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Abstract

With traditional computing systems struggling to meet the demands of modern tech-
nology, new approaches to both hardware and architecture are becoming increasingly
critical. In this work, I develop the foundation of a power-efficient alternative com-
puting system using superconducting nanowires. Although traditionally operated as
single photon detectors, superconducting nanowires host a suite of attractive charac-
teristics that have recently inspired their use in digital circuit applications for am-
plification, addressing, and memory. Here, I take advantage of the electrothermal
feedback that occurs in resistively shunted nanowires to develop two new technolo-
gies: (1) A multilevel memory cell made by incorporating a shunted nanowire into
a superconducting loop, allowing flux to be controllably added and stored; and (2)
An artificial neuron for use in spiking neural networks, consisting of two nanowire-
based relaxation oscillators acting analogously to the two ion channels in a biological
neuron. By harnessing the intrinsic dynamics of superconducting nanowires, these
devices offer competitive energy performance and a step towards bringing memory
and processing closer together on the same platform.

Thesis Supervisor: Karl K. Berggren
Title: Professor of Electrical Engineering
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Chapter 1

Introduction

The natural dynamics of devices at the material level have long inspired new systems

and architectures for computing. Transistors, for example, use the manipulation

of energy bands in silicon to control the flow of electrons, allowing them to act as

amplifiers or digital switches. This deceptively simple behavior is responsible for the

astonishing growth in technology over the past fifty years, setting the foundation for

digital computing as we know it today.

However, transistors are now at a point where they can no longer support contin-

ued expansion of the technologies they initially created. Critical performance metrics

like the maximum operation frequency of microprocessors once steadily improved ev-

ery year, but flatlined around 2005 due to issues including scaling limitations, heating

costs, and parasitics. Additionally, the physical separation between memory and pro-

cessing elements in traditional von Neumann architectures has created a notorious

"memory bottleneck" that constrains the minimum achievable access time [1].

These performance plateaus have serious implications in light of the growing need

for more energy-efficient computation. With new applications like autonomous ve-

hicles and the Internet of Things demanding faster computation with more data,

estimates project that our system-level energy costs of computation will surpass the

world’s total energy production in less than 20 years [2]. To keep up with the data

revolution, it is therefore critical to look beyond silicon for new materials and archi-

tectures with superior energy efficiency that can grow to support the needs of the
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next generation of technology.

1.1 Alternative architectures: neuromorphic comput-

ing

One major branch of research that has grown out of this need is neuromorphic com-

puting, which aims to reach the performance and energy efficiency of the human brain

by mimicking its structure and dynamics. Unlike traditional architectures, the brain

communicates using electrical spikes called action potentials and is organized into

hundreds of thousands of parallel connections. Furthermore, biological neurons unite

both a memory (synapse) and processing element (soma) together within a single

cell. These characteristics enable the brain to perform complex tasks with impressive

energy costs; for instance, the human brain’s typical power budget for conducting

simultaneous tasks like movement and recognition is around 20 W, while a standard

computer uses more than ten times that amount to classify just 1,000 objects [3].

As a result, brain-inspired architectures are highly promising alternatives that could

vastly expand computing power while decreasing the costs.

Spiking neural networks (SNNs) are among the most bio-realistic approaches to

neuromorphic computing. Whereas other architectures like those used in deep learn-

ing adopt only select aspects of the brain like a multilevel hierarchy, SNNs reproduce

actual spiking dynamics. Since spiking signals allow for event-based computation,

SNNs may achieve superior energy efficiency and could be key in applications like

autonomous vehicles with event-based sensors.

Directly encoding spiking dynamics in software allows for precise control, but is

often too computationally expensive to be practical for large-scale parallel networks.

To realize an extensive network, researchers are instead turning to hardware devices

and circuits that can naturally generate spiking behavior on their own. While spik-

ing has been explored in a variety of materials, the existing devices face numerous

limitations. For instance, SNNs made from CMOS [4] allow for scalability and ease
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of integration with control circuitry, but suffer from high power dissipation and re-

quire many components to achieve biological realism. Magnetic materials using the

spin-torque effect can also generate spiking [5], but often have small on/off ratios [3].

Memristors based on filament formation have shown promise as the synaptic memory

component of neural networks [6][7], but are vulnerable to device and cycle variations,

and require additional CMOS circuitry to produce spikes. These shortcomings mo-

tivate the need for a scalable, power-efficient device that naturally generates spiking

and integrates easily with existing CMOS controls.

1.2 Alternative hardware: superconducting electron-

ics

Devices made from superconducting materials are frequently championed for their

potential for fast, energy-efficient computation. Most superconducting circuits use

Josephson junctions (JJs), devices consisting of two superconducting layers sand-

wiching a thin insulating or normal barrier [8]. JJs are quantum mechanical devices,

relying on the tunneling of superconducting electrons or Cooper pairs through the

barrier to create rapid (>100 GHz) voltage pulses with very low energy dissipation

(∼ 0.1 aJ). These finite pulses have inspired a suite of JJ-based logic, including rapid

single flux quantum (RSFQ) logic [9], reciprocal quantum logic (RQL) [10], and adia-

batic quantum flux parametron (AQFP) logic [11]. In addition to their low switching

energies, JJs and superconducting materials in general have no static power dissipa-

tion in their interconnects, allowing them to maintain competitive energy performance

even after accounting for cooling costs [12].

Despite these advantages, there are significant limitations to implementing a large-

scale cryogenic computer based on JJs. For one, JJ pulses are often below the en-

ergy sensitivity of transistors and outside the bandwidth of CMOS circuits, making

them incompatible for integrating with CMOS controls [13]. Furthermore, the output

impedance of a JJ in its resistive state is typically on the order of a few ohms, which
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is insufficient for driving transistors or supporting fan-out. Solutions to work around

these issues, such as stacking multiple JJs to create an amplified signal, are often

bulky, energetically expensive, and highly sensitive to fabrication variations, making

them unsuitable for the development of a cryogenic computing architecture on their

own. Additional issues are introduced by JJ logic circuits requiring large-scale dis-

tribution of bias current to each gate, which is typically achieved using bias resistors

attached to a DC voltage rail. The power dissipated by bias resistors may be ten

times more than the switching dissipation of a JJ, substantially increasing the overall

static power dissipation costs and producing parasitic heat loads [14] [15]. Further-

more, large DC bias currents can produce magnetic fields that penetrate JJ circuits

and reduce their operating margins [16]. Some architecture modifications that have

been adopted to avoid these effects include replacing the bias resistors with additional

JJs [15], or using an AC bias with an inductive coupling network [14].

1.2.1 Superconducting nanowire devices

Although traditionally operated as single photon detectors, superconducting nanowires

monolithically patterned as strips on thin films have started to be used in circuit ap-

plications where JJs fall short. Unlike the tunneling that occurs in JJs, the resistive

state of nanowires is dominated by a Joule heated “hotspot” with an impedance on

the order of ∼1–10 kΩ, making them ideal for amplification and fan-out. This high

impedance also allows nanowire devices to connect JJ circuits to external CMOS

electronics, highlighting their unique role as an intermediary between silicon and su-

perconducting platforms.

Figure 1-1(a) shows a simplified circuit schematic of a superconducting nanowire

and its current-voltage characteristics. When biased below their critical current 𝐼𝑐,

nanowires transport current without developing a resistance or voltage. Once the

current exceeds 𝐼𝑐, superconductivity breaks down and the aggregation of hot quasi-

particles spurs the growth of a resistive hotspot. The nanowire remains in the resistive

state until the bias current has been reduced, and the hotspot relaxes. In addition

to switching by surpassing a critical current density 𝐽𝑐, nanowires can also be made
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resistive by applying a critically high magnetic field 𝐻𝑐 or temperature 𝑇𝑐, or through

the arrival of a photon.

Figure 1-1: Superconducting nanowire devices. (a) Simplified circuit schematic of
a superconducting nanowire, modeled as a hotspot resistance 𝑅ℎ𝑠 placed in parallel
with a switch shorting to ground, in series with a kinetic inductance 𝐿𝑘. (b) Scanning
electron micrograph of an nTron. The dark regions are the superconducting film, while
the lighter outlines are the underlying substrate. (c) Different modes of operation
due to electrothermal feedback. (i) No feedback circuit leads to latching. (ii) A series
inductance producing an 𝐿/𝑅 time constant on the order of ∼1 ns creates relaxation
oscillations. (iii) A smaller inductance with a shorter 𝐿/𝑅 time constant on the order
of ∼100 ps allows for controlled finite voltage pulses.

Devices made from superconducting thin films manipulate hotspot formation to

serve their unique functionality. Starting in 1956, Dudley Buck proposed a device

made from intertwined superconducting wires called the cryotron [17], in which cur-

rent passing through one wire induced a critically high magnetic field that penetrated

the other, causing it to switch. A design for this device in a planar geometry was

proposed a few years later [18] [19], reinforcing the technique of using the propagation

of hotspot boundaries in thin films to create new device operations [20].

While superconducting thin-film devices took a backseat after the invention of

JJs in 1962, they have gained new momentum in recent years due to improvements

in patterning techniques like electron beam lithography, which have enhanced our
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ability to control hotspot formation at the nanoscale. For instance, superconducting

nanowire single photon detectors (SNSPDs) are made from meandered wires that are

100-nm wide or narrower so that the energy dissipated by a single photon is enough

to create a localized hotspot [21][22]. The kiloohm impedance of the hotspot then

creates a large voltage signal that is used to communicate the arrival of a photon.

More recently, a nanocryotron (nTron) building off of Buck’s previous work was

developed for use in digital circuits [23]. As shown in Fig. 1-1(b), the nTron is a

three-terminal device that uses localized hotspot formation in a narrow (∼ 20 nm)

gate region to switch a wider channel wire into the resistive state, creating a high

impedance region that generates a large output current. This switching mechanism

allows the nTron to support fan-out, drive high impedances, and amplify signals. A

derivative of the nTron in which the gate and channel are electrically disconnected but

thermally coupled has also recently been used as a bit-select element for magnetic

memory arrays, illustrating the compatibilty of superconducting nanowire devices

with other materials in large-scale circuits [24]. Other recent nanowire devices have

found use as read-out sensors [25], memory cells [26] [27], and frequency mixers [28].

1.2.2 Kinetic inductance

In addition to the formation of a high-impedance normal domain, an equally unique

characteristic of nanowire devices is the contribution of kinetic inductance [29]. Unlike

magnetic inductance, kinetic inductance relates to the inertia of electrons. While

kinetic inductance is negligible in normal metals at sub-terahertz frequencies due to

electron scattering, superconductors have infinitely large scattering times, causing

kinetic inductance to be significant.

An intuitive sense of kinetic inductance 𝐿𝑘 can be derived by relating the kinetic

energy of Cooper pairs to the inductive energy:

(2 · 1

2
𝑚𝑒𝑣

2)(𝑛𝑠𝑙𝐴) =
1

2
𝐿𝑘𝐼

2 (1.1)

where 2𝑚𝑒 is the mass of the two superconducting electrons in a Cooper pair, 𝑣 is their
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velocity, 𝑛𝑠 is the density of superconducting electrons, 𝑙 is the length of the structure,

and 𝐴 is the cross-sectional area. The current 𝐼 can be expressed as 𝐼 = (2𝑒)𝑣𝑛𝑠𝐴 to

give a final expression for the kinetic inductance:

𝐿𝑘 =
𝑚𝑒𝑙

2𝑒2𝑛𝑠𝐴
(1.2)

As seen by Eq. 1.2, the inductance of a nanowire scales with its length for a fixed

width. From a simplified circuit perspective, a nanowire can therefore be modeled as

a variable resistor in series with an inductor whose magnitude depends on the device

geometry, as shown in Fig. 1-1(a).

Previous work demonstrated that the presence of kinetic inductance allows nanowires

to produce similar behavior to JJ-based circuits. For instance, when placed in parallel

with a shunt resistor 𝑅𝑠, nanowires emit rapid pulses (∼100 MHz–1 GHz) as a result

of electrothermal feedback between the nanowire and the shunt with a time con-

stant of 𝐿𝑘/𝑅𝑠 [28]. Although these speeds are slower than those of JJs, the longer

pulses are large enough to drive CMOS gates and support fan-out, and can easily

be viewed on an oscilloscope for diagnostics. Additionally, nanowire loops based on

kinetic inductance have been used as cryogenic memory cells [30][27], analagous to

superconducting quantum interference devices (SQUIDs) in JJ circuits. As a result,

nanowires show promise as a suitable platform for developing low-power alternative

computing architectures that can be integrated with CMOS controls.

1.3 Thesis goal

The electrothermal feedback between a nanowire and resistive shunt presents a new

opportunity to use nanowires as dynamic switching elements whose behavior can be

changed by tuning the kinetic inductance [31]. As shown in Figure 1-1(c), a nanowire

can operate in three main regimes depending on the inductor’s magnitude. In a case

when there is no feedback circuit, a nanowire will latch when it switches into the

resistive state, and will remain resistive until the bias current is removed. However,

when a feedback circuit is introduced and the inductor gives an 𝐿/𝑅 time constant on
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the order of nanoseconds, the nanowire can produce sustained relaxation oscillations

with a bias-dependent frequency. Here, R is the sum of the shunt resistance and

the nanowire resistance, while L is the kinetic inductance of the nanowire. If the

inductance is further reduced to give an 𝐿/𝑅 time constant on the order of ∼100 ps,

the nanowire can emit discrete, narrow voltage pulses without oscillating.

This thesis takes advantage of the different regimes of electrothermal feedback to

develop two new devices for computing: (1) A multilevel nanowire memory cell that

uses low-inductance resistive shunting to controllably trap flux in a superconducting

loop; and (2) An artificial neuron based on nanowire relaxation oscillators to serve

as a hardware spiking element in neural networks. Together, these devices aim to

set the foundation for a superconducting neuromorphic computing architecture that

brings memory and processing closer together on the same platform with improved

energy efficiency.

This thesis will be organized as follows:

Chapter 2— A multilevel memory cell. In this chapter, we present the design of

a multilevel memory cell, which uses resistive shunting to controllably add flux into a

superconducting nanowire loop. Through both simulations and experimental testing,

we show that the number of states in the memory can be tuned simply by changing

the circuit parameters, creating a flexible system that could enable denser cryogenic

memory.

Chapter 3—The nanowire neuron: design. This chapter describes the design

of a nanowire-based artificial neuron for spiking neural networks. Using simulations

conducted in LTspice, we show how two nanowire relaxation oscillators can be used

analagously to the two ion channels in a biological neuron. We demonstrate that the

nanowire neuron is capable of reproducing multiple biorealistic behaviors and sup-

porting fan-out, while maintaining competitive energy performance.
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Chapter 4—The nanowire neuron: demonstration. This chapter summarizes

the fabrication and testing of a nanowire soma based on the designs presented in

Chapter 3. Measured spiking characteristics are used to obtain a realistic circuit

model of the device, which is used in two applications of spiking neural networks: a

simple image recognition task, and winner-takes-all competition.

Chapter 5—Fabrication studies. While developing the electronics discussed in

this thesis, fabrication studies on the compatibility of electron-beam resist processes

with superconducting films were conducted. This chapter describes two specific in-

vestigations. First, we show that a common developer called tetramethylammonium

hydroxide reacts with niobium nitride thin films to form a salt that acts as an etch

barrier. Afterwards, a study on ma-N 2400 series photoresist as an electron-beam

resist for patterning superconducting nanoscale devices is presented.

Chapter 6—Conclusion and outlook. In this chapter we review the central find-

ings presented in this thesis and describe future investigations that may be built off

of these results.
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Chapter 2

A multilevel memory cell

Computers using superconducting elements promise to achieve competitive energy

performance, even while accounting for cooling costs, due to advantages like low

switching energies and negligible static power dissipation in their interconnects. While

the active development of superconducting logic has produced a suite of logic fam-

ilies, such as rapid single flux quantum (RSFQ) logic [9] and reciprocal quantum

logic (RQL) [10], less focus has been placed on the creation of a scalable supercon-

ducting memory [12]. As a result, systems are forced to rely on a combination of

low-temperature logic and room-temperature memory, placing higher demands on in-

terconnects and dissipating more power. This physical separation between memory

and processing elements also worsens the "memory bottleneck" dilemma, limiting the

minimum achievable access time.

As a step towards achieving a unified cryogenic computing system, we have devel-

oped a multilevel memory cell using superconducting nanowires. This work is built

off of our previous design of a binary memory cell [30], with the goal of obtaining a

denser cryogenic memory. In addition to allowing for higher density as the limits of

physically shrinking a unit cell are approached, multilevel operation may allow for

more energy savings, since it provides more information given the same peripheral

circuitry costs as a binary cell.

The text that follows includes reprints from a work that was originally published

in Physical Review Applied [32]. I would like to acknowledge Murat Onen for the
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simulations he contributed to this work, Marco Colangelo for his help with fabri-

cation, and Brenden Butters and Dr. Adam McCaughan for their assistance with

experimental design.

2.1 Binary nanowire memories

One of the most unique characteristics of superconductors is their ability to store

quantized flux in the form of persistent current. This functionality stems from the

Meissner effect, which describes how the magnetic field within a superconductor is

always zero. Physically speaking, when a magnetic field penetrates a superconducting

ring above its critical temperature, it triggers a circulating current within the material

that exactly cancels the field once the ring is cooled down. When the external field

is turned off, the induced current (also called persistent current) will continue to

circulate indefinitely, since superconductors are perfect conductors. A schematic of

this effect is shown in Figure 2-1.

Figure 2-1: Schematic of the Meissner effect in a superconducting ring. A field is
applied above the critical temperature, leaving a persistent current once the material
is cooled down and the field is removed. Blue lines indicate magnetic fields, while the
orange line represents the persistent current.

Past superconducting memories have taken advantage of this effect by intention-

ally storing persistent current in superconducting loops. In these cases, the "1" state

is usually denoted by current circulating in one direction, while the "0" state is either

the absence of current or the flow of current in the opposite direction. While this

operation can be achieved through single flux quantum circuits, JJ-based memories

struggle from scalability issues due to the large areas of individual JJs (usually on

the order of 1 𝜇m2), the amount of space taken up by the transformers and SQUID
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amplifiers used to operate the memories, and the need to keep individual cells far

enough apart to avoid crosstalk from magnetic coupling [30].

Given these limitations, superconducting nanowires have recently been proposed

as alternative platforms for making cryogenic memories [30][27][33][34]. In general,

the kinetic inductance of superconducting nanowires is two orders of magnitude larger

than the magnetic inductance, allowing nanowire memory loops to be scaled down.

Rather than through the application of a magnetic field, current is typically stored in

nanowire memory cells by applying a bias current that breaks superconductivity on

one side of the loop [30][33]. When that side of the loop switches from superconducting

to normal, the portion of the bias current that initially flowed through it is diverted

into the other side. This diverted current then charges the kinetic inductance of

the remaining portion of the loop, creating a change in flux that induces a current.

When the switched side of the cell heals, a persistent current remains.1 Unlike JJ-

based memories, nanowire memories do not have the same issues of crosstalk from

magnetic coupling, since magnetic fields typically penetrate through the thin films

the memories are patterned from.

Although recent nanowire memories have achieved impressive performance met-

rics, such as a bit error rate less than 10−7 [30], they are limited to binary operations

due to the nature of their writing; the resistive portion of the cell expels nearly all

current from its high-impedance hotspot into the loop once it switches, storing the

maximum amount of current. As a result, it is not possible to successively store

smaller amounts of current over multiple writing events to obtain additional states.

