Å for 1984 models). No spatial restraints were applied to the flexible linkers between SYNZIPs. 
Numerous models were generated by choosing different, random initial positions for the coiled coils in the start-
ing templates, and then refining the models using molecular dynamics with simulated annealing. The end-to-end 
distance (dlinker) of the 1996 resulting structures ranged from 3 to 33 Å. The 1996 resulting structures were fit to 
the SAXS data, and the quality of the fit was measured by the χ function36:
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1 ( ) ( )

( ) (2)i
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i i
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2

∑χ
σ

=





− 



=

where M is the number of points in the SAXS profile, Iexp(qi) and I(qi) are the experimental and computed profiles, 
c is the scale factor, and σ(qi) is the experimental error that represents standard deviation of intensity values. 
Various combinations of models with χ ≤ 1.05 were selected and used to fit ensembles to the SAXS data using 
ensemble search software (MES)45. Scattering intensities of the multiple conformations of a minimal ensemble 
were computed by averaging individual scattering patterns.
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