Here, we present a superconducting nanowire memory cell based on thermal prin-

ciples that demonstrates a controlled, moderated output. Unlike other nanowire

memories, the device responds proportionally to the magnitude of an input signal

and can be operated to achieve multiple discrete states. The key to this design is

the introduction of a low-inductance resistive shunt placed close to the write port

that absorbs the majority of the diverted bias current, allowing a smaller, controlled

1In this thesis, the persistent current will also be referred to as trapped flux, in units of flux-

ons. However, it should be noted that the more accurate term for quantized persistent current is

"fluxoids".
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amount of flux to be stored in the superconducting loop in quantities of 𝑛Φ0, where n

is an integer and Φ0 is the magnetic flux quantum ( 2.07×10−15 Wb). We experimen-

tally show that the amount of flux per event n is dictated by circuit parameters and

validate these results with electrothermal simulations. We anticipate that this de-

vice will serve as the foundation for a nanowire multilevel memory or multilevel-logic

circuit elements.

2.2 Device description

Figure 2-2 summarizes the device architecture and its basic characteristics. As shown

in the scanning electron micrograph (SEM) in Fig. 2-2(a) and the circuit model of

Fig. 2-2(b), the device is comprised of three superconducting nanowire elements: a

narrow 60-nm-wide constriction, a storage loop, and a nanoscale readout tool known

as the yTron [25]. All three elements are fabricated together on an approximately 20-

nm-thick niobium nitride (NbN) film on a silicon oxide substrate using electron-beam

lithography. In addition to the nanowire components, a resistive metal shunt is pat-

terned in parallel with the constriction to reduce Joule heating and provide damping,

similar to the purpose served in resistively shunted JJs. Previous attempts to shunt

nanowires found that the series inductance between the shunt and the constriction

plays a critical role in the effectiveness of the damping; high series inductance pro-

duces relaxation oscillations, while increasing the inductance even further makes the

shunt resistor almost completely ineffective [28]. To avoid this problem, the series

inductance between the write constriction and the metal shunt must be minimized to

allow for discrete, controlled pulses rather than oscillations.

Fig. 2-2(c) shows the current-voltage characteristics of an isolated shunted nanowire

patterned alongside the device with dimensions identical to those of the constriction.

The absence of hysteresis, as shown by the lack of separation between the switching

and retrapping currents, indicates that the shunt resistor is able to reduce Joule heat-

ing through the constriction by effectively diverting the bias current, thereby reducing

power dissipation in the nanowire and allowing it to regain the superconducting state
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Figure 2-2: Device design and characterization. (a) Scanning electron micrograph of
the device. The dark area is NbN film, while the light outlines are the underlying
substrate. The inset shows an enlarged view of the 60-nm-wide constriction in parallel
with the resistive shunt. The righthand side of the loop is connected to a yTron with
arm widths equal to 300 nm. (b) Circuit schematic of the device. (c) Current-voltage
characteristics of an isolated shunted nanowire of width = 60 nm, 𝑅𝑠 = 5 Ω.

more quickly [35]. Observation of the amplified RF output of the device within a

bandwidth of 2 GHz did not reveal any relaxation oscillations, suggesting that the

shunt inductance was sufficiently low [28].

2.2.1 Writing operation

To trap flux into the loop, a bias write current 𝐼𝑤𝑟𝑖𝑡𝑒 is inductively split to the nanowire

constriction in the amount of 𝛼𝐼𝑤𝑟𝑖𝑡𝑒, where 𝛼 = 𝐿𝑙𝑜𝑜𝑝/(𝐿𝑐𝑜𝑛𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + 𝐿𝑙𝑜𝑜𝑝), 𝐿𝑙𝑜𝑜𝑝

represents the inductance of righthand side of the memory cell and 𝐿𝑐𝑜𝑛𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is

the inductance of the constriction on the lefthand side. For the device shown in

Fig.2-2, 𝐿𝑐𝑜𝑛𝑠𝑡𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 284 pH and 𝐿𝑙𝑜𝑜𝑝 = 1.87 nH, leading to 𝛼 = 0.87. Once

the sum of 𝛼𝐼𝑤𝑟𝑖𝑡𝑒 and any existing current circulating in the loop surpasses the

critical current of the constriction 𝐼𝑐,𝑁𝑊 , the nanowire switches and the bias current

is diverted away from the constriction to the shunt resistor and the righthand side

of the loop. By shunting the majority of the bias current, the resistor allows the

nanowire to recover the superconducting state more quickly and limits the amount of
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current that charges 𝐿𝑙𝑜𝑜𝑝, thus controlling the amount of flux that is trapped once the

constriction heals. After the constriction heals, a persistent current circulates in the

loop in quantized units of 𝑛Φ0/𝐿, where n is an integer and L is the total inductance

of the complete loop. Since the magnetic inductance of this device is <0.33 fH, the

total loop inductance is dominated by the kinetic inductance of the superconducting

nanowires. In this particular device, persistent current is quantized as approximately

0.95 𝜇A/fluxon.

2.2.2 Reading operation

The amount of circulating current in the loop can be nondestructively read out using

a nanowire device called the yTron. As described by McCaughan et al. [25], the

yTron is a three-terminal nanoscale device with two adjoining arms whose switching

currents depend on one another as a result of current crowding [36] around the narrow

intersection point. In our device, the left arm of the yTron forms part of the super-

conducting loop so that the switching current of the right arm 𝐼𝑠𝑤𝑖𝑡𝑐ℎ is a function of

the amount of circulating current—a higher circulating current in the clockwise direc-

tion flowing through the yTron’s left arm will result in a higher switching current in

the yTron’s right arm. Since the two arms of the yTron are electrically disconnected

from one another, switching the right arm does not break superconductivity in the

left. As a result, the state of the loop is undisturbed by the reading process in which

𝐼𝑠𝑤𝑖𝑡𝑐ℎ is measured by applying a bias current 𝐼𝑟𝑒𝑎𝑑 to the yTron’s right arm until it

switches and generates a voltage, allowing us to nondestructively sense the amount

of circulating current in the loop. An enlarged view of the yTron and an example of

its measured sensitivity curve is shown in Figure 2-3.

2.3 Demonstration of multilevel operation

Here we describe the fabrication process used to build the multilevel memory cell,

followed by the measurements that were conducted to characterize its behavior. For

comparison purposes, multiple cells of different circuit parameters were fabricated
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Figure 2-3: Example of a yTron. (a) Scanning electron micrograph showing the
readout scheme for the memory cell. (b) yTron sensitivity curve showing the change
in switching current of the readout arm as a function of bias current running through
the lefthand side. Both arms were 300 nm wide. The dark blue trace shows the mean
value of 100 sweeps, while the red dashed lines are ± one standard deviation from
the mean.

together on the same chip, including an unshunted memory cell similar to those in

prior literature.

2.3.1 Fabrication

The devices presented in this chapter were fabricated using a multistep lithography

process illustrated in Figure 2-4. Initial efforts to fabricate the resistors on top of

the NbN film failed due to contact resistance from the oxidized surface. As a result,

the final process involved placing the resistor beneath the NbN film, as was done in

similar work on Nb nanowires [37].

The shunt resistors and alignment marks were first patterned with electron-beam

lithography (Elionix F125) using a bilayer resist process. We first spun polymethyl

methacrylate (PMMA) copolymer EL6 (6% ethyl lactate) at 5 krpm for 60 s, then

spun the positive-tone resist gL2000 (Gluon Lab LLC) at 6 krpm for 60 s. Following

exposure, the resist was developed in o-xylene and MIBK:IPA in a 1:3 ratio at room

temperature. A 10-nm Ti + 25-nm Au metal bilayer was then evaporated, after which

lift-off was achieved in N-Methyl-2-pyrrolidone (NMP) heated to 60 ∘C for one hour.
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Figure 2-4: Fabrication process for the shunted memory cell (a) Fabrication of the
alignment marks and resistors. (b) Fabrication of the nanowire structures.

An apporximately 20-nm-thick NbN film was then deposited in an AJA sputtering

system, following the procedure described in Ref. [38]. The resulting sheet resistance

was 150 Ω/sq and the critical temperature was 8.5 K.

Afterwards, the nanowire structures were patterned in a second electron-beam

lithography step using gL2000, followed by cold development in o-xylene at 5∘C. The

patterns were transferred to the underlying superconducting film via reactive ion

etching in CF4 (Plasmatherm, RF power of 50 W, chamber pressure of 10 mTorr).

To reduce the series inductance between the shunt and the write constriction, the

two components were patterned as close to one another as possible, and the nanowire

leads were made wide to reduce the number of squares of material.

2.3.2 Experimental setup

All measurements were performed with the devices submerged in liquid helium at 4.2

K. The devices were adhered to a printed circuit board, and electrical connections

were made using aluminum wire bonds. The circuit board ports were connected to
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room-temperature electronics outside of the liquid helium dewar through CMP cables.

DC characterization

Current-voltage characteristics like those shown in Fig. 2-2(c) were measured

by applying a sinusoidal bias current with an arbitrary waveform generator (Agilent

AWG33622a) at a sweep frequency of 10 Hz with a 10 kΩ series resistor. The DC

output voltage was read by a 2-GHz, real-time oscilloscope (LeCroy 620Zi) after

amplification through a low-noise preamplifier (Stanford Research Systems SRS560).

Memory loop operation

Figure 2-5 shows the experimental setup for operating the memory loop with a

pulsed input. To apply a write pulse, a pulsed-voltage waveform of widths rang-

ing from 5 ns to 100 𝜇s and heights ranging from 50 to 550 mV were sent to the

constriction input through a 30 dB attenuator after being passed through a pulse

splitter that connects to the oscilloscope. To apply a DC write bias instead of a

pulse, a battery source (Stanford Research Systems SIM928) could be connected to

the write port through a 100 kΩ series resistor and a DC-1.9 MHz coaxial low-pass

filter (MiniCircuits).

Figure 2-5: Experimental setup for measuring the response of the device to a pulsed
input. (a) Circuit schematic of the setup.(b) Corresponding oscilloscope traces. In
this case, a negative clearing pulse was also applied to the write port after reading.

For readout, the switching current of the yTron was measured by applying a
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voltage pulse through a 30 dB attenuator to the device, and measuring the skew

between the oscilloscope trigger riding edge and the time at which a voltage output

from the yTron is recorded, signifying a switching event. The voltage pulse had a

frequency of 500 Hz, width of 650 𝜇s, rising edge of 400 𝜇s, and height of 560 mV.

The yTron output was sent through a pulse splitter and a low-noise amplifier (RF

Bay LNA-2000, bandwidth: 10 kHz-2000 MHz, gain: 26 dB) before being read by the

oscilloscope. The skew was then converted to units of switching current based on the

slope of the bias waveform.

2.3.3 Response to pulsed input: controlled dynamics

Figure 2-6 shows the response of a shunted memory cell to an input voltage pulse

of varying amplitude and width; the response is compared to that of an otherwise

identical device lacking a resistive shunt. For these measurements, a large negative

pulse (width = 10 𝜇s, height = -1.3 V) was sent to the constriction to reset the loop

after each read operation.

Figure 2-6: Response to the voltage amplitude and pulse width of the write input. The
switching current of the yTron readout arm is plotted in terms of ∆𝐼𝑠𝑤 = 𝐼𝑠𝑤𝑖𝑡𝑐ℎ −
𝐼𝑠𝑤𝑖𝑡𝑐ℎ(𝑣𝑤𝑟𝑖𝑡𝑒 = 0). (a) Unshunted memory loop. (b) Memory loop with a shunt
resistance of 5 Ω.

As shown in Fig. 2-6(a), the amount of stored current in the unshunted device

sharply increases with increasing input voltage, but then abruptly drops off, suggest-

ing instability. This response was also observed in the memory cell reported in Ref.

46



[33], and was speculated to be due to overheating of the constriction, causing flux to

be lost. In contrast, the response of the shunted device in Fig. 2-6(b) shows that the

amount of flux stored in the loop increases proportionally with input voltage. Unlike

the unshunted constriction, in the shunted device there was no sudden loss of stored

flux or signatures of unstable oscillations, implying that heating in the constriction is

moderated by the presence of the resistive shunt.

2.3.4 Response to DC input: multilevel behavior

To demonstrate the flux-shuttling capabilities of the shunted device, we measured

its dependence on the previously written state by ramping a DC bias current on the

write port without resetting the loop, and recording the switching current of the yTron

readout at every bias point. As shown in Figure 2-7 (a), ramping the write current

on the shunted memory cell produces either increasing or decreasing steps in the

switching current of the yTron readout, signifying a sudden addition or subtraction

in the amount of trapped flux. The horizontal lines show that the steps can be

categorized into seven distinguishable states, revealing that the successive switching of

the constriction produces controlled, incremental changes in the amount of circulating

current in the loop, rather than storing the maximum amount of current every time.

In contrast, Fig. 2-7(b) displays the results from repeating the measurement on

an unshunted device of the same geometry. In this case, no intermediate states

are observed, and the loop traps nearly its maximum amount of circulating current

whenever the constriction switches. Thus, it is not possible to achieve distinguishable

intermediate states without the presence of a resistive shunt.

The slight variation in the position of the seven states of the multilevel memory

occurs due to instability in the plateaus, representing when the loop current is nearly

maximized (close to 𝐼𝑐,𝑁𝑊 ) and may have lost a small amount of flux to achieve

stability. Despite the small shifts at the plateaus, the seven states have well-separated

mean values including consideration of their standard deviations, as shown in Figure

2-8(a).

Although the separate states are distinguishable, they appear to be unevenly
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Figure 2-7: Demonstration of controlled flux shuttling. Switching current of the yTron
readout arm in response to a DC bias ramp of ± 40 𝜇A applied to 𝐼𝑤𝑟𝑖𝑡𝑒. Each point
is the mean of 10 measurements of the yTron switching current, which had standard
deviations ranging from 0.04–0.33 𝜇A. Each bias current step in 𝐼𝑤𝑟𝑖𝑡𝑒 is applied for
100 ms before being turned off during the reading operation. (a) Memory cell with
a shunt resistance of 5 Ω. The inset shows an enlarged view of the region where the
standard deviations were the largest, as illustrated by the error bars. (b) Unshunted
memory cell.

spaced in terms of yTron switching current. This nonlinear spacing can be attributed

to nonlinearities in the yTron’s sensitivity curve. Depending on the geometry of the

yTron, there may be a nonlinear relationship between the amount of circulating cur-

rent and the induced change in switching current, like the trend shown in Fig. 2-3

(b). Additionally, the sensitivity of the yTron is highly dependent on the intersection

point between its two arms, which has a radius of curvature < 5 nm, leaving room for

fabrication variability and thus differences in sensitivity between yTrons of identical

design. As a result, while the yTron is an effective tool for sensing changes in circu-

lating current, we found that it can be imprecise for extracting the exact amount of

current stored in the memory loop.

To bypass this shortcoming, we used the yTron only to sense when a change

in trapped flux occured, and examined the corresponding bias current at each of the

points of change in order to infer the magnitude of the loop current. Fig. 2-8(b) shows
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the bias currents at each of the first 14 steps of the plot in Fig. 2-7(a). The bias current

at each step can be used to estimate the amount of circulating current remaining in

the loop, given that the transition occurs when the nanowire constriction switches,

or when |𝛼𝐼𝑤𝑟𝑖𝑡𝑒 + 𝐼𝑙𝑜𝑜𝑝 | ≥ 𝐼𝑐,𝑁𝑊 . The average zero flux state (𝐼𝑙𝑜𝑜𝑝 ≈ 0) occurs at

𝐼𝑐,𝑁𝑊 ≈ 20.48±1.45𝜇A over a set of eight write bias ramps. While the seven levels in

terms of yTron switching current are spaced unevenly, the steps in terms of write bias

current occur at nearly equal intervals of approximately 5 𝜇A, corresponding to about

5 Φ0 of trapped flux for this design. Through this perspective, it is possible to infer

that the loop gains or loses about 5 Φ0 of trapped flux every time the constriction

switches. Repeating this measurement over eight ramping cycles with a finer sweep

produced an average of 4.77 Φ0 per step in circulating current, with variation from

an integer number (𝑛 = 5) expected to be caused by noise in the measurement setup.

Figure 2-8: Multilevel behavior of the shunted memory cell. (a) The seven states
observed in Fig. 2-7(a). Red squares are the mean of eight repeated cycles, and the
error bars are the standard deviation. (b) The calculated stored current (red squares)
for each of the first 14 steps in yTron switching current in Fig. 2-7(a), using 𝐼𝑐 = 21
𝜇A. Blue squares represent 𝐼𝑤𝑟𝑖𝑡𝑒 at the initial point of each of the steps.

Table 2.1 summarizes the results of repeating this measurement on two other

devices with varying values of 𝐿𝑙𝑜𝑜𝑝 and 𝑅𝑠. All other geometries and parameters

were kept the same. For each device, the bias write current was ramped to ± 40 𝜇A

as before, in increments of about 10% of the amount of current per fluxoid, or 0.1Φ0.

The results from Table 2.1 show that increasing 𝑅𝑠 decreases the number of memory

states and increases the average number of fluxons trapped per switching event, while

49



decreasing the loop inductance slightly reduces the amount.

Table 2.1: Change in flux per switching event

𝐿𝑙𝑜𝑜𝑝 𝑅𝑠 No. of states 𝜇 𝜎
Device 1 1.87 nH 5 Ω 7 4.77 Φ0 1.23 Φ0

Device 1 1.87 nH 7.8 Ω 5 7.63 Φ0 1.5 Φ0

Device 1 0.66 nH 7.8 Ω 3 5.87 Φ0 1.02 Φ0

Mean change of circulating current is measured over eight
complete ramping cycles, and represented in terms of an average

change in flux 𝜇 with a standard deviation of 𝜎.

2.4 Simulations

To better understand how the device parameters influence the amount of flux n

trapped per switching event, we simulated the dynamics of the system. The cir-

cuit simulator is described in Ref. [39], and uses a superconducting nanowire model

implemented in MATLAB that includes thermoelectric dynamics of hotspot forma-

tion and decay [31]. Physical parameters for the materials were derived from prior

literature [40], and were adjusted to match experimental results. Flux quantization

in the superconducting loop was enforced following each transient, which was found

to be sufficient in explaining the observed behavior.

Figure 2-9 shows the basic circuit, highlighting the main branches through which

current is divided after the constriction switches: the shunt resistor (Fig. 2-9(b)), the

constriction itself (Fig. 2-9(c)), and the loop inductor (Fig. 2-9(d)). In a memory

cell with an unshunted constriction, represented as having 𝑅𝑠 = 1 MΩ, nearly all

of the bias current is diverted to the loop inductor after a switching event, causing

the maximum amount of current to be stored in the loop once the hotspot collapses

and the constriction regains the superconducting state. In constrast, shunting the

constriction with 𝑅𝑠 = 5 Ω allows the majority of the bias current to be diverted

instead to the resistor, minimizing the amount of flux trapped through the loop

inductor. Figures 2-9b(i) – 2-9d(i) show the results over a longer timescale, where

continuous switching of the shunted constriction brought on by a steadily increasing
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write current ramp adds flux to the loop in increments of 5 Φ0, thus confirming the

experimental observations displayed in Fig. 2-8 for Device 1.

Figure 2-9: Time domain simulations of the circuit highlighting the three branches
through which the bias writing current is diverted. (a) Bias current ramp sent to the
write port of the device. (b) Current through the shunt resistor. (c) Current through
the constriction. (d) Current through the inductor, represented in terms of trapped
fluxoids. Panels labeled (i) show the simulation over a long time domain, while panels
labeled (ii) show the diversion of current over a single switching event, with time on
the x-axis shifted to start from t = 0.

Figure 2-10 displays the amount of trapped flux per switching event resulting from

simulating devices of varying circuit parameters. Fig. 2-10(a) shows that the amount

of flux increases proportionally with increasing shunt resistance and shunt inductance,

which agrees with the experimentally observed shift caused by increasing 𝑅𝑠. Fig.

2-10(b) suggests a slightly more complex relationship between 𝑅𝑠 and 𝐿𝑙𝑜𝑜𝑝, with

plateaus occurring due to the limitations on the maximum loop current with respect

to the critical current of the constriction—for example, if 𝐼𝑐,𝑁𝑊 = 20 𝜇A, a loop

inductance leading to a ratio of 2 𝜇A of circulating current per fluxon cannot have

more than 10 fluxons per switching event. Fig. 2-10(c) compares the simulated trends
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for varying 𝑅𝑠 with 𝐿𝑙𝑜𝑜𝑝 = 1.85 nH and 𝐿𝑙𝑜𝑜𝑝 = 0.65 nH to the experimental results

for the three memory cells listed in Table 2.1. Data points representing the three

measured devices show that the electrothermal simulations are in good agreement

with the experimental measurements.

Figure 2-10: Simulated effect of circuit parameters on the amount of trapped flux. (a)
Simulated number of trapped fluxons per switch as function of varying 𝑅𝑠 and 𝐿𝑠ℎ𝑢𝑛𝑡.
(b) Simulated number of trapped fluxons per switch as a function of varying 𝑅𝑠 and
𝐿𝑙𝑜𝑜𝑝. (c) Comparison of experimental and simulated number of trapped fluxons per
switching event for 𝐿𝑙𝑜𝑜𝑝 = 0.65 nH and 𝐿𝑙𝑜𝑜𝑝 = 1.85 nH.

While both of the colormaps in Fig. 2-10 rely on the electrothermal parameters

included in the simulation, an intuitive sense of their trends can be gained by simply

calculating the trapped flux predicted by current division between the shunt resistor

and the loop inductor after the nanowire switches. The total impedance of the shunt

resistor pathway is the sum of the shunt resistance and the impedance of the series

inductance, 𝑍𝑠ℎ𝑢𝑛𝑡 = 𝑅𝑠ℎ𝑢𝑛𝑡 +2𝜋𝑓𝐿𝑠ℎ𝑢𝑛𝑡, while the impedance for the loop inductor is

𝑍𝑙𝑜𝑜𝑝 = 2𝜋𝑓𝐿𝑙𝑜𝑜𝑝. The current charging the loop inductor, which dictates the amount

of flux trapped after the loop heals, is roughly 𝐼𝑙𝑜𝑜𝑝 ≈ 𝐼𝑐,𝑁𝑊 ×𝑍𝑠ℎ𝑢𝑛𝑡/(𝑍𝑠ℎ𝑢𝑛𝑡 +𝑍𝑙𝑜𝑜𝑝).

The total number of trapped fluxons is then 𝐼𝑙𝑜𝑜𝑝𝐿𝑙𝑜𝑜𝑝/Φ0.

Figure 2-11 shows the result of varying 𝑅𝑠ℎ𝑢𝑛𝑡 and 𝐿𝑠ℎ𝑢𝑛𝑡, and varying 𝑅𝑠ℎ𝑢𝑛𝑡 and

𝐿𝑙𝑜𝑜𝑝 in the general expression for trapped flux above. For simplicity, 𝐼𝑐,𝑁𝑊 was set

equal to 25 𝜇A, and f was arbitrarily set to 1.8 GHz. The shapes of the trends

correspond to those in the simulations of Fig. 2-10; however, it is clear that the

electrothermal factors included in the more complex simulations of Fig. 2-10 are
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needed to reflect the true timing dynamics of the nanowire and the thermal effects

on the shunt resistor on the hotspot relaxation time. Nonetheless, the general shape

of the trends is clearly a result of the current division between the two impedances.

Figure 2-11: Trapped flux dependencies on circuit parameters calculated from simple
bias current division. (a) Varying the shunt resistance and shunt inductance. The
loop inductance was set constant at 1.87 nH. (b) Varying the shunt resistance and
loop inductance. The shunt inductance was set constant at 50 pH.

2.5 Outlook and applications

The measurements and simulations shown in this chapter demonstrate that the output

of this device may be tuned through simple circuit parameters and tailored to meet

specific design requirements. As a result, the device is a promising platform for the

development of a multilevel memory, with the number of states dictated by the critical

current of the constriction and the amount of flux per switching event. While the

devices shown here have a maximum of seven states, recent work building on this

device showed that more levels could be achieved by adjustments like decreasing the

shunt inductance [41], as suggested by the simulations in Fig. 2-10. This multilevel

operation is significantly different from previously reported nanowire-based memories,

which have thus far been binary devices [30][33][27]. While the proof-of-concept

devices reported here had a maximum size of 3×25 𝜇m2, the device could be scaled

down by introducing a high kinetic inductance wiring layer for the loop, given that

the magnetic inductance is inconsequential. Further scaling improvements could be
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made by fabricating the loop as a stacked structure, as was suggested with previous

nanowire-based memories [30].

These devices have also recently been extended to applications beyond cryogenic

memory. For instance, using the write port as a single photon detector allows the

loop to act similarly to a CCD, where the stored loop current is proportional to

the number of incident photons [42]. Additionally, the device has been incorporated

into a crossbar architecture for deep neural networks [41], where it was shown that

a nanowire memory with 33 discrete states can support image recognition with high

testing accuracy. These examples highlight how the number of required states in the

memory can vary depending on the application, illustrating the nanowire memory’s

utility as a diverse, tunable element that could be used in many multilevel operations.
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Chapter 3

The nanowire neuron: design

In addition to memories like the device introduced in Chapter 2, computing archi-

tectures also require processing components to perform operations. As discussed

previously, neural networks made from naturally spiking hardware are actively being

explored for their potential for fast, energy-efficient computation. In these schemes,

spikes serve as the tokens of information, while neurons act analogously to logic gates,

producing a single output in response to a combination of multiple inputs. Synapses,

which connect neurons, also play a crucial role in the overall architecture by serving

as local memories and allowing networks to learn and adapt.

Superconducting nanowires are logical candidates for building spiking neural net-

works given their intrinsic ability to generate low-power pulses from the nonlinear

switching between the superconducting and resistive states. Additionally, their com-

patibility with external silicon circuits could allow for integration of neural networks

with more traditional systems in the initial phases of architecture development.

Here, we describe the design of an artificial neuron that uses the coupling between

two shunted nanowires to generate spikes. Unlike the shunted nanowire in the mem-

ory cell of Chapter 2, the artificial neuron relies on nanowires with large enough series

inductances to support relaxation oscillations. Using electrothermal circuit simula-

tions, we demonstrate that the nanowire neuron can replicate multiple characteristics

of biological neurons, and that kinetic inductance can be used to create a tunable

synapse that is capable of supporting fan-out with an energy figure of merit four
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orders of magnitude better than that of competing technologies.

The text that follows includes reprints from a work that was originally published

in Frontiers in Neuroscience [43]. I would like to acknowledge Prof. Ken Segall for

his guidance and advice throughout the development of this work.

3.1 The nanowire neuron model

In this section, we describe the nonlinear dynamics of relaxation oscillations in su-

perconducting nanowires, and then present the architecture of the nanowire-based

neuron.

3.1.1 Relaxation oscillations

The intrinsic nonlinearity of superconducting nanowires makes them ideal candidates

for the hardware generation of spiking behavior. As discussed in Chapter 1, when a

bias current flowing through a superconducting nanowire exceeds its critical current

𝐼𝑐, superconductivity breaks down and the nanowire becomes resistive, producing a

voltage. The nanowire only switches back to the superconducting state once the bias

current is reduced below the retrapping current 𝐼𝑟, and the resistive hotspot cools

down. When the nanowire is placed in parallel with a shunt resistor, this switching

process participates in electrothermal feedback with the shunt; if the series inductance

between the nanowire and shunt is sufficiently large, the feedback produces relaxation

oscillations [28].

Action potentials in biological neurons can also be viewed as relaxation oscilla-

tions. Figure 3-1 shows a basic schematic of an action potential in a biological neuron,

highlighting the two main voltage-gated ion channels that control its dynamics. The

electrochemical potential across a neuron’s membrane initially sits at its resting po-

tential (∼ 70 mV), but rises in response to a sufficiently high stimulus. This increase

in membrane potential triggers the opening of the sodium (Na+) ion channel, which

causes Na+ ions to flood into the membrane, further increasing its potential (see

Fig. 3-1(a)). Once the membrane potential rises to a new higher level, the potassium
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(K+) ion channel opens up, and K+ ions rush out of the cell, restoring the potential

back to its resting state (see Fig. 3-1(b)). Other dynamics also come into play, such

as the sodium-potassium pump that expends energy to restore the charge imbalance

by transporting three Na+ ions out of the cell for every two K+ ions into the cell

(a process called "active transport"). However, for our purposes it is sufficient to

just consider the simplified neuron model of an action potential generated by the two

voltage-gated ion channels.

Figure 3-1: Schematic of an action potential in a biological neuron. The rising edge
(a) is controlled by Na+ ion channel influx. The falling edge (b) is controlled by the
K+ ion channel outflux, restoring the membrane potential to its resting state and
allowing the neuron to fire again.

Like the Na+ influx and K+ outflux currents of a neuron, the influx and outflux

currents from the nanowire to the shunt resistor are governed by different timescales,

𝜏1 and 𝜏2. As shown in Figure 3-2(a), the rising edge of the output voltage is defined

by 𝜏1 = 𝐿/(𝑅𝑠 + 𝑅ℎ𝑠), where L is the inductance of the nanowire, 𝑅𝑠 is the shunt

resistance, and 𝑅ℎ𝑠 is the resistance of the nanowire hotspot, usually on the order

of ∼1–10 kΩ. Conversely, the outflux current occurs when the nanowire is no longer

resistive and the bias current is redirected from the shunt; this reduced resistance

results in a slower time constant 𝜏2 = 𝐿/𝑅𝑠, which defines the falling edge of the

output voltage. For typical nanowire devices, 𝜏1 ∼ 100 ps and 𝜏2 ∼ 1 ns. The

two currents are "gated," as shown by the insets in Fig. 3-2(a), by the state of the
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nanowire—when the state is resistive (producing a voltage), the influx current flows

into the shunt, and when it is superconducting, the outflux current flows back into

the nanowire.

Figure 3-2: Relaxation oscillations in superconducting nanowires. (a) Simplified
model of a relaxation oscillation, specifying the two time constants that define the
output voltage. (b) Example of a superconducting nanowire in a long, meandered de-
sign for obtaining a high kinetic inductance. (c) Experimentally measured relaxation
oscillations in a long superconducting nanowire shunted by 50 Ω.

Since kinetic inductance is defined per unit length of a nanowire with a fixed

width, a long nanowire can be used to create a sufficiently high series inductance

between a constriction and shunt resistor to support relaxation oscillations. Figure

3-2(b) shows a scanning electron micrograph of a typical superconducting nanowire

with a meandering geometry designed for maximizing the total device inductance.

An example of experimentally observed relaxation oscillations for such a device is

displayed in Figure 3-2(c).

3.1.2 The basic model

Although a shunted nanowire on its own produces oscillations analogous to action po-

tentials, the output signal eventually accumulates a voltage offset as the bias current

increases. This effect deviates from true neuron behavior, since the cell must main-

tain a constant resting potential as described above. To overcome this difference,
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we have implemented a neuron architecture based on one that was first proposed for

Josephson junctions [44], as shown in Figure 3-3. The circuit consists of two shunted

nanowires, referred to as the main oscillator and control oscillator, linked together in

a superconducting loop. A bias current 𝐼𝑏𝑖𝑎𝑠 is applied to both oscillators such that

they are each biased right below their critical currents, but in opposite directions. To

trigger an action potential, a small input current pulse 𝐼𝑖𝑛 (Fig. 3-3(a)) is applied

that sums with the bias current to exceed 𝐼𝑐 of the main oscillator, causing it to

switch (Fig. 3-3(d)). The control does not fire since the input opposes the direction

of its bias.

Figure 3-3: Circuit simulations of the two-nanowire soma. (a) Input pulse. (b) Cur-
rent through the loop inductor. (c) Current through the control nanowire. The control
nanowire reduces the amount of counterclockwise current circulating in the loop, al-
lowing the main nanowire to fire again. (d) Current through the main nanowire. (e)
Output voltage pulse that is sent to the synapse. For these simulations, the critical
current of the control nanowire and of the main nanowire is 𝐼𝑐 = 30 𝜇A, the bias
current 𝐼𝑏𝑖𝑎𝑠 = 58.6 𝜇A, and the input current 𝐼𝑖𝑛 = 4 𝜇A.

Once the main oscillator switches, current is added to the superconducting loop in

the counterclockwise direction (Fig. 3-3(b)), which sums with the bias current to fire

the control oscillator (Fig. 3-3(c)). The control oscillator removes counterclockwise

current from the loop, allowing the main oscillator to fire again. Without the presence

of the control oscillator, the main oscillator would only be able to fire once, since the

counterclockwise current added to the loop would reduce the total current through

the nanowire of the main oscillator below its 𝐼𝑐. The voltage from the main oscillator
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node (Fig. 3-3(e)) is a superposition of the two firing oscillators and serves as the

spiking output that is carried down to the next neuron via the synapse. Unlike the

output from the single shunted nanowire, the output of the two-nanowire circuit does

not accumulate a bias offset, making it a suitable spiking signal.

In the context of the two-channel simplified neuron model, the main oscillator acts

analagously to the Na+ influx current by adding flux to the superconducting loop in

the form of a circulating current. The control oscillator acts analagously to the K+

outflux current by reducing the circulating current, resetting the neuron and allowing

the main oscillator to fire again. As described in Ref. [28], the rate at which each

oscillator fires depends on the magnitude of the bias current, paralleling the voltage-

dependent rate constants of ion gates in the Hodgin-Huxley model for a biological

neuron [45].

3.2 Single neuron characteristics

Neurons display a wide variety of traits unique to certain populations, allowing them

to achieve varied and complex tasks when they interact collectively. While no single

neuron possesses all possible traits, the basic functionality of an artificial neuron can

be evaluated by demonstrating some common bio-realistic characteristics. Here we

present multiple neuron behaviors that can be achieved with the nanowire neuron,

using electrothermal circuit simulations conducted in LTspice. The simulations imple-

ment material-specific characteristics and nanowire hotspot dynamics as described in

previous literature [31][40], and have been shown to reliably reproduce experimental

data pertaining to nanowire relaxation oscillations [28].

3.2.1 Threshold response

A general characteristic of biological neurons is their inability to fire unless the input

signal exceeds a certain threshold. Figure 3-4(a) shows the threshold voltage response

of the nanowire neuron when the bias current is held constant and the input current

is varied. As evident in the plot, the neuron does not begin firing until the input
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current passes a threshold, defined by when the sum of the bias and input current

through the main nanowire exceeds its 𝐼𝑐. Above the threshold, the peak voltage of

the spike output is essentially constant. However, biological neurons have a threshold

that may be varied by previous activity, such as an inhibiting input that reduces it

[46]. Figures 3-4(b) and (c) illustrate this process ("threshold variability") in the

nanowire neuron; an initial subthreshold input pulse fails to elicit a spike, while a

later input pulse of the same magnitude triggers a spike after a smaller negative pulse

reduces the firing threshold. It should be noted that when the preceding pulse was

of the opposite polarity, no spike was triggered. This behavior is consistent with the

expectations of Ref. [46].

Figure 3-4: Firing threshold of the nanowire neuron. (a) Peak output voltage as a
function of input current under a constant bias (𝐼𝑏𝑖𝑎𝑠 = 58.6 𝜇A). Inset shows the
time domain voltage output of the neuron for different input currents. (b) Input to
the neuron, leading to a reduction in firing threshold by a preceding negative pulse.
(c) Spiking output of the neuron in response to the inputs of (b), demonstrating that
the nanowire neuron’s firing threshold is variable. For this simulation, 𝐼𝑏𝑖𝑎𝑠 = 57.62
𝜇A, the positive input 𝐼𝑖𝑛 = 4.6 𝜇A, and the negative input 𝐼𝑖𝑛 = -4.3 𝜇A.

3.2.2 Refractory period

In addition to exhibiting a firing threshold, the nanowire neuron displays a refractory

period, which we define to be the minimum time between two input pulses such that

both pulses elicit a spike. Figure 3-5 illustrates this response. When two pulses are

separated enough in time so that the main oscillator is biased close to its critical
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current when the second input pulse arrives, then the second pulse will cause a spike

(Fig. 3-5(a)). However, if the second pulse arrives before the bias current has fully

returned to the main oscillator, then the sum of the second input pulse and the bias

will not be sufficient to switch the nanowire and trigger the neuron (Fig. 3-5(b)). As

a result, the refractory period is limited by the time it takes to fully bias the main

oscillator again, which is a function of the 𝐿/𝑅 time constants of the circuit.

Figure 3-5: Refractory period of the nanowire neuron. (a) Response when there is
sufficient time between two inputs to each elicit a separate spike. Parameters: 𝐼𝑏𝑖𝑎𝑠
= 58 𝜇A, 𝐼𝑖𝑛 = 6 𝜇A, ∆𝑡 = 4 ns. The pink dashed lines indicate the beginning of the
rising edge of each pulse. (b) Response when there is insufficient time between two
input pulses, causing the neuron to fire only one. Parameters are the same as in (a),
except ∆𝑡 = 2 ns. For both cases, panel (i) displays the current through the nanowire
of the main oscillator, while panel (ii) displays the output voltage of the neuron.

3.2.3 Class I behavior

Biological neurons differ in their response to varying signal strengths. Whereas Class I

neurons have a spiking frequency that increases with increasing input strength, Class

II neurons maintain a constant firing rate [46][44]. Figure 3-6 illustrates the spiking

behavior of the nanowire neuron at different levels of bias current. Figure 3-6(a) shows

the time-domain voltage output of the neuron as the bias current is increased, and

suggests an increase in spiking frequency. This response is confirmed by observing
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the voltage output’s frequency spectrum (Fig.3-6(b)), which shows a shift in the

spiking frequency to higher values with increasing bias. Consequently, the nanowire

neuron has Class I behavior. Although this effect can also be achieved by changing

the input current, as shown by the frequency shift in Figure 3-7, the modulation is

less pronounced. Nonetheless, the change in spiking frequency by the bias and input

currents demonstrates that the frequency of the nanowire neuron output may be used

to glean information about its input conditions.

Figure 3-6: Effects of bias current on spiking frequency. (a) Time domain simulations
of the nanowire neuron with different bias currents (𝐼𝑖𝑛 = 6 𝜇A for all simulations).
Traces have been shifted from one another in the y-axis for clarity. (b) Fourier
transform of the voltage output for each biasing condition. The shift in peak frequency
with bias current indicates that the circuit acts like a Class I neuron.

3.2.4 Parabolic bursting

Some neurons, such as thalamic and dopaminergic neurons [47], display a unique

mode of behavior called bursting, in which the cell alternates between the resting

and firing states. The transition between states may be dictated by slow changes

in low levels of intracellular calcium ions, which influence the conductance of K+

[48]. As a result, a small, slowly varying signal controls the rapid dynamics of the

action potential, leading to alternating periods of resting and firing. This process is

considered to be an important aspect of electrical activity in the brain.
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Figure 3-7: Effects of input current on spiking frequency. The Fourier transform of
the voltage output for each input current shows that the spiking frequency increases
with increasing signal strength. For all simulations, 𝐼𝑏𝑖𝑎𝑠 = 58 𝜇A.

Due to the significance of bursting in biological neurons, past work has sought to

replicate similar behavior in platforms such as digital silicon models [49] and Joseph-

son junction models [50] by injecting a low-frequency ac signal into the system. Figure

3-8 shows the result when a similar technique is applied to the nanowire neuron. In

this case, a weak ac signal (f = 50 Hz, 𝐼𝑎𝑐 = 4 𝜇A) shown by the dashed red line in

Fig. 3-8(a) is coupled into the bias port of the neuron, causing the neuron to alter-

nate between the resting and firing states, as reflected in the resulting output voltage

signal. A close examination of the timing between adjacent spikes (see Fig. 3-8(b))

shows that the spiking frequency increases and then decreases over the firing period,

a phenomenon known as parabolic bursting [51]. This behavior was first observed in

neuron R15 of the abdominal ganglion of Aplysia [52] [53], and has since been demon-

strated in many other cells. The ability of the nanowire neuron to replicate similar

dynamics may be therefore be useful for performing a wider range of functions.

3.2.5 Axon: transmission line characteristics

After an action potential occurs in a biological neuron, the output signal propagates

down the axon as if sent through a delay line [54]. This delay is valuable in that

it preserves time domain information, potentially facilitating behaviors that rely on

the recognition of specific spatio-temporal patterns [46]. Such pattern recognition is
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Figure 3-8: Parabolic bursting in the two-nanowire neuron. (a) Output voltage of
the nanowire neuron when the bias is coupled to a weak sinusoidal drive, indicated
by the red dashed curve and shifted in the y-axis for clarity. (b) The inverse of the
time between adjacent peaks shows that the time difference follows a parabolic form.
Parameters: 𝐼𝑏𝑖𝑎𝑠 = 59 𝜇A, 𝐼𝑖𝑛 = 6 𝜇A.

often not possible in spiking neural networks with traditional wiring, since signals

travel too rapidly for time information to be maintained [54]. This is not the case

for superconducting nanowires that are designed to act as transmission lines. Recent

work has shown that the high kinetic inductance of superconducting transmission

lines, like those made out of niobium nitride, results in propagation speeds of ∼2%c,

where c is the speed of light in vacuum [55]. For example, a typical 300-nm-wide NbN

microstrip with a thickness of 5 nm has a kinetic inductance of roughly 𝐿𝑘 = 2.7×10−4

H/m or 212𝜇0, where 𝜇0 is the permeability constant (∼ 12.57 × 10−7 H/m), and a

capacitance of roughly 𝐶 = 1.9 × 10−10 F/m or 21𝜖0, where 𝜖0 is the permittivity

constant (∼ 8.85×10−12 F/m). The resulting velocity is then 𝑣 = 1
√
𝐿𝑘𝐶 = 4.4×106

m/s or approximately 1.5% c. For comparison, the typical propagation speed of a

signal through a coaxial cable is about 66% c.

As illustrated in Figure 3-9, a simulated nanowire neuron output sent through a
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Figure 3-9: A superconducting transmission line as an axon. Simulations of a super-
conducting transmission line show that the spikes can be delayed on the order of ∼ 5
ns, depending on the length of the structure. This delay could enable the preserva-
tion of timing information. Transmission line parameters: 𝐿𝑘 = 0.3 nH/𝜇m, C = 0.1
fF/𝜇m, v = 1.9% c, transmission line length l = 2.5 mm. Shorter transmission lines
on the order of 800 𝜇m still had delays of ∼ 140 ps.

superconducting transmission line model is delayed by ∼100–500 ps, close to the full

width of an action potential. In mammalian brains, axonal delays like the cortico-

cortical delay [56] are also on the same timescale as the full width of an action potential

[57](typically a few milliseconds), suggesting that the relative delay in our system

with respect to the spike duration is appropriate. If longer delays are needed, the

transmission line can simply be made longer.

It is worth noting that, just as not all biological neurons have meter-long axons

with delays lasting tens of milliseconds, not all nanowire neurons need to have mil-

limeter long transmission lines. As with biological systems, whether the temporal

delay is needed depends on the application. While some spiking neural networks

strive to be as bio-realistic as possible in order to shed light on how our minds work,

others are applied to problems like image recognition, where (so far) time information

has not been used. Our goal is to illustrate that nanowires are a flexible platform for

achieving either type of behavior, and that they offer a way of slowing down pulses

to preserve time information if the application requires it.
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3.3 The synapse

The collective dynamics of a neural network depend on the ability of a neuron to influ-

ence the behavior of another downstream neuron via a synapse. In biological systems,

fast electrical action potentials trigger the slow release of chemical neurotransmitters

that bind to receptors on a downstream neuron, causing ion channels on its membrane

to open or close. In the excitatory case, the binding of neurotransmitters causes the

downstream neuron to fire by raising its membrane potential. Conversely, neurotrans-

mitters can have an inhibitory effect where they make the target neuron’s membrane

potential even more negative, making it less likely to fire.

In previous work using Josephson junctions, a slow synaptic response was achieved

through the gradual charging and discharging of a large capacitor [44]. The same

approach can be taken with the nanowire neuron. Figure 3-10 shows an example of a

capacitive synapse. In the case of excitatory control, the upstream (main) neuron is

positively biased, accumulating a positive voltage on the synapse capacitor (see panel

(ii)). When the capacitor discharges, a positive current then flows into an underbiased

downstream target neuron, causing it to fire. To inhibit an overbiased downstream

neuron, the main neuron can be biased in the negative direction, accumulating a

negative voltage on the capacitor that suppresses the firing of the target.

3.3.1 Inductive synapse

The same effect of a slowly charging and discharging capacitive synapse can be

achieved with an inductor by creating an approximately equivalent circuit, as shown

in Figure 3-11. To get a rough idea of the magnitude of the synapse inductance, the

input impedances and time constants of both circuits can be compared in the extreme

limits of 𝜔 → 0 and 𝜔 → ∞, where 𝜔 is the frequency (see Appendix A for complete

derivation). We found that it was also necessary to add a series resistance to the

left of the synapse inductor in order to prevent backflow into the main neuron and

to keep the input impedances of the two circuits equivalent at low frequencies. The

estimated synapse inductance (∼0.1 𝜇H) was two orders of magnitude higher than
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Figure 3-10: The nanowire neuron using a capacitive synapse. (a) Excitatory control.
(b) Inhibitory control. Panel (i) shows the output of the main neuron. Panel (ii)
shows the voltage on the synapse capacitor. Panel (iii) shows the output of the
downstream target neuron. Parameters: 𝐿𝑠𝑦𝑛 = 0.1 pH, 𝐶𝑠𝑦𝑛 = 1 nF; 𝑅𝑠𝑦𝑛,1 = 10 Ω,
𝑅𝑠𝑦𝑛,2 = 10 Ω.

the equivalent synapse capacitance (∼1 nF), which was to be expected by setting the

two time constants equal to one another (𝑅𝐶,𝑠𝑦𝑛𝐶 = 𝐿/𝑅𝐿,𝑠𝑦𝑛).

Figure 3-11: Transforming a capacitive synapse into an inductive synapse.

Figure 3-12 shows simulations of the inductive synapse. Similar to the slow release

of neurotransmitters in response to an action potential, the inductive synapse relies on

the slow charging of a large inductor in response to the nanowire neuron’s more rapid

voltage spikes. The energy stored in the large synapse inductor is then discharged as

current into the input port of the target neuron, modulating its behavior. Like the

capacitive synapse, the polarity of the bias to the main neuron dictates whether the

control is excitatory (Fig.3-12(b)) or inhibitory (Fig.3-12(c)).
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Figure 3-12: Nanowire neuron with an inductive synapse. (a) Circuit schematic. (b)
Excitatory downstream control. Parameters: 𝐿𝑠𝑦𝑛 = 0.265 𝜇H,𝑅𝑠𝑦𝑛,1 = 40 Ω, 𝑅𝑠𝑦𝑛,2

= 40 Ω, 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 = 14 Ω. (c) Inhibitory downstream control.Parameters: 𝐿𝑠𝑦𝑛 = 0.23
𝜇H,𝑅𝑠𝑦𝑛,1 = 45 Ω, 𝑅𝑠𝑦𝑛,2 = 40 Ω, 𝑅𝑠𝑒𝑟𝑖𝑒𝑠 = 24 Ω. Panel (i) shows the output of the
main neuron. Panel (ii) shows the voltage on the synapse capacitor. Panel (iii) shows
the output of the downstream target neuron.

3.3.2 Variable synaptic strength

Although the inductive synapse of Figure 3-12 can be engineered for both excitatory

and inhibitory control of a downstream neuron, a fundamental property of artificial

neural networks is the ability to modulate that control by adjusting synaptic strength.

On an even more fundamental level, the connections between biological neurons are

constantly changing whenever a behavior is learned or forgotten. It is therefore critical

to consider ways in which synaptic strength can be adjusted for changing the control

between two neurons.

One possible scheme for implementing such variability in the inductive synapse

is to incorporate superconducting nanowires as a different circuit element: a tunable

inductor. A nanowire’s kinetic inductance increases with increasing bias current,
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reaching an enhancement of 10–20% near 𝐼𝑐 [58]. This modulation has been included

in the circuit model of the superconducting nanowire used in these simulations [40].

By placing a high inductance nanowire with an ideal current source in parallel with

the synapse inductor, the overall parallel inductance of the synapse can be modulated,

which in turn changes the amount of current sent to the target neuron.

Figure 3-13 shows the simulated results for the case of an inhibitory synapse.

When a higher modulating current 𝐼𝑚𝑜𝑑 is applied to the nanowire inductor, the overall

parallel inductance increases, reducing the amount of current sent to the target. It is

important to note that the polarity of the modulating current is not important, since

the change in kinetic inductance depends only on the magnitude of the modulating

current in relation to the nanowire’s 𝐼𝑐. Figure 3-13(b) illustrates that the modulation

in synaptic current for 𝐼𝑚𝑜𝑑 = 5 𝜇A and 𝐼𝑚𝑜𝑑 = -5 𝜇A is roughly the same. As a

result, it is clear that the modulation is due to the change in kinetic inductance, and

not simply the injection of current by 𝐼𝑚𝑜𝑑 in the opposing direction.

Figure 3-13: Modulation with the inductive synapse using a nanowire as a tunable
inductor. (a) Circuit schematic. (b) Simulation of the current through 𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑜𝑢𝑡 in
an inhibitory synapse as a function of different modulation currents. Spikes represent
backaction from the firing of the target neuron. Parameters: 𝐿𝑠𝑦𝑛 = 0.45 𝜇H,𝐿𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒

= 0.275 𝜇H„ 𝐼𝑐,𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒 = 6 𝜇A, 𝑅𝑠𝑦𝑛,1 = 39 Ω, 𝑅𝑠𝑦𝑛,2 = 40 Ω, 𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑖𝑛 = 25 Ω,
𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑜𝑢𝑡 = 0.1 Ω, 𝐿1 = 𝐿2 = 50 pH.

Figure 3-14 shows the result of tuning the inductive synapse when it is being used

for excitatory control. By increasing the modulating current, the amount of current

sent to the downstream target is reduced. When 𝐼𝑚𝑜𝑑 = 8 𝜇A, the synaptic current
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is no longer sufficient to trigger the downstream neuron, preventing it from firing.

Figure 3-14: Example of the tunable inductive synapse with excitatory control. (Top
panel) Voltage output of the main neuron. Traces have been shifted in the y-axis
for clarity. The legend indicates the different values of 𝐼𝑚𝑜𝑑. (Middle panel) Current
through 𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑜𝑢𝑡 to the target neuron. (Bottom panel) Voltage output from the
target neuron. Traces have been shifted in the y-axis for clarity. When 𝐼𝑚𝑜𝑑 = 8 𝜇A,
the synaptic current is too low to excite the target neuron. Parameters: 𝐿𝑠𝑦𝑛 = 0.45
𝜇H, 𝐿𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒 = 0.275 𝜇H, 𝐼𝑐,𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒 = 6 𝜇A, 𝑅𝑠𝑦𝑛,1 = 39 Ω, 𝑅𝑠𝑦𝑛,2 = 40 Ω, 𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑖𝑛

= 25 Ω, 𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑜𝑢𝑡 = 5 Ω, 𝐿1 = 𝐿2 = 100 pH.

In conjunction with the plasticity of synapses, the high degree of parallelism in

the brain creates a densely connected, adaptable network able to optimize and adjust

for different conditions. An example of fan-out in the nanowire neuron is shown

in Figure 3-15. As shown in the circuit schematic, a single neuron is connected to

four target neurons through four separate tunable synapses. When each of the four

modulating currents is set to 𝐼𝑚𝑜𝑑 = 0 𝜇A, the firing of all four targets is inhibited by

the main neuron (Fig. 3-15(b)). To weaken the connection with one of the targets,

in this case target #4, 𝐼𝑚𝑜𝑑,4 is set to 8 𝜇A, turning off the inhibiting action on

target #4 but allowing inhibition to remain on the other three target neurons (Fig.
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Figure 3-15: Fan-out of the nanowire neuron with a tunable inductive synapse. (a)
Simplified circuit model. (b) Simulation when all modulating currents are turned
off for the four target neurons. (c) Simulation when 𝐼𝑚𝑜𝑑,1−3 = 0 𝜇A and 𝐼𝑚𝑜𝑑,4 =
8 𝜇A. Panel (i) shows the output of the main upstream neuron. Panel (ii) shows
the current through each of the four series resistors 𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑜𝑢𝑡 to each of the target
neurons. Panel (iii) shows the output voltage of the four target neurons, shifted on
the y-axis for clarity. Parameters: 𝐿𝑠𝑦𝑛 = 0.4 𝜇H, 𝐿𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒 = 0.275 𝜇H, 𝐼𝑐,𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒 =
6 𝜇A, 𝑅𝑠𝑦𝑛,1 = 300 Ω, 𝑅𝑠𝑦𝑛,2 = 300 Ω, 𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑖𝑛 = 7 Ω, 𝑅𝑠𝑒𝑟𝑖𝑒𝑠,𝑜𝑢𝑡 = 1 Ω, 𝐿1 = 𝐿2 =
100 pH.

3-15(c)). Comparison of the synaptic currents for each of the four targets shows that

the synaptic current for target #4 is reduced as a result of the modulated inductance.

This modulation demonstrates that the nanowire neuron is able to be used in a parallel

network where the strength of individual synaptic connections can be adapted without
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disrupting the rest of the circuit.

Fan-out may be one area where nanowires will be an improvement over Josephson

junctions [44]. Both nanowires and JJs have quantized flux outputs (flux here being

defined as the time integral of the voltage). However, Josephson devices have outputs

of only a single flux quantum, while nanowires typically have outputs with many more

flux quanta (e.g. 70 flux quanta for the device shown in Figure 3-3). For instance,

typical niobium nitride nanowires with critical currents in the range of 100 𝜇A and film

thicknesses around 10 nm have flux outputs ranging from 50 to 100 flux quanta. In

pushing the fan-out and fan-in to larger systems, one expects to be eventually limited

by parasitic inductances and thermal noise. In such a case, the more substantial signal

of the nanowire neuron would permit a larger fan-out and fan-in, leading to a higher

degree of parallelism. In addition to fan-out, the nanowire voltage signals are long

enough and large enough to be digitized directly on an oscilloscope, in contrast to

their JJ counterparts, allowing for more direct analysis and readout. Finally, power-

control devices like the nTron [23] could be fabricated alongside the neurons and used

to boost signals and match impedances.

3.3.3 Benchmarking synaptic energy and speed

The energy dissipation of both the neuron and the synapse can be calculated using

LTspice by taking the time integral of the current-voltage product of each circuit

element. Performing this analysis, we find that the nanowire neuron as an energy

dissipation of about 0.05 fJ for each action potential, of which the synapse contributes

less than 0.005 fJ (or less than 10%). In large systems, the synapses will dominate in

comparison to the neurons; typically if there are O(N) neurons, there will be O(N2)

synapses. Hence, even though the neuron dissipates more energy, the synapses will

dominate the power consumption of a large network.

In a spiking neural network, the energy dissipated increases with the speed of the

system; spiking twice as often dissipates twice the energy, assuming the energy per

spike is constant. As a result, the common figure of merit to compare different tech-

nologies takes the ratio of speed and power. IBM [59] introduced the figure of merit

73



synaptic operations per second per watt (SOPS/W). For our system, we also include

a constant factor of about 400 W/W to account for the 4.2 K cooling costs in the

nanowire neuron. Table 3.1 compares both the energy per spike and the SOPS/W for

the nanowire neuron, the human brain, and two CMOS technologies. We acknowl-

edge that the estimate for the nanowire neuron is a projection from a simulation of

a single component, whereas the other entries in the table have actually been mea-

sured on large systems. However, the comparison shows that the nanowire neuron has

the potential to be a competitive technology from an energy perspective, especially

when one accounts for additional benefits like the lack of static power dissipation in

superconducting interconnects. As discussed in the Introduction, large-scale super-

conducting circuits using current-biased devices struggle with dissipation costs from

the resistors that deliver the bias current. As nanowire neurons are expanded into

larger networks, it will therefore be critical to investigate alternative biasing tech-

niques like the inductive distribution schemes used to minimize power dissipation in

JJ logic circuits. In this case, the biasing network must also be made compatible with

the higher impedances of our nanowire devices.

Table 3.1: Neural network energy comparisons

Human brain NeuroGrid TrueNorth Nanowire neuron
Energy/switch 10 fJ 100 pJ 25 pJ 0.05 fJ
SOPS/Watt 1e14 1e10 4e10 5e14

Energy values of the human brain, NeuroGrid, and TrueNorth are taken from
Ref.[60].

3.3.4 Discussion on possible synapse alternatives

Although the fan-out achieved here is far from the level of parallelism in the hu-

man brain, where each neuron connects to thousands of neighbors, it suggests that

nanowires may serve a unique purpose in the development of future superconducting

neural networks, which have thus far struggled to support fan-out to more than one

or two Josephson junctions. The maximum fan-out of the nanowire neuron may be

further increased by changes like increasing the critical currents of the oscillators in

order to increase the overall synaptic current, or using a tree structure. Given that
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nanowires can also interface with both CMOS and Josephson junction circuits [26], it

may be possible for nanowire neurons to serve as intermediary devices in a network

with both platforms. A recently proposed neural network with hybrid technologies

employed superconducting nanowires as photon detectors, relying instead on optical

signals for facilitating high fan-out [61] [62]. Although our work uses nanowires solely

as electrical components, they can easily be biased to act as photon detectors [21]

[22] as well, illustrating that the two different architectures would be compatible for

integration. These two schemes thus demonstrate the diverse ways in which super-

conducting nanowires can be used in neural networks, suggesting that a combination

of the two technologies may be possible.

Furthermore, while the inductive synapse proposed in this chapter relies on an

external modulating bias current, it may be possible to use a superconducting memory

cell like that proposed in Chapter 2 to store the value of this modulating current, or

replace the bias source directly in the circuit. Incorporating these programmable

memory cells [32] into the modulating elements of the inductive synapse could enable

storage of a varying synaptic strength in each synapse. It may also be possible for

nanowire neurons to connect through alternative synapse designs, such as one based

on inductive coupling. Finally, a synapse that implements firing-based tunability

would allow the nanowire neuron to be applied to many more complex applications

involving unsupervised learning.

3.4 Outlook

By taking advantage of intrinsic nonlinearities in superconducting nanowires, we de-

signed a platform for a low-power artificial neuron where the coupling of two nanowire-

based oscillators acts analagously to the two ion channels in a simplified neuron model.

Using electrothermal circuit simulations, we showed that the nanowire neuron is able

to reproduce universal characteristics of biological neurons, such as a firing threshold,

as well as unique characteristics distinct to certain classes, such as parabolic burst-

ing. Furthermore, we suggested that a nanowire transmission line with a propagation
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speed of 2% c may be used as an axon delay line, potentially allowing spatio-temporal

information to be accessed. These collective behaviors may enable the nanowire neu-

ron to be used in a rich variety of operations.

In addition to harnessing the nonlinearity of the nanowire’s switching dynamics,

we relied on the nonlinearity of the nanowire’s kinetic inductance in order to develop a

variable inductive synapse. This scheme proved to be capable of fan-out, providing an

advantage over other superconducting platforms. An energy analysis of the nanowire

neuron in comparison to other spiking networks illustrated that it has competitive

performance in the dynamic firing state and a figure of merit four orders of magnitude

better than certain alternative technologies, while the static state benefits from the

lack of power dissipation by superconducting elements.

Looking forward, networks of superconducting nanowires could be the basis for

powerful new computer hardware. The ultimate goal would be a large-scale neuromor-

phic processor which could be trained as a spiking neural network to perform tasks like

pattern recognition or used to simulate the spiking dynamics of a large, biologically-

realistic network. The combination of speed, lower power dissipation, and biological

realism with only a few components suggests that nanowires could outperform or

complement other existing and developing neuromorphic hardware technologies. Fi-

nally, the possibility of integrating the nanowire neuron with the multilevel memory

cell introduced in Chapter 2 opens the door to uniting memory and processing el-

ements together on the same platform and even within the same lithography step.

While future work is needed to realize this union, it presents an exciting opportunity

to drastically reduce the memory access time bottleneck, and illustrates the creative

ways in which nanowire dynamics can be exploited to achieve new functionality.
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Chapter 4

Nanowire neuron: demonstrations

The previous chapter introduced the design of a nanowire-based artificial neuron and

simulated its basic functionality. This chapter moves towards making the nanowire

neuron a reality by describing the fabrication and testing of a soma made from cou-

pled nanowire relaxation oscillators, which serves as the neuron’s spiking element.

To demonstrate the neuron’s potential as a useful technology, we also simulate two

applications using a network of nanowire neurons: 1) pattern recognition of simple

nine-pixel images; and 2) winner-takes-all (WTA) competition based on stochastic

firing.

The text that follows constitutes a preliminary write-up of work that will be

submitted to a journal for publication. I would like to acknowledge Prof. Ken Segall

for his guidance throughout the development of this work, Dr. Mike Schneider for his

advice on the nine-pixel image recognition, Prof. Nancy Lynch for her guidance with

the winner-takes-all network, and Matteo Castellani for his assistance with inductive

coupling simulations.

4.1 Soma experiments

The soma is comprised of two identical nanowire oscillators connected together in a

superconducting loop. We first describe the fabrication and basic characterization of

the nanowire soma, and then experimentally demonstrate its bio-realistic capabilities.
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4.1.1 Basic characterization

Fabrication

Before fabricating the soma, we considered several critical aspects of its design.

First, each nanowire oscillator must have a sufficiently large series inductance such

that the L/R time constant is on the order of nanoseconds, allowing for relaxation

oscillations. As a result, long meandered nanowire inductors (∼200 squares) were

added between the 60-nm-wide switching elements and the shunt resistor in order to

get a series inductance on the order of nanohenries for a typical NbN film with a

sheet inductance of 20–50 pH/sq. Additionally, the operation of the soma relies on

the bias current splitting evenly between the two branches of the nanowire loop so

that both oscillators are biased identically. To ensure that the oscillator biases were

equal, COMSOL simulations of both pathways were used to check that the number

of squares on either side of the bias port were the same (∼634 squares).

Figure 4-1: Scanning electron micrographs of a fabricated soma. (Left) The complete
soma with labeled signal ports. (Right) Enlarged view of a single relaxation oscillator,
indicated the 60-nm-wide switching element, the inductor, and the shunt resistor.

Once the design was finalized, the soma was fabricated using a similar process as

was used to make the memory cell in Chapter 2. However, instead of a bilayer liftoff

for the metal resistors, we used a single layer liftoff with ZEP520. Prior to exposure,

the resist was spun at 5 krpm for 60 s and baked for 2 min at 180∘C. Following

exposure, the pattern was developed in o-xylene at 0∘C for 90 s and IPA at room

temperature for 30 s. A layer of 10 nm Ti and 25 nm Au was evaporated and lifted
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off in NMP for 1 hr at 60∘C. Afterwards, an NbN film was deposited (𝑅𝑠 = 150 Ω/sq),

and the nanowire structures were patterned with gL2000 using the same process as

described in Chapter 2. A scanning electron micrograph of a fabricated soma and an

enlarged view of one of the relaxation oscillators is shown in Figure 4-1.

Single oscillator

To understand the spiking characteristics of the soma, it was first necessary to

measure the dynamics of an isolated oscillator. Figure 4-2 shows the oscillation fre-

quency as a function of bias current for an individual oscillator identical to the main

and control oscillators in the nanowire soma. To measure the oscillation frequency, a

bias current was applied using a battery source in series with a 100 kΩ resistor, and

the output voltage was sent through a 50 dB, 1 GHz-bandwidth amplifier (MITEQ

AM-1309) and read-out on an oscilloscope. A Fast Fourier Transform (FFT) of the

output signal was used to identify the frequency peak.

The frequency-versus-bias curve of Fig. 4-2 was fit to a simplified model for

nanowire relaxation oscillations [28], where the frequency is dominated by the slower

time constant of the signal’s falling edge:

1

𝑓
≈ −

(︂
𝐿

𝑅

)︂
𝑙𝑛

(︂
𝐼𝑏𝑖𝑎𝑠 − 𝐼𝑠𝑤

𝐼𝑏𝑖𝑎𝑠

)︂
(4.1)

The red curve in Fig. 4-2 shows a fit to this expression when 𝐼𝑠𝑤 = 45 𝜇A and

𝐿/𝑅 = 4.92 ns. Using the calculated number of squares in the inductor and the

approximate film inductance of 30 pH/sq, we can estimate that L ∼ 6 nH and 𝑅𝑠 ∼

1.22 Ω.

Overdriving the bias port

The two-oscillator nanowire soma can also be driven as a single oscillator if it is

overbiased from the bias port without applying an input pulse. In this operation,

the two oscillators fire simultaneously, since there is no input signal to induce a

phase shift between them. Figure 4-3 shows the oscillation frequency of the over-

biased soma without the application of an input pulse. Whereas the single oscillator

switched at ∼ 45 𝜇A, the soma starts oscillating at ∼ 82 𝜇A since the bias current
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Figure 4-2: Frequency of a single oscillator as a function of bias current. Blue squares
indicate experimentally measured points, while the red squares were derived from the
simplified expression for oscillation frequency. The black box represents the 50 𝜇A
current bias, whose time domain characteristics are shown in the inset.

is split between the two branches of the loop. This frequency response can be well-

explained by the soma model in LTspice, using the updated 𝐿/𝑅 time constants from

the single oscillator in Fig. 4-2 and adjusting the switching current to match the

experimental results. The red data points in Fig.4-3 show the simulated response

of the nanowire soma when 𝐼𝑐 = 38.5 𝜇A, 𝐿𝑛𝑎𝑛𝑜𝑤𝑖𝑟𝑒 = 6 nH, and 𝑅𝑠 = 1.22 Ω. By

comparing both the frequency response as well as the time-domain characteristics of

the experimental and simulated results, we can conclude that the LTspice soma model

sufficiently reproduces real dynamics of the physical device.

Response to input pulse

With the updated LTspice model, we can experimentally test the soma’s real

operation and use simulations to better understand its behavior. Figure 4-4 shows

the output of the soma in response to an input pulse when the bias current is 76.2 𝜇A,

below the point at which the soma acts as a single oscillator. For this measurement,

the bias current was supplied through a DC battery source in series with a 10 kΩ

resistor and a bias-tee with the RF port shorted to ground. The input pulse was

generated using an Agilent waveform generator in series with a 100 kΩ series resistor,

which was sent to both the device and the oscilloscope using a pulse splitter. The

voltage output was sent through the RF port of a bias-tee and the MITEQ amplifier
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Figure 4-3: Frequency response of the soma when it is driven as a single relaxation
oscillator (overdriven from the bias port with no input signal). Blue squares indicate
experimentally measured points, while the red squares were simulated in LTspice using
the L/R time constants derived from the single oscillator. The black box represents
the 93 𝜇A bias point, whose time domain characteristics for both the measurement
and simulation are shown in the inset.

before being read-out by the oscilloscope. As demonstrated in the figure, the soma

only spikes in response to the input pulse, in agreement with the expected operation.

Comparison with the simulated results suggests that the timescale of the spikes also

follows the expected response.

To ensure that the spikes are coming from the phase-shifted firing of both oscil-

lators, we also examined the voltage signals of the input port and the bias port, and

compared them to the simulated responses. Figure 4-5 (a) shows the output port

(blue trace) and bias port (red trace) voltages in response to an input pulse, while

the output and input port signals are shown in (b). The simulated responses for

both cases are plotted in (c) and (d). By comparing Fig. 4-5(a) and (c), we observe

that the signal from the bias port has one positive spike for each oscillator, while the

traces in Fig. 4-5(b) and (d) show that the input port signal has one positive edge

followed by one negative edge. The large spikes observed on the rising and falling

edge of the input pulse in Fig. 4-5 (b) are likely absent from the simulation in (d),

since the simulation does not account for the effects of the measurement setup, such

as the amplifier and bias-tee used for readout. Despite the experimental results being
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Figure 4-4: Spiking response of the soma to an input pulse. (a) Response from
simulation. (b) Experimental measurement. For both cases, 𝐼𝑏𝑖𝑎𝑠 = 76.2 𝜇A.

noisier than the simulations, the overall agreement in the shapes of the input and

bias signals indicates that the output port spikes are generated by the action of both

oscillators in the loop.

Once we validated the origin of the spiking behavior, we characterized its re-

producibility by gathering statistics from 100 sequential output voltage waveforms.

Figure 4-6 displays a single waveform when the soma is subjected to a 2.5 𝜇A, 150-ns-

wide input pulse and a bias of 76.3 𝜇A. The red dashed line indicates the threshold

voltage used to determine the location of output peaks. Figure 4-6(b) shows his-

tograms of the locations of these peaks for the 100 captured waveforms, while Figure

4-6(c) shows a histogram of the time between adjacent peaks, with a mean of 50.4

ns and a standard deviation of 6.46 ns. This spread is comparable to what has been

observed in the interspike intervals of human motoneurons, where the standard devi-

ation was roughly 5–10% of the mean interspike interval (the spread increased with

increasing spike periods) [63].

82



Figure 4-5: Output voltages of the input and bias ports. For all panels, the voltage
from the output port is shown in blue, while the input/bias port output voltages are
shown in red. Traces have been shifted on the y-axis for clarity. The orange trace
shows the input current pulse. (a) Response from the bias port when 𝐼𝑏𝑖𝑎𝑠 = 75.7
𝜇A, and 𝐼𝑖𝑛 = 1.75 𝜇A (pulse width = 150 ns). The bias port is indicated by the red
circle in the circuit schematic above. (b) Response from the input port when 𝐼𝑏𝑖𝑎𝑠 =
75.9 𝜇A, and 𝐼𝑖𝑛 = 3.25 𝜇A (pulse width = 480 ns). The input port is indicated by
the red circle in the circuit schematic above. (c) Simulated response of the bias port.
(d) Simulated response from the input port.

4.1.2 Neuron characteristics

As discussed in the previous chapter, biological neurons are capable of a wide variety

of behaviors unique to different populations. Here, we focus on demonstrating certain

characteristics that are universal to all neuronal classes.

Firing threshold

The firing threshold is defined as the minimum input signal required to initiate

spiking for a given resting membrane potential. In the nanowire soma, the resting

potential is dictated by the bias current—a larger bias current raises the resting

potential and decreases the firing threshold.

Figure 4-7 shows the threshold response of the fabricated soma, measured as

the mean voltage output of 500 sequential traces for a given input current. This

measurement translates into firing probability, since the mean voltage of the 500
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Figure 4-6: Reproducibility of spiking behavior in the soma. (a) Single waveform
of the soma’s output voltage in response to a 2.5 𝜇A input current pulse (width =
150 ns, edge time = 20 ns) when the bias is 76.3 𝜇A. The red dashed line indicates
the threshold used to identify peak locations, while ∆𝑡1 and ∆𝑡2 denote the times
between sequential peaks. (b) Histogram of the time stamps of voltage spikes for 100
captured waveforms. (c) Histogram of the time between sequential pulses for the 100
captured waveforms.

measurements will be higher if the soma spikes more often.

Unlike the simulated threshold behavior of Fig. 3-4, the experimentally measured

data looks more like an "S" curve or sigmoid rather than a step response due to the

probabilistic nature of nanowire switching in real measurements. Whereas the simu-

lated nanowire always switches at the defined critical current 𝐼𝑐, real superconducting

nanowires are susceptible to premature switching due to thermal and quantum fluc-

tuations [64], leading to a switching probability that increases with bias current.

While stochasticity is usually avoided in electrical systems, biological neurons have

firing probabilities that have inspired many neuromorphic applications that take ad-

vantage of probabilistic switching. Many learning algorithms, for instance, encode a

sigmoidal probability into their spiking models in order to produce a gradual change

in behavior for a small change in input. Since nanowires intrinsically possess proba-

bilistic switching, they are a logical hardware platform for these types of applications.

An example of harnessing stochastic firing for solving a real-life problem is discussed

later in this chapter.
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The different curves in Fig. 4-7 for various bias currents show how the threshold

is altered by the "resting potential." These trends can be used to identify the optimal

operating conditions for the soma, with a large difference in firing probability between

the low and high input currents. Comparing the mean voltage outputs of the different

curves at the same input current shows that the firing probability increases with

increasing bias current, as expected. For low bias currents, we observed that the

firing probability decreases at some point as the input current increases. One possible

explanation for this phenomenon is if the inductances of the two branches are slightly

unequal due to material inhomogeneities or other defects; in this scenario, the 𝐿𝐼𝑐

product of one oscillator would be greater than the other, causing flux to build up in

the loop as the soma continues to fire. This accumulation would eventually prevent

one of the oscillators from switching, reducing the firing probability.

Figure 4-7: Firing probability as a function of input current, measured as the mean
voltage output of 500 sequential traces. The different curves represent different bias
currents, swept from 74 𝜇A to 78 𝜇A in 1 𝜇A increments. Input pulses had a 150 ns
pulse width and 20 ns edge times.

Refractory period

In addition to a threshold response, biological nanowires also display a refractory

period, or a required "resting period" between two inputs so that both elicit their own

output spikes. Figure 4-8 shows the effects of the refractory period on the fabricated

soma in comparison to the simulated response. In both cases, the soma was biased at
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75.9 𝜇A while two identical input pulses were applied. The time between the input

pulses was gradually decreased, and the output spikes from the soma were measured.

In the first four panels, the time between input pulses is sufficient for both inputs

to generate separate output spikes. In the fifth panel, however, the soma only spikes

once. By looking at the simulation, it is apparent that the second input pulse ends

right as the first spike relaxes, indicating that the main oscillator is not sufficiently

biased during the second input pulse to fire again. As a result, it is clear that the

soma has a finite refractory period.

Figure 4-8: Evidence of refractory period in the nanowire soma. (a) Simulation. (b)
Experimental measurements (single traces). The fifth panel shows the scenario when
the time between input pulses is less than the refractory period, causing the soma to
only spike once.

The refractory period measurement above can be repeated to get a sense of re-

producibility. Figure 4-9 shows histograms of 200 measurements of the time of each

output spike as the separation between input pulses is gradually reduced. The col-
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lapse of two distinct histograms into one as the input pulses move closer together

verifies the refractory period previously observed in the individual traces.

Figure 4-9: Reproducibility of the refractory period measurement. Histograms rep-
resent 200 measurements of the time at which a spike occurs. The collapse from two
distinct histograms into one confirms the effect of the refractory period.

4.2 Non-stochastic application: image recognition

We can use the LTspice model of the nanowire neuron updated with the experimen-

tally measured circuit parameters to build a simple neural network that can perform

basic tasks. One of the most common applications of neural networks is image or

pattern recognition.

4.2.1 Methods and results

Figure 4-10 shows a set of 3×3 pixel images originally developed for physical memris-

tor circuits [65] and recently simulated in JJ neural networks [66]. The set consists of
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three "ideal" images of the letters "z", "v", and "n", as well as images with single-pixel

errors (nine error images per letter), leading to a total of 30 images.

Figure 4-10: Set of the 30 test images. Each letter is represented by an ideal nine-pixel
image and nine single-pixel-error images. The enlarged image on the right shows how
each pixel is mapped to the input current of the nine pixel neurons. Figure is based
on the abstraction in Ref. [65].

To identify these images, we can use a 9×3 neural network consisting of nine input

pixel neurons and three output letter neurons, as shown in Figure 4-11. In our case,

the pixel colors within each image determine the input current to each pixel, with grey

pixels corresponding to an input current of 4.6 𝜇A and white pixels corresponding to

an input current of 0 𝜇A. As discussed in Chapter 3, the weight of each connection

maps to the magnitude of the synapse inductor, with higher weights interpreted as

lower inductances, leading to more synaptic current.

Following the method described in Ref. [66], we used a basic neural network

script [67] written in Python to build the image set and solve for the weights of a

9×3 neural network. Due to the limited size of the data set, we used all 30 images

for both training and testing, leading to 100% identification. The code for generating

the image set and solving for the weights may be found in Appendix B.1. Table

4.1 lists the calculated weight for each synapse, which was later linearly scaled to a

corresponding inductance value in the circuit. For every synapse, the series resistor

was 4 Ω and the parallel resistors were both 25 Ω.

To test all of the 30 images within one transient simulation, we used piecewise-

linear current sources for the pixel inputs that changed to a new image every ∼50

ns. The Python code for creating the .txt piecewise-linear file for every pixel can be

found in Appendix B.2.
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Figure 4-11: Simplified schematic of the image recognition circuit. The voltage of each
pixel neuron is sent to a synapse connecting to each letter neuron using a behavioral
voltage source. The weight of each synaptic connection determines the magnitude of
the synapse inductor. Grey pixels correspond to an input current of 4.6 𝜇A, while
white pixels correspond to an input current of 0 𝜇A.

Figure 4-12 shows the pixel input currents and the letter output voltages for all

30 images. The ideal cases for each letter are indicated with the red dashed lines,

followed by the nine single-pixel error images. As shown by the network’s output, each

letter neuron fires 10 times, or once for each image, indicating correct classification

of both the ideal and single-error images.
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Table 4.1: Synaptic weights for the 9-pixel circuit

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5 𝑝6 𝑝7 𝑝8 𝑝9
z 1.89 1.04 -0.97 -1.85 0.37 -2.33 -1.13 0.80 1.94
v 0.31 -1.98 1.98 0.50 -1.14 0.93 -0.80 1.46 -1.14
n -1.53 0.99 -1.35 1.66 -0.81 0.14 2.23 -1.71 0.40

Weights are converted into inductances for each synapse. A higher
weight is translated into a lower inductance, leading to more synaptic

current.

Figure 4-12: Simulation of each of the 30 test images. The top nine panels show the
input current sent to each pixel neuron. The bottom panel shows the output voltage
of each of the three letter neurons. Red dashed boxes indicate the "ideal" image for
each letter, followed by their nine single-pixel error images. The "z" and "v" neurons
were biased at 75.3 𝜇A, and the "n" neuron was biased at 75.1 𝜇A. As shown in the
bottom panel, the output letter neurons correctly fire for each of their respective 10
images, and do not fire when the images of the other two letters are presented.

In this initial demonstration, we used behavioral voltage sources to pull the output

voltage from each pixel to their synapses. However, it is also possible to transfer
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the output of each synapse directly to the input of each pixel neuron using inductive

coupling. Figure 4-13 shows a schematic of the 9×3 neural network that uses inductive

coupling between layers, adding an inductor after the second parallel resistor of the

synapse. Like the previous simulation, the weight of each synapse is encoded in the

magnitude of the synapse inductor, as well as the magnitude of the coupling inductor.

Figure 4-14 shows the result of testing all 30 images on the 9×3 neural network

connected through inductive coupling. Like the previous demonstration using behav-

ioral voltage sources, the network correctly identifies all of the test images, showing

that the implementation of weights as inductive strengths is suitable for these types

of applications.

In the cases above, we used all 30 images for both training and testing because

the data set is small, leading to 100% classification. However, for larger data sets,

we would like to be able to solve for the synaptic weights using only a fraction of

the total images as a training set, and then test the resulting network on all of the

images. To show how our network would respond in this scenario, we repeated the

training process using just 9 images that were randomly chosen from the set of 30,

and then modified our circuit with these new synaptic weights. The results shown

in Figure 4-15 indicate that the circuit correctly identifies 23 of the 30 images in the

complete set, which is to be expected in comparison to the previous results since not

all of the images were used during training. We found that the classification could be

improved by non-randomly selecting 12 training images (one ideal image and three

single-pixel error images, per letter), leading to correct identification of 27 of the 30

images. Given that our circuit design has not undergone any optimization, we believe

that our classification results could be further improved by refining our parameters

through processes like Bayesian optimization.

4.2.2 Discussion

Although the nanowire neuron does not yet have a scheme for unsupervised learning,

the classification results above demonstrate that it can be used for inference in a

hardware neural network designed to perform a specific task. Just like in the simple

91



Figure 4-13: Simplified schematic of the image recognition circuit using inductive
coupling. For each synapse connecting to a pixel, the parallel resistance is 25 Ω,
while the left and right resistances are 5 Ω and 6 Ω. The synapse inductance and the
coupling inductance are proportional to the weight, scaled to a baseline of 0.1 𝜇H.
The magnitude of the receiving coupling inductor attached to each letter neuron is
twice the synaptic inductance, and is placed in series with a 0.5 Ω resistor.

3×3 image recognition problem, a network could be built for a targeted application

and software algorithms could be used to calculate weights, which would determine

the synapse inductors for the real system. A physical circuit could be then built with
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Figure 4-14: Simulation of each of the 30 test images in the inductive coupling circuit.
The first nine panels show the input current sent to each pixel neuron. The last panel
shows the output voltage of each of the three letter neurons. Red dashed boxes
indicate the "ideal" image for each letter, followed by their nine single-pixel error
images. The letter neurons were biased at 76.9 𝜇A and had input currents of 5.46
𝜇A.

these calculated parameters and used as an energy-efficient inference platform.

These simulations of a simple neural network using experimentally measured de-

vice characteristics also set the foundation for larger, more complex demonstrations

with nanowire neurons. For example, greyscale images could be processed by map-

ping the pixel color to spiking frequency, which can be tuned with bias current, while

finer image resolution may be obtained by increasing the number of pixel neurons.
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Figure 4-15: Simulation of each of the 30 test images in the inductive coupling circuit,
using a training set of 9 randomly chosen images. 23 of the 30 images were correctly
identified. The letter neurons were biased at 76.9 𝜇A and had input currents of 5.45
𝜇A.

4.3 Stochastic application: winner-takes-all (WTA)

The image recognition example above used a soma model that fires deterministi-

cally, or exactly when the current through the nanowire exceeds its 𝐼𝑐. However, the

threshold measurements in Fig. 4-7 revealed the probabilistic nature of spiking in

real superconducting nanowires due to the effects of noise and fluctuations. Here we

discuss an application that relies on probabilistic firing.
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4.3.1 Background

As mentioned previously, biological neurons also have firing probabilities, which has

inspired theories of how stochastic behavior may play a critical role in the brain’s op-

eration. One key example of harnessing stochasticity is the winner-takes-all (WTA)

theory of how the brain develops selectivity for a set of inputs [68]. With hundreds

of thousands of neural connections, the brain must somehow make meaningful dis-

tinctions between many input signals in order to make decisions. In other words, if

every neuron fired in response to a large number of input signals, the overall response

would be meaningless.

Figure 4-16: Diagram of the two-inhibitor WTA network. A set of inputs X connect
to a set of outputs Y. Two inhibitors 𝑍𝑐 and 𝑍𝑠 foster competition between the
outputs. Blue arrows denote excitatory connections (positive weights), red arrows
denote inhibitory connections (negative weights). Weights for all connections are
labeled on the 𝑛𝑡ℎ neuron and are scaled relative to the unitless factor 𝛾. Figure is
based on the diagram in Ref. [69].

The WTA theory suggests that the brain develops selectivity through competi-

tion between excitatory neurons that share a set of inhibitory connections. As the

excitatory neurons start firing in response to a set of input signals, they trigger the

inhibitors, which in turn start to suppress their firing. The excitatory neurons "com-

pete" until just one is left in the firing state.

The idea of developing selectivity through competition has inspired the use of

WTA in artificial networks for filtering, image recognition, and decision-making [70].

It has also been suggested that WTA subcircuits are repeated throughout the brain,

creating selective responses that together dictate a cumulative behavior.
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Figure 4-16 shows a schematic of a two-inhibitor WTA network based on the

theory presented in Ref. [69]. When a set of input neurons 𝑋1:𝑛 fires, they trigger

a set of stochastic output neurons 𝑌1:𝑛 that each fire with a finite probability. Their

competition is facilitated by two inhibiting neurons 𝑍𝑠, the stability inhibitor, and

𝑍𝑐, the convergence inhibitor. 𝑍𝑠 is biased so that it fires when at least one output

neuron is firing, whereas 𝑍𝑐 is biased so that it only fires if more than one output is

firing. 𝑍𝑐 eventually forces all but one neuron to stop firing, while 𝑍𝑠 continues to

fire in order to stabilize the network and suppress all but the dominant neuron. Since

𝑌1:𝑛 are identical and stochastic, they have equal probability of winning if all of their

inputs are active.

4.3.2 Methods and results

To take advantage of the nanowire’s intrinsic stochasticity for simulating a WTA

competition, we can introduce noise sources into the soma model that cause it to

spike with a bias-dependent probability. We amended our model to include Gaussian

white noise sources at the bias port and the input port, where we expect the majority

of noise to be injected. Keeping the noise bandwidth constant at 1 GHz, we varied

the noise amplitude until the firing probability was similar to what we observed

experimentally.

Figure 4-17 compares the simulated firing probability to the experimentally mea-

sured probability, converted from the mean voltage output curve of Fig. 4-7. The

experimental bias was 74.5 𝜇A, while the simulated bias was 76.6 𝜇A with a noise

amplitude of 800 nA. The simulated probability was calculated by recording the num-

ber of times the soma fired out of 50 trials for each input current level. The relative

agreement between the simulated and experimental results suggests that the noise

source is suitable for implementing a realistic firing rate in our model.

With these adjustments to our model, we designed a simple two-inhibitor WTA

network with three inputs and three outputs. The inputs and inhibitors were deter-

ministic, while the outputs included the noise sources described above in order to

fire stochastically. Each output neuron was biased at 76.6 𝜇A, while the bias to 𝑍𝑠
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Figure 4-17: Simulated firing probability compared to experimental result. The ex-
perimental bias was 74.5 𝜇A. The simulated bias was 76.6 𝜇A.

was 76.8 𝜇A and the bias to 𝑍𝑐 was 76.5 𝜇A. The inductance of each synapse was

calculated by scaling the unitless weights shown in Fig. 4-16 to a baseline inductance

of 0.77 𝜇H. As in the initial design of the image recognition circuit, output voltages

were transmitted to synapses through behavioral voltage sources.

Figure 4-18 shows the time-domain voltage output for each neuron in an example

when the first and third input neurons are active (overall input vector = [101]).

Output neurons 𝑌1 and 𝑌3 both fire, triggering 𝑍𝑠 and 𝑍𝑐. Eventually, 𝑌3 is turned

off by the inhibition, and 𝑍𝑐 is no longer active. 𝑌1 continues to fire after it wins, in

addition to 𝑍𝑠 which keeps the other two outputs suppressed.

Figure 4-19 shows a competition between all three output neurons (input vector

= [111]). As expected, 𝑍𝑐 influences the competition by first eliminating 𝑌1 and then

𝑌3, turning off only once 𝑌2 wins. 𝑍𝑠 remains firing to stabilize the network.

Since the firing of all three output neurons is probabilistic, they should have

equal chance of winning a competition if the three inputs are active and every other

parameter is the same (e.g. the synapse between an inhibitor and a particular output

neuron is not weighted differently from the others). To prove this is the case, we

ran 49 competitions between all three inputs and recorded the winner for each trial.

Figure 4-20 summarizes the outcome. The blue data represents wins that resulted

from a competition in which all three outputs were firing at some point. The red data
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Figure 4-18: WTA competition between two output neurons, Y1 and Y3. The input
to the second output neuron is turned off, so Y2 never fires. Y1 and Y3 both initially
fire in response to their inputs, but Y3 is eventually turned off by the inhibitors and
Y1 wins. The stability inhibitor 𝑍𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 continues to fire after the competition in
order to keep Y3 suppressed.

represents wins in trials where only two outputs fired, indicating that the remaining

output was suppressed early on. Six of the trials are not shown, since they either had

no winner by the end of the simulation time, or a win occurred but not through the

actions of the convergence inhibitor. Overall, 𝑌1 and 𝑌3 both had a total of 14 wins,

while 𝑌2 had 15 wins. These results suggest there was an equal competition between
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Figure 4-19: WTA competition between all three output neurons. Each of the three
input neurons are active, causing the three outputs to fire. Y1 is the first output to
be turned off, followed by Y3. Y2 wins, while the stability inhibitor continues to fire
in order to keep the other two output neurons suppressed.

the output neurons.

Like in the image recognition example, it is also possible to use inductive coupling

to connect synapse outputs to the inputs of neurons in the WTA circuit. However,
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Figure 4-20: Result of 49 sequential simulations of WTA with three neurons. Blue
bars indicate wins where all three neurons fired over the simulation. Red bars indicate
wins where one neuron never fired, leading to a competition between the remaining
two. 6 of the 49 simulations had errors, where either there was no winner, or the
convergence inhibitor failed to fire.

we found that the circuit may not be as stable as the image recognition case due

to the added noise sources. The amount of synaptic current being received by each

output neuron is the same order of magnitude (∼ 0.5 𝜇A) as white noise sources.

Consequently, when the neurons are biased high enough to be switched by the synaptic

currents, they are also more likely to switch randomly due to noise 1.

Figure 4-21 shows an example of WTA competition between three output neurons

whose synapses are connected by inductive coupling. In this particular competition,

the first output neuron wins. As with the image recognition circuit, inhibitory con-

nections were performed by reversing the polarity of the inductive couplers.

The inductive coupling simulations proved to be less stable than the simulations

that used behavioral voltage sources to directly pull output voltages into synapses.

Figure 4-22 displays the result of 100 repeated competitions between all three output

1It is worth noting that we refer to "bias" differently from typical neural network usage. In the

case of superconducting nanowires, a higher bias current means a reduction in firing threshold, so

the neuron will be more likely to fire. Neural networks often take the opposite meaning, where a

higher bias means a higher threshold and a lower firing probability
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Figure 4-21: Example of a WTA competition between three output neurons when
the synaptic connections are performed through inductive couplers. In this case, Y1
wins. For this simulation, the bias of the output neurons was 76.4 𝜇A, the bias of 𝑍𝑠

was 76.98 𝜇A, and the bias of 𝑍𝑐 was 76 𝜇A. Synapse inductors were scaled relative
to 0.77 𝜇H, and the couplers had a 1:2 ratio.

neurons, where the noise to each output neuron was randomized at the beginning of

every trial. Each neuron won between 20–27 total competitions (Fig. 4-22(a)), but 29

of the 100 competitions resulted in no winner, usually with all three output neurons

being shut off (Fig. 4-22(b)). In some cases, this seemed to be due to continued firing

of the stability inhibitor, despite the outputs being turned off, which could be caused
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by instability resulting from biasing it so close to its critical current. This issue may

be avoided by optimizing our circuit parameters to increase the synaptic currents so

that the biases to the neurons can be lowered.

Figure 4-22: Result from 100 WTA competitions between all three output neurons
using the inductive coupling scheme. (a) Number of wins per output neuron. Each
neuron won between 20–27 of the 100 competitions. (b) 71 of the competitions re-
sulted in a win, while the remaining 29 competitions either had no winner (i.e. either
two or three neurons were still firing at the end of the simulation) or all three neurons
were turned off.

4.3.3 Discussion

TheWTA simulations showcase how the unique dynamics of superconducting nanowires

can be harnessed for real applications and for mimicking behaviors observed in na-

ture. While probabilistic switching is avoided in most digital circuits, neural-inspired

architectures based on the stochasticity of biological neurons are prime opportunities

to use nanowires to their full potential. Unlike other demonstrations of WTA compe-

titions where winning results from a neuron having a higher intrinsic firing frequency

or a weaker connection to the inhibitors, the scheme demonstrated in this thesis re-

lies solely on probabilistic firing, demonstrating how probability can be a powerful

tool in system dynamics. Our results show that experimentally measured device pa-

rameters can be incorporated into our model to build a network that uses stochastic

firing to produce a meaningful output from a set of inputs, and that superconducting
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nanowires have enough inherent stochasticity to support this type of competition.

Looking forward, nanowire-based WTA circuits could be combined with memory el-

ements that save the competition result as a means of establishing selectivity, while

WTA subcircuits could be repeated throughout a large-scale network, like they are

thought to in the brain.
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Chapter 5

Fabrication studies

Superconducting nanowire devices like those presented in this thesis rely on the ability

to pattern thin films with ∼10 nm precision. This high-resolution control is usually

achieved with electron-beam lithography, involving the application of chemical resists

and developers in order to create a desired pattern. It is therefore critical that the

chemicals used in patterning a device are compatible with its underlying material in

order to avoid device damage or degradation.

While the devices discussed thus far have been patterned using positive tone re-

sists, negative tone resists are used in many processes. This chapter discusses two

investigations of the compatibility of different negative tone processes with niobium

nitride films. The first study shows that tetramethylammonium hydroxide (TMAH),

a common developer for negative tone resists, reacts with niobium nitride thin films

to form an etch barrier that limits device fidelity [71]. The second study looks at

ma-N 2400 series photoresist as an alternative negative tone resist for patterning

superconducting devices [72].

The text that follows includes reprints from works that were originally published

in the Journal of Vacuum Science & Technology B in 2018 and 2019. I would like

to acknowledge Marco Colangelo for conducting these studies with me, and Navid

Abedzadeh for help with the scanning electron micrographs in Ref. [71].
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5.1 Influence of TMAH on NbN

Precise control of superconducting materials at nanoscale dimensions demands both

a high-resolution electron-beam lithography process and a superior electron-beam

resist. Hydrogen silsesquioxane (HSQ) is a negative tone electron-beam resist often

selected for these purposes due to its 5 nm resolution and minimal line edge roughness

[73] [74]. After patterning HSQ, development is commonly done using solutions of the

strong base TMAH; for instance, past processes have developed HSQ by submerging

it in 25% TMAH for durations ranging from 1 to 4 min [75] [76] [77] [78]. TMAH has

also been used to pretreat films before spinning resist in order to activate the film

surface and promote HSQ adhesion [79] [80].

Despite the prevalence of TMAH in fabrication processes for superconducting

devices, its potential negative effects on the superconducting film itself have not been

fully investigated. As a result, it is unknown whether TMAH damages films in a way

that somehow limits superconducting device performance. Prior literature showed

that pretreating NbN films with 25 % TMAH for 4 min increased the sheet resistance

𝑅𝑠 and decreased the critical temperature 𝑇𝑐, suggesting degradation and potential

thinning of the superconducting material [79]. However, no further studies have been

made to verify or explain this observation.

We were motivated to understand this phenomenon when we noticed that a thick

NbN film (thickness d ∼20 nm) patterned with HSQ took nearly twice as long to etch

in CF4 as an unpatterned control film, causing the HSQ mask to be almost entirely

removed before the etch was complete. The effects of this over-etching are displayed

in Figure 5-1. As this mask removal left the underlying NbN vulnerable to damage

by reactive ion etching (RIE), it became clear that a deeper understanding of the

lithography process was needed to guarantee successful pattern transfer and device

fidelity, especially for thick films.

To address this problem, we investigated the HSQ development process with NbN

films and demonstrated that the observed discrepancy in etch time is caused by

TMAH reacting with NbN, modifying the film’s surface chemistry and reducing the
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Figure 5-1: Removal of HSQ mask due to prolonged reactive ion etching. (a) SEM
of a three-terminal superconducting device patterned with HSQ prior to etching. (b)
SEM of the same device after the etching was complete (8 min). The rough surface
suggests that the HSQ mask may have been mostly removed, exposing the NbN film
of the device and leaving it vulnerable to damage.

thickess of the pure superconductor. As shown in Figure 5-2, TMAH has an observable

impact on the film’s appearance, increasing the surface roughness and creating clusters

of material that form a barrier to reactive ion etching in CF4. The steps taken to

uncover this new understanding are presented here as two primary experiments. In the

first experiment, we explored how exposure to TMAH hinders the reactive ion etching

of NbN films, and demonstrated how the effect may be ameliorated. In the second

experiment, we performed material analysis on both the superconducting film and

the clusters formed at the surface to identify the etch contaminant species. Through

these steps, it became apparent that the reaction that forms the surface contaminant

deteriorates the critical parameters of the pure superconductor by consuming the film.

5.1.1 Experiment 1: impact on etch rate

To investigate the impact of TMAH on the reactive ion etching of NbN, we exposed

NbN samples diced from the same wafer to the 25 % TMAH developer for various

durations, and measured their sheet resistances after etching as an indicator of re-

maining film thickness.

Methods
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Figure 5-2: Modification of the NbN surface by TMAH. SEMs reveal the difference in
surface features between (a) an NbN film that has been submerged in 25 % TMAH for
4 hours, and (b) an NbN film that has been untreated. The ridge represents the edge
of a pattern made via photolithography to serve as a reference point for imaging. The
treated sample was immersion rinsed in deionized water for 30 s following exposure
to TMAH.

An NbN film was first bias sputtered at room temperature on a 4 inch Si wafer

in an AJA sputtering system following the procedure described in Ref. [38]. The

film had a sheet resistance of approximately 90 Ω/square, a critical temperature of

8.1 K, and a thickness of ∼20 nm. After dicing the wafer into 1 cm square samples,

the samples were cleaned in acetone, methanol, and isopropyl alcohol (IPA). Once

cleaned, we submerged each sample in 25% TMAH for durations ranging from 0 to

90 s. To stop exposure to TMAH, the samples were rinsed in deionized (DI) water

for either the traditional 30 s used in our standard process, or for 3 min under a

constantly running DI stream. Samples were then briefly rinsed in IPA, another step

used in our conventional HSQ process to reduce surface tension. No HSQ was applied

at any step of the process.

Following exposure to TMAH, the samples were reactively ion etched in a Plas-

matherm RIE in CF4 for 2.5 min at an RF power of 50 W and a chamber pressure of

10 mTorr. The sheet resistances of the samples were then measured using a four-point

probe. The resistance of the samples were measured again after an additional minute

of etching, corresponding to a total etch time of 3.5 min. To get a better sense of

how the measured sheet resistances reflected the etching process, the resistances were

converted into inferred film thicknesses using the conversion 𝑑 = 𝜌/𝑅𝑠, where d is
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the remaining film thickness, 𝑅𝑠 is the sheet resistance, and 𝜌 is the resistivity. An

estimate of 𝜌 was obtained by using x-ray reflectometry to measure the thickness of

a sister film with the same sheet resistance as the samples under investigation and

calculating the resistivity using the expression above. From this approach, we ob-

tained a value of 𝜌 = 2.5 kΩ·nm, which is consistent with the results for a ∼5 nm

film reported in prior work [81]. Given the agreement between values, we assumed a

constant resistivity across all of the samples for the sake of simplicity, allowing us to

compare inferred film thicknesses between samples.

Results

Figure 5-3 shows the inferred remaining NbN film thickness as a function of expo-

sure time to the TMAH after each of the etch trials. In comparison to the undeveloped

control sample, those that had been exposed to TMAH for 30–90 s and rinsed with

the standard 30 s DI water procedure had noticeably greater film thicknesses after the

2.5 min etch; this difference in film thickness indicates that the processed films were

less etched than the control film, as we had initially observed in the patterned chip

that first motivated this study. The difference in thickness between the control and

exposed samples slightly increased after an additional minute of etching, implying

that a type of barrier to etching was present on the treated films.

Interestingly, subjecting the treated samples to a 3 min DI water rinse under a

running stream significantly reduced the discrepancy in remaining film thickness of the

treated films with respect to the control. Whereas treated sampled that were rinsed

for 30 s differed in thickness from the control by about 7–8 nm, those that underwent

the vigorous rinse were within 2 nm of the untreated sample film thickness. This

result suggests that the material that formed the barrier to etching is water soluble.

However, it should be noted that simply submerging treated samples in DI water

for 3–5 min had no noticeable improvement over the 30 s rinsing process, suggesting

that a constant resupply of DI water on the film surface is necessary to remove the

barrier. This is consistent with prior studies comparing immersion cleaning to direct

spraying, which have found that a steady water flow improves rinsing by continuously

exposing the film surface to fresh solutions and allowing more efficient penetration
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Figure 5-3: Impact of TMAH development on the reactive ion etching rate of bare
NbN films in CF4. Plots show the remaining film thickness vs. exposure time to
25% TMAH. Thicknesses (inferred from sheet resistances) were measured after (a)
2.5 min and (b) 3.5 min of RIE. The legend indicates different rinse times in DI water
following exposure, while the star represents the untreated control sample. Error
bars represent ±𝜎, where 𝜎 is the standard deviation of the four-point resistance
measurement.

into the material through shear force from the stream [82][83][84].

Additionally, the remaining thicknesses of the samples that were vigorously rinsed

for 3 min hint at the possibility of the NbN film being thinned by the development

process. If the etch barrier was indeed removed by the DI rinsing, the lower remaining

thickness of the sample developed for 90 s in comparison to those that were developed

for 30 and 60 s implies that it had a thinner initial film thickness before the etching

took place, assuming the etch rate was the same between the samples. As a result, it

is apparent that exposure to TMAH not only creates a barrier to the etching of NbN

films but also makes a physical change on the film itself.

5.1.2 Experiment 2: material analysis

In order to explain the observed reactive ion etching trends shown in Fig. 5-3, we

analyzed the composition of the etch barrier and measured the superconducting prop-

erties of NbN films exposed to TMAH.

Methods
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Changes to the superconducting properties of the films were studied by measur-

ing the 𝑅𝑠 and 𝑇𝑐 of the samples as a function of exposure time to 25% TMAH. To

maximize the observable change with respect to the initial film thickness, we sput-

tered a thinner film than used previously (d = 5 nm, 𝑅𝑠 = 600 Ω/square); the sheet

resistances of this magnitude are similar to those of NbN films used for single pho-

ton detectors, making this study particularly relevant to the fabrication of standard

superconducting devices.

Following deposition, samples of the film were submerged in 25% TMAH for du-

rations ranging from 1 min to 25 h, followed by a vigorous 3 min DI rinse to remove

the etch barrier species. Afterwards, the sheet resistance and critical temperature

of each of the samples were measured. As before, 𝑅𝑠 measurements were converted

into inferred film thicknesses; for these films, 𝜌 was estimated to be 2.9 kΩ·nm from

x-ray reflectometry measurements of a sister film. A control sample with no TMAH

exposure was also evaluated.

Analysis of the etch barrier composition was performed using Fourier transform

infrared (FTIR) spectroscopy operated in the attenuated total reflection (ATR) mode.

The sample was prepared by sputtering a thick NbN film of the same properties

(𝑅𝑠 = 90Ω/square) as those used in Fig. 5-3 on an Si wafer. The full wafer was

submerged in 25% TMAH for 4 h. To collect a film of the etch barrier, the wafer

was sonicated in DI water for 20 min and rinsed in IPA. A solution of the sonicated

bath was left to evaporate for 3 days, resulting in a dense liquid with visible clusters

of material. Drops of this solution were then pipetted onto a clean Si water and

dried on a hotplate at 90∘C for 5 min to remove excess solvents. Figure 5-4 shows a

photograph of the wafer with the dried solvent. A Thermo Fisher Continuum Fourier

Transform Infrared Microscope was then used to collect spectra of the material.

Results

Figures 5-5(a) and (b) display the changes in superconducting film parameters that

occurred with increased exposure to 25% TMAH. Exposing the film for as little as 60

s—a common development time—led to a 0.25 nm or 5% decrease in film thickness,

and 0.2 K decrease in 𝑇𝑐. In the extreme case of 25 h exposure, the film thickness
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Figure 5-4: Dried solution of the etch barrier on a section of Si wafer, which was used
for FTIR analysis.

decreased by nearly 3 nm or almost 57%, and the 𝑇𝑐 decreased by roughly 1.6 K.

These results suggest that the film is thinned by contact with TMAH and that even

short exposure times are enough to degrade the superconducting film. Additionally,

the absence of saturation in the trends of Figures 5-5(a) and (b) implies that the

reaction between TMAH and the film does not only involve the thin (∼1–2 nm) layer

of oxide that grows on the NbN surface, which would cause the trend to plateau soon

after the oxide was consumed, but rather involves the entire superconducting film.

This change may be better understood through the ATR-FTIR spectrum of the

precipitated etch barrier shown in Fig. 5-5(c). In addition to the peaks characteristic

of TMAH at 1490 and 951 cm−1, there are low lying peaks at 838, 692, and 650

cm−1. These peaks were found to be in agreement with three of the main signatures

in the spectrom of a TMA-hexaniobate salt ([(CH3)4N]5[H3Nb6O19]·20H2O), which

has recently been synthesized by reacting hydrous niobium oxide Nb2O5 with TMAH

in solution [85]. Remaining peaks around 1620 and 1393 cm−1 may correspond to

the typical signatures of surface hydroxyl groups from absorbed water [86][87][88][89]

and the C-H bending of methyl species [90][91], respectively, while the peak at 1000

cm−1 may represent the native oxide of the silicon substrate [92][93].

Identification of TMA-hexaniobate as the primary etch barrier material explains

several of the phenomena reported above. First, the intrinsic water solubility of the

salt accounts for the ability to remove the etch barrier through a vigorous DI water

rinse. Additionally, Ref.[85] showed that TMA-hexaniobate readily forms clusters
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Figure 5-5: Evidence of the reaction involving NbN. (a) Inferred film thickness of
a thin NbN film for various 25% TMAH development times. Error bars represent
±1

2
𝜎, where 𝜎 is the standard deviation of the four-point resistance measurement.

(b) Critical temperature for the same samples shown in (a). Error bars represent
±1

2
𝜎, where 𝜎 is the standard deviation of the critical temperature measurement. (c)

ATR-FTIR spectrum of precipitate from a thick NbN film left in 25% TMAH for 4 h.
The spectrum reveals peaks corresponding to reported values for a TMA-hexaniobate
salt.

with itself, which could manifest in the enhanced surface roughness of the treated film

displayed in Fig. 5-2. Finally, an etch barrier formed from a reaction that involves

Nb would account for the measured deterioration in thickness and 𝑇𝑐 that indicated

a reduction of the pure NbN film; it would also explain the similar deterioration

caused by TMAH pretreatment that was reported in Ref.[94]. Thus, information

from the IR spectrum revealed the mechanism behind our previous observations,

which is conceptually presented in Figure 5-6.

Although there remains some debate about the precise dynamics dictating the

etching of NbN in CF4, there are certain means through which the presence of the

113



Figure 5-6: Conceptual illustration of surface modification by TMAH. Exposing the
NbN film to 25% TMAH leads to a reaction that produces TMA-hexaniobate clusters,
thinning the pure NbN film and creating a barrier to reactive ion etching. However, a
sufficiently vigorous DI water rinse removes the clusters, leaving behind an NbN film
that is thinner than the initial state. (Thanks to Marco Colangelo for the illustration.)

TMA-hexaniobate salt could interfere with the etching process. Research on reactive

ion etching with CF4 has shown that polymerization occurs as the amount of available

fluorine decreases, forming unsaturated polymers that more readily adhere to surfaces

[95]. This effect can be enhanced by the presence of hydrogen, producing polymer

deposits such as CHF𝑥 and blocking the underlying substrate from being etched [96].

Reduced etching via plasma polymerization has also been observed in molybdenum,

which reacted with chemisorbed fluorocarbon radicals to form an etch-stop [97]. As

Nb and Mo are both refractory metals, it is possible that a similar process is occuring

in our samples. The TMA-hexaniobate salt may also be slowing the etch by consuming

the reactant that dominates the chemical etching of NbN. Past work suggests that

active atomic fluorine etches NbN by reacting to form volatile fluorides [98]; however,

the etch rate was observed to decrease in the presence of CHF3 and CH4, which

reduced the amount of available active fluorine by participating with it in a reaction

[99]. Thus, it is possible that the TMA-hexaniobate salt reacts with CF4 to form

a polymer barrier that blocks the physical etching of NbN while also limiting the

chemical etch by consuming the principal reactant. Further surface analysis and

study of the reactive ion etching process are needed to confirm these suspicions.

5.1.3 Outlook

We observed that the 25% TMAH developer used in standard HSQ patterning ad-

versely affects NbN films by reacting with them to form an Nb-based salt that creates
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a barrier to etching in CF4. We demonstrated that the etch barrier forms even for

development times as short as 30 s, but that it can be removed through vigorous DI

water rinsing. This approach offers a workable solution to the pattern transfer issues

we encountered in thick NbN films; however, it does not prevent the initial film dete-

rioration that takes place as a consequence of the reaction between TMAH and NbN.

While an HSQ mask can protect the top face of a structure during development, the

sides of the pattern would remain vulnerable, threatening the quality of a particu-

larly thin or narrow feature. Our work also reveals that processes which use a 25%

TMAH pretreatment before spinning HSQ in order to promote adhesion deteriorate

the quality of the NbN before patterning even takes place. For particularly thin films

like those used in the fabrication of single photon detectors, even minor deterioration

of the surface could bear significant consequences on device performance.

Given these limitations, it would be beneficial to evaluate if more dilute TMAH-

based developers such as MF CD-26 have the same effect or if they could be used

as substitutes. Alternative developers of HSQ such as salty developers [100] may be

used, but their influence on superconducting films has not yet been reported. It may

also be worthwhile to investigate if other etch processes such as Ar ion milling of Cl2

reactive ion etching could replace CF4 in order to avoid the vigorous 3 min DI water

rinse required to remove the etch barrier. Finally, adding a protective layer between

the NbN and HSQ could prevent direct contact with the developer.

While further work is needed to create an HSQ fabrication process that poses no

harm to NbN films, these experiments nonetheless explored steps that can be taken to

classify and ameliorate an unknown etch contaminant in superconducting materials.

By using FTIR, it was possible to obtain a spectrum of the precipitated contaminant,

while measurements of film parameters, etch characteristics, and surface features

provided evidence to support the contaminant’s identity. Although this investigation

was specific to NbN, it is possible that other materials such as tantalum undergo

similar processes, motivating future studies of the same nature on a wide range of

films.
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5.2 Use of ma-N as a negative tone EBL resist

While the previous section revealed problems caused by the pretreatment and de-

velopment of HSQ with TMAH, there are additional limitations in using HSQ with

superconducting materials. First, exposed HSQ cannot be easily removed without

the use of a strong reagent such as hydrofluoric acid, which damages the quality of

the superconducting film. The inability to remove HSQ is particularly hindering as

nanowires are gaining popularity in more complex circuits that involve integration

with other technologies, such as magnetic memory elements [24]. Such complex cir-

cuit environments often demand multilayer processes, which require exposed resist

to be removed between layers. Since HSQ cannot be stripped without damanging

the underlying device, it is clearly unsuitable for these applications. Additionally,

HSQ has a high areal dose density (∼3500–4000 𝜇C/cm2 in a 125 kV EBL system) in

comparison to many positive tone resists, which prolongs the write time for complex

circuits with many components. As a result, there is a need for alternative negative-

tone electron-beam resists to support the advancement of superconducting devices

towards more complex applications.

Here, we report on the use of ma-N 2400 series deep ultraviolet photoresist (@mi-

croresist technology) as an electron-beam resist for patterning superconducting nanoscale

devices. ma-N 2400 series resist is primarily composed of a polymeric bonding agent

(phenolic resin) and a bisazide photoactive compound [101]. In contrast to HSQ,

exposed ma-N can be removed with solvents like N -methyl-2-pyrrolidone (NMP),

which is generally harmless to superconducting films like NbN, allowing for multi-

layer processing. Additionally, ma-N’s dose is roughly four times lower than that of

HSQ in 125 kV EBL systems, which could significantly reduce the write time for large

patterns. While previous studies have reported minimum feature sizes of 50 nm or

more [101][102], we were able to pattern repeated lines of widths down to 30 nm and

individual features with minimum dimensions less than 20 nm. To demonstrate ma-

N’s suitability for patterning superconducting devices, we compared the performance

and geometry of 36 identical devices and concluded that the reproducibility was sat-
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isfactory. These efforts also enrich our understanding of superconducting nanowire

uniformity in general, since there are very few systematic studies on lithographic

variations in nanowire patterning.

5.2.1 Resist characterization

To discern whether ma-N was a suitable resist for patterning nanoscale features, we

studied its resolution and characterized its etch resistance in a fluorine chemistry

relative to that of HSQ. The process used to pattern with ma-N aligned closely with

recipes reported in previous literature [102][103].

All chips were written using ma-N 2401, the most dilute of the ma-N 2400 series.

Prior to exposure, ma-N 2401 was spun at 3 krpm for 60 s, yielding a thickness of about

92 nm, and then baked at 90 ∘C for 60 s. Afterwards, patterns were written using

a 125 kV Elionix system (ELS-F125) with a 500 pA beam current, corresponding

to a spot size of 2 nm. Doses ranged from 800 to 1000 𝜇C/cm2, depending on

the pattern. Following exposure, chips were developed in Microposit MF CD-26 at

room temperature for 10 s with gentle agitation by hand and immediately rinsed

in DI water and blown dry using a nitrogen gun. The resolution was assessed by

examining the patterns using a scanning electron microscope (Zeiss Sigma HD). Some

features written only in ma-N 2401 without an underlying superconducting film were

sputtered with gold-palladium prior to imaging to enhance contrast. The resist could

be stripped by submerging the chip in heated NMP at 60 ∘C for 1 h, offering a

significant advantage over HSQ. We did not observe any adverse effects of prolonged

immersion in heated NMP on the quality of the quality of superconducting films.

Using the methods described above, we patterned a variety of geometries on a

1×1 cm2 Si die with 300-nm-thick thermal oxide. Figure 5-7 displays several of these

features. As shown in Fig. 5-7(a), it was possible to resolve 30-nm lines with a 120-nm

pitch, a smaller resolution than what has been previously claimed [101][102]. Besides

repeated lines, we also patterned isolated features. Fig. 5-7(c) shows an example

of one such feature, a T-shaped pattern with the same geometry the nanocryotron

(nTron) [23]. As indicated on the figure, the minimum feature size of this pattern
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was ∼18 nm, measured using image analysis software (PROSEM). This result demon-

strates that the resolution of ma-N resist is better than what had been previously

thought and that it is suitable for patterning isolated features narrower than 20 nm.

Figure 5-7: Resolution of ma-N 2401 patterned using 125 kV Elionix. (a) 30-nm
lines with a 120-nm pitch. (b) 60-nm lines with a 120-nm pitch.(c) Three-terminal
pattern with a minimum isolated feature size of ∼18 nm. The granularity is due
to the gold-palladium sputtering that was used to enhance imaging contrast on the
dielectric substrate.

To ensure that ma-N 2401 could hold up during pattern transfer to underlying

superconducting films, we compared its etch resistance to that of HSQ, our traditional

negative tone resist. We first spun 4% HSQ and ma-N onto two identical Si chips,

both at 3 krpm for 60 s. After spinning, the ma-N chip was baked as described above,

and the initial thickness of each resist was approximated using a multiwavelength

ellipsometer (FilmSense FS-1) with a Cauchy model. The HSQ had an initial film

thickness of about 63 nm, and the ma-N had an initial thickness of about 92 nm.

Afterwards, we reactively ion etched both chips together in CF4 in 1 min intervals

and measured their thicknesses using the ellipsometer after each step. The process

was repeated until the resist with the highest etch resistance was reduced to 50% of

its initial thickness. As shown in Figure 5-8, the 4% HSQ had an etch rate of roughly

14.5 nm/min, while the ma-N had an etch rate of 8.9 nm/min. It is important to note

that both of these resists were unexposed, so it is possible that their etch resistances

would be slightly higher following exposure [104]. However, the results shown here

indicate that ma-N’s etch resistance is comparable to, if not better than, that of HSQ

for a fluorine-based etch, allowing us to conclude that choosing ma-N over HSQ to

118



pattern superconducting devices does not sacrifice the fidelity of the pattern transfer.

Figure 5-8: Etch rate in CF4 of ma-n 2401 and 4% HSQ (both unexposed). The etch
rate of ma-N 2401 was 8.9 nm/min, and the etch rate of 4% HSQ was 14.5 nm/min.

5.2.2 Device reproducibility

To test ma-N’s reproducibility, we patterned 36 identical nTrons on the same chip

and compared their performance and minimum dimensions.

To fabricate the devices, we first used an AJA sputtering system to deposit an

NbN film with a sheet resistance of 150 Ω/square on a 1×1 cm2 die cut from a 4 in.

Si wafer. Prior to patterning the superconducting devices, 50-nm-thick gold pads for

making electrical contact were fabricated using a bilayer photoresist process followed

by lift-off. Afterwards, nanowire structures were patterned using the ma-N 2401 EBL

process described above, followed by reactive ion etching in CF4. Each device was

imaged, and the resulting SEMs were processed using PROSEM software to determine

the minimum dimensions.

After imaging, the current-voltage characteristics of the devices were measured in

a cryogenic probe station at 4.89 K. A bias current was applied using a DC battery

source (Stanford Research Systems SIM928) in series with a 100 kΩ resistor. The

bias current was ramped from 0 to 30 𝜇A, and the voltage was read out through a

Keithley multimeter.

Figure 5-9(a) shows a micrograph of one of the devices. As mentioned previously,
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nTrons are three-terminal devices that act similarly to a comparator, and their func-

tionality depends heavily on their minimum dimension, the gate. To trigger an nTron,

an input signal greater than the gate’s switching current is applied to the gate, creat-

ing a hotspot that then causes the channel to switch from superconducting to normal

[23]. An example of the current-voltage characteristics of one of the gates, indicating

its switching current 𝐼𝑠𝑤 is shown in Figure 5-9(b). Since the ideal switching current

of a superconducting structure is the product of the film’s critical current density and

the structure’s width (ignoring confounding effects like nonuniformities), the width of

the gate is critical in determining when the nTron fires. By comparing the width and

switching current of each nTron’s gate, we can therefore get a sense of how reliably

ma-N resolves identical sub-50-nm features.

To compare gate widths, we used PROSEM to measure the minimum dimension

of each gate’s micrograph and to generate each gate’s edge profile. Figure 5-9(c)

displays the profiles of all 36 gates, offset from each other in the z -axis for clarity.

The x -axis represents the horizontal distance across the gate, while the y-axis shows

the vertical distance, which also defines the gate’s width. By visually comparing the

profile of each gate, we can see edge deviations from the desired pattern and observe

differences between the structures in a way that is not obvious from simply looking

at side-by-side micrographs.

Although the edge profiles provide qualitative evidence of variability between de-

vices, the minimum dimensions and switching currents offer a more quantitative and

sensitive comparison. Figure 5-10(a) shows a histogram of the switching currents for

all 36 devices, with a mean of 15.88 𝜇A and a standard deviation of 3.13 𝜇A. These

statistics are typical of our nanowire devices, which usually have a standard deviation

of 10%–20% of the mean [94]. Figure 5-10(b) displays a histogram of the minimum

gate dimensions measured using PROSEM, with an average of 33.7 nm and a stan-

dard deviation of 2.4 nm, suggesting that the patterned geometry is less variable than

the switching current.

As a possible explanation of the spread in switching currents, we can plot the

switching current of each device as a function of its minimum width, as shown in
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Figure 5-9: Three-terminal superconducting devices patterned using ma-N 2401. (a)
SEM showing one of the 36 devices. The inset shows an enlarged view of the narrowest
feature, the gate. (b) Current-voltage characteristics of the gate of one of the devices,
indicating the switching current 𝐼𝑠𝑤 and the retrapping current 𝐼𝑟. (c) Edge profiles of
the gates of all 36 patterned devices, obtained using PROSEM software. The x -axis
represents the horizontal distance across the gate, while the y-axis shows the vertical
distance, which also defines the gate’s width.

Figure 5-10 (c). The trend looks approximately linear, which agrees with our ex-

pectations, since the switching current is the product of the current density and the

minimum width. However, there are some outliers from the trend, most notably the

points that have a lower switching current than expected. Such premature switching

could be caused by a variety of factors, such as material inhomogeneities or grain

boundaries in the polycrystalline NbN that cannot be observed by SEM. Nanowires

are also susceptible to thermal fluctuations and noise, which may explain why there

is a wider spread in switching current than in minimum dimension [64]. Despite these

variations, the switching current statistics align with our typical device performance

[94], indicating that ma-N can produce superconducting devices like nTrons with

similar reproducibility to what we obtain with standard resists.
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Figure 5-10: Reproducibility of the gate terminal across all 36 patterned devices. (a)
Histogram of the switching currents of the gates. (b) Histogram of the minimum
width across each gate. (c) Plot of the switching current of each device with respect
to its minimum measured gate dimension. The line indicates that deviations from the
mean switching current have a roughly linear relationship with deviations in minimum
width, with a few outliers that could be due to noise or material defects.

5.2.3 Outlook

The results presented in this thesis suggest that ma-N 2401 is a suitable negative tone

resist for patterning superconducting devices. In comparison to HSQ, ma-N offers

advantages including a lower required dose and the ability to be removed by a solvent

that does not damage superconducting films, which is critical for multilayer processes.

It may also be cheaper and have a longer shelf life than HSQ, and could allow for

the combination of both optical and electron-beam lithographies. To demonstrate

ma-N’s potential, we showed that it can reliably pattern dense 30-nm-wide lines and

individual features below 20 nm, which is a better resolution than what has been

previously reported. However, HSQ remains the gold standard for resolution and

might have superior etch resistance to ma-N in other etch chemistries like chlorine.

The advantages of HSQ in comparison to ma-N are similar to those that it holds over

other polymer-based resists, and stem from HSQ’s underlying structure as a small,

cage-like oligomer [73]. Nevertheless, our results indicate that ma-N is a sufficient

EBL resist for attaining the dimensions required by most superconducting nanowire

devices.

Widespread adoption of ma-N as an electron-beam resist could spur the imple-

mentation of nanowire devices in complex circuits that use multilayer processes. Since
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many of these circuits involve integration with other devices, such as standard elec-

tronic or magnetic elements, we envision these results may encourage collaboration

across different platforms. Additionally, the multilayer processes supported by ma-N

could inspire the creation of new nanowire devices that incorporate other materials

to modify superconducting dynamics. Examples of recent nanowire devices that use

normal metal to modulate superconductivity have all been patterned using positive

tone resist, partially due to the limitations of HSQ [32][34]; as a result, ma-N could

facilitate the development of new devices that use multilayer processes. Finally, the

use of ma-N is not limited to superconducting films. We have demonstrated that it

has ∼30 nm resolution and is processed with solvents that are compatible with many

materials, suggesting that it could be used for a wide variety of applications beyond

those presented here. Overall, ma-N 2401 appears to be a suitable electron-beam re-

sist for patterning nanoscale features and has the potential to advance of complexity

of superconducting nanowire-based circuits.
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Chapter 6

Conclusion and outlook

As traditional computing approaches its ultimate limits, we enter an uncertain but

exciting time for scientific investigation, in which hardware, algorithms, and archi-

tectures are evolving simultaneously. Inspired by the wealth of technology that grew

from the material behavior of transistors, this new age of computing is an opportunity

to closely study the natural dynamics of materials and devices, and harness them to

create alternative computing schemes.

In this thesis, we have presented two new devices that may serve as the foundation

of an alternative cryogenic computing architecture using superconducting nanowires.

The first is a multilevel memory cell that could enable denser cryogenic memory,

and allow superconducting logic to no longer rely on silicon-based memories at room

temperature. The second is an artificial neuron using two nanowire relaxation oscil-

lators for implementation in spiking neural networks. Both devices operate by taking

advantage of characteristics that are unique to superconducting nanowires, such as

nonlinear switching and high kinetic inductance. Together, these technologies have

the potential to unite memory and processing under a single platform and even within

the same fabrication steps, which could alleviate the bottleneck in computation speed

caused by the physical distance between memory and processing units in von Neu-

mann architectures. Additionally, a complete superconducting nanowire architecture

using spiking neurons has the potential to achieve superior energy performance to

CMOS while also being compatible with it. As a result, nanowires may offer a path
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forward towards alternative computing without requiring complete abandonment of

traditional systems.

To expand these devices into a large-scale nanowire-based architecture, it will be

necessary to study critical aspects like fan-out and fan-in limitations, and the power

dissipation costs of a bias distribution network. Further exploration should also study

operating margins with respect to fabrication variability and noise. In order for the

nanowire neuron to be useful in tasks beyond inference, it will also be crucial to

develop a scheme for unsupervised learning so that synaptic weights can be adjusted

on-chip in real time. Finally, it may be useful to create a more abstract, theoretical

model of the nanowire neuron so that it can be more readily applied to algorithm

development. While these steps remain the subject of future investigations, they will

provide key insight into how a complete nanowire-based computing system may be

realized.

The two neural network applications discussed in this thesis demonstrate exam-

ples where spiking dynamics offer key advantages, such as the WTA competition using

stochasticity to its benefit rather than fighting against it. However, these cases only

scratch the surface of how spike-based communication can be exploited. Specifically,

neither of these applications or the majority of spiking neural network algorithms take

advantage of the wealth of information stored in the timing of spiking signals. In-

stead, information is either encoded in the spiking state ("firing" versus "not firing"),

or in aggregate characteristics like spiking frequency, since these are more compatible

with algorithms designed for traditional hardware. The use of time domain informa-

tion would not only be extremely relevant for technologies like event-based sensors

in robotics, but could also improve energy efficiency and illuminate how spike timing

plays a role in communication within the human brain. The emergence of new tempo-

ral logic families like race logic [105][106] offer hope that spike-based communication

could soon be used to its full potential.

Besides spiking neural networks, other alternative computing schemes such as

stochastic computing [107] [108], adiabatic computing [109][110], and coupled oscilla-

tor computing [111] are actively being developed and examined for their own unique
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advantages. Like the nanowire devices presented here, each of these approaches offers

the chance to be curious about the natural dynamics of devices and explore how they

can be used to achieve what was not previously possible.

127



128



Appendix A

Neuron synapse equations

Impedance of the inductors and the oscillators:

𝑍𝑙 = 𝑖𝜔𝐿𝑘 (A.1a)

𝑍𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 =

(︂
1

𝑅𝑠

+
2

𝑍𝑙

)︂−1

(A.1b)

Impedance to the left and right of the synapses:

𝑍𝑙𝑒𝑓𝑡 =
𝑍𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟(2𝑍𝑙 + 𝑍𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟)

2𝑍𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 + 2𝑍𝑙

(A.2a)

𝑍𝑟𝑖𝑔ℎ𝑡 =
𝑍𝑙(2𝑍𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 + 𝑍𝑙)

2𝑍𝑜𝑠𝑐𝑖𝑙𝑙𝑎𝑡𝑜𝑟 + 2𝑍𝑙

(A.2b)

Capacitive synapse equations:

𝜏𝐶 = 𝐶

(︂
1

𝑅1 + 𝑍𝑙𝑒𝑓𝑡

+
1

𝑅2 + 𝑍𝑟𝑖𝑔ℎ𝑡

)︂−1

(A.3a)

𝑍𝑖𝑛,𝐶 = 𝑅1 +

(︂
𝑖𝜔𝐶 +

1

𝑅2 + 𝑍𝑟𝑖𝑔ℎ𝑡

)︂−1

(A.3b)

Inductive synapse equations:

𝜏𝐿 =
𝐿(︁

1
𝑅1𝐿

+ 1
𝑍𝑙𝑒𝑓𝑡

)︁−1

+
(︁

1
𝑅2𝐿

+ 1
𝑍𝑟𝑖𝑔ℎ𝑡

)︁−1 (A.4a)
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𝑍𝑖𝑛,𝐿 =

⎛⎜⎝ 1

𝑅1𝐿

+
1

𝑖𝜔𝐿 +
(︁

1
𝑅2𝐿

+ 1
𝑍𝑟𝑖𝑔ℎ𝑡

)︁−1

⎞⎟⎠
−1

(A.4b)

To make the input impedances the same as 𝜔→0, a series resistance must be added

to the inductive synapse:

𝜏𝐿 =
𝐿(︁

1
𝑅1𝐿

+ 1
𝑍𝑙𝑒𝑓𝑡+𝑅𝑠𝑒𝑟

)︁−1

+
(︁

1
𝑅2𝐿

+ 1
𝑍𝑟𝑖𝑔ℎ𝑡

)︁−1 (A.5a)

𝑍𝑖𝑛,𝐿 = 𝑅𝑠𝑒𝑟 +

⎛⎜⎝ 1

𝑅1𝐿

+
1

𝑖𝜔𝐿 +
(︁

1
𝑅2𝐿

+ 1
𝑍𝑟𝑖𝑔ℎ𝑡

)︁−1

⎞⎟⎠
−1

(A.5b)

Overall, we obtain two sets of equations that we can use to solve for the approximate

inductance and series resistance, if we set examine the extreme frequency limits of 𝜔

→ 0 and 𝜔 → ∞.

For 𝜔 → 0:

𝑅𝑠𝑒𝑟 = 𝑅1 + 𝑅2 (A.6a)

𝐿 = (𝐶 *𝑅1 *𝑅1𝐿 *𝑅2𝐿)/(𝑅1 + 𝑅1𝐿 + 𝑅2) (A.6b)

For 𝜔 → ∞:

𝑅𝑠𝑒𝑟 = 𝑅1 −𝑅1𝐿 (A.7a)

𝐿 = 𝐶 * (−𝑅2
1𝐿 + 𝑅1(𝑅1𝐿 + 𝑅2𝐿) + 𝑅1 *𝑅𝑠 + 𝑅2𝐿 *𝑅𝑠) (A.7b)

Solving for these equations with the capacitive synapse parameters in Fig. 3-10

and letting 𝑅1𝐿 = 𝑅2𝐿 = 40 Ω, the first set of equations gives 𝑅𝑠𝑒𝑟 = 20 Ω and L =

0.267 𝜇H, while the second set of equations gives 𝑅𝑠𝑒𝑟 = -30 Ω and L = -0.300 𝜇H.

Although these are just approximations, they give an idea of the appropriate orders

of magnitude for the equivalent circuit.
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Appendix B

Python code for 9-pixel test

B.1 Code to create test images and calculate weights

This code is used to create the set of 30 test images and test them in the simple

neural network, using code from Ref. [67]. The output is a list of weights that can

later be mapped onto synaptic inductance values.

# -*- coding: utf -8 -*-

"""

@author: Emily

"""

## Script to compile all of the pixel data

## Note: we adopt the pixel numbering as 1-3 = top row ,

4-6 = middle row , 7-9 = bottom row

import numpy as np

import network

## Image list for Z
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zim1 = np.array ([1, 1, 0, 0, 1, 0, 0, 1, 1])

x = np.arange(len(zim1))

Z_total = np.copy(zim1)

## iterate to create each of the single -pixel error

for n in np.nditer(x):

print(n)

arr = []

arr = np.copy(zim1)

if zim1[n] == 0:

arr[n] = 1

else:

arr[n] = 0

Z_total = np.vstack ((Z_total ,arr))

## Image list for V

vim1 = np.array ([1, 0, 1, 1, 0, 1, 0, 1, 0])

x = np.arange(len(vim1))

V_total = np.copy(vim1)

for n in np.nditer(x):

print(n)

arr = []

arr = np.copy(vim1)
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if vim1[n] == 0:

arr[n] = 1

else:

arr[n] = 0

V_total = np.vstack ((V_total ,arr))

## Image list for N

nim1 = np.array ([0,1,0,1,0,1,1,0,1])

x = np.arange(len(nim1))

N_total = np.copy(nim1)

for n in np.nditer(x):

print(n)

arr = []

arr = np.copy(nim1)

if nim1[n] == 0:

arr[n] = 1

else:

arr[n] = 0

N_total = np.vstack ((N_total ,arr))

## Correct output list -- let Z = 1, V = 2, and N = 3

zs = 0*np.ones(len(nim1)+1)

vs = 1*np.ones(len(nim1)+1)

ns = 2*np.ones(len(nim1)+1)
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letters =np.concatenate ((zs,vs,ns))

letters = letters.astype(int)

def vectorized_result_short(j):

# return a 3-dimensional unit vector with 1 in the jth

position and zeroes elsewhere. Used to convert the

training set

e = np.zeros ((3,1))

e[j] = 1

return e

## Create the training and test data

inputs = np.vstack ((Z_total , V_total , N_total))

total_inputs = [np.reshape(x,(9,1)) for x in inputs] #

reshape to make into vertical

training_results = [vectorized_result_short(y) for y in

letters]

## Zip into tuples

training_data = list(zip(total_inputs ,training_results))

test_data = list(zip(total_inputs , letters))

## Run the network test
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#import network

net = network.Network ([9, 3])

# run program

(w_final , b_final) = net.SGD(training_data , 50,5,1,

test_data = test_data)

# output weights

print(w_final)

B.2 Code to test images in LTSpice environment

This code is used to translate the 30 test images into lists that can be copied and

imported into the LTSpice environment for testing.

The first blocks of code can be used to interpret each pixel color as the bias

current to each pixel neuron. It is used to test one image per simulation. A list of

".param" commands is generated that can be copied and directly inserted into the

Spice environment. A set of asterisks is used to denote a new image list.

The last section of code interprets pixel colors as input currents, and generates

piecewise-linear (PWL) functions for each current source in order to test all 30 images

in one simulation. It generates a PWL list of currents and timestamps for each

pixel that can be coped and saved into a .txt file, and imported in into the Spice

environment for each current source.

# -*- coding: utf -8 -*-

"""

@author: Emily

"""
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import numpy as np

### FOR Z PATTERNS #####

zim1 = np.array ([1, 1, 0, 0, 1, 0, 0, 1, 1])

x = np.arange(len(zim1))

Z_total = np.copy(zim1)

for p in np.nditer(np.arange(len(zim1))):

str = ". param b{} = pbias *{}". format(p,zim1[p])

print(str)

if p == 8:

print ("***********")

### FOR INTERPRETING PIXEL COLORS AS BIAS CURRENTS ,

RUNNING DIFFERENT LTSPICE SIM FOR EACH IMAGE ###

## for printing the bias currents for the .param list

for n in np.nditer(x):

arr = []

arr = np.copy(zim1)

if zim1[n] == 0:

arr[n] = 1

else:

arr[n] = 0

Z_total = np.vstack ((Z_total ,arr))

for p in np.nditer(np.arange(len(arr))):

str = ". param b{} = pbias *{}". format(p,arr[p])

print(str)
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if p == 8:

print ("***********")

### FOR V PATTERNS #####

vim1 = np.array ([1, 0, 1, 1, 0, 1, 0, 1, 0])

x = np.arange(len(vim1))

V_total = np.copy(vim1)

for p in np.nditer(np.arange(len(vim1))):

str = ". param b{} = pbias *{}". format(p,vim1[p])

print(str)

if p == 8:

print ("***********")

### FOR INTERPRETING PIXEL COLORS AS BIAS CURRENTS ,

RUNNING DIFFERENT LTSPICE SIM FOR EACH IMAGE ###

## for printing the bias currents for the .param list

for n in np.nditer(x):

arr = []

arr = np.copy(vim1)

if vim1[n] == 0:

arr[n] = 1

else:

arr[n] = 0

V_total = np.vstack ((V_total ,arr))

for p in np.nditer(np.arange(len(arr))):
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str = ". param b{} = pbias *{}". format(p,arr[p])

print(str)

if p == 8:

print ("***********")

### FOR N PATTERNS #####

nim1 = np.array ([0,1,0,1,0,1,1,0,1])

x = np.arange(len(nim1))

N_total = np.copy(nim1)

for p in np.nditer(np.arange(len(nim1))):

str = ". param b{} = pbias *{}". format(p,nim1[p])

print(str)

if p == 8:

print ("***********")

### FOR INTERPRETING PIXEL COLORS AS BIAS CURRENTS ,

RUNNING DIFFERENT LTSPICE SIM FOR EACH IMAGE ###

## for printing the bias currents for the .param list

for n in np.nditer(x):

arr = []

arr = np.copy(nim1)

if nim1[n] == 0:

arr[n] = 1
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else:

arr[n] = 0

N_total = np.vstack ((N_total ,arr))

for p in np.nditer(np.arange(len(arr))):

str = ". param b{} = pbias *{}". format(p,arr[p])

print(str)

if p == 8:

print ("***********")

### FOR INTERPRETING PIXEL COLORS AS INPUT CURRENTS AND

RUNNING ALL IMAGES AT ONCE ###

### CREATE LIST OF ALL PATTERNS ####

Lett_total = np.vstack ((Z_total ,V_total ,N_total))

## Create PWL list for all pixels that can be copied and

saved into a .txt file for inputting into LTspice ##

for n in np.nditer(x):

for p in np.nditer(np.arange(len(Lett_total [: ,0]))):

val = Lett_total[p,n]

if p == 0:

print("Pixel %d\n0 0" %n)

multilinestr = "+5n %d\n+50n %d\n+5n 0" %(val ,val)

print(multilinestr)

if p == len(Lett_total) -1:

print ("***********")
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