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Abstract

Electron microscopy is a powerful imaging technique that allows us to push the lim-
its of our understanding of materials at the nanoscale. An important limitation in
the application of electron microscopy to organic and biological materials is sample
damage induced by the electron beam. Recently, quantum mechanical and adap-
tive illumination imaging schemes have been devised to use the available electron
dose efficiently to get the maximum information about the specimen. The primary
requirement for the implementation of these schemes is efficient illumination and de-
tection of electrons in the microscopes, which has limited the applicability of such
low-dose imaging techniques.

In this thesis, we have developed and implemented low-dose imaging schemes
achievable with current technology on a wide range of electron microscopes. We have
also proposed microscopy schemes that combine ideas from quantum mechanical and
adaptive illumination imaging to lower the electron dose required for imaging by up
to an order of magnitude. Further, we have developed electron count imaging on a
scanning electron microscope (SEM) and demonstrated improvement of up to 30% in
image quality for the same imaging dose. Finally, we have implemented an adaptive
illumination scheme on the SEM and demonstrated that the incident electron dose
can be traded off with a tolerable increase in imaging errors. The work in this thesis
improves the dose reduction possible with quantum imaging and adaptive illumination
schemes and represents a major step towards their implementation in different types
of electron microscopes.

Thesis Supervisor: Karl K. Berggren
Title: Professor of Electrical Engineering and Computer Science
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Chapter 1

Introduction

The electron microscope is a powerful and versatile tool that is used to image and

characterize organic and inorganic with sub-nanometer resolution [1]. The diverse

imaging modalities available on modern electron microscopes can be used to per-

form topographical, phase, and elemental composition analysis on samples. With

the introduction of advanced phase retrieval and compressed sensing techniques, elec-

tron microscopy has become a high-throughput technique capable of answering a

wide variety of questions about the electronic, magnetic, and elemental composi-

tion of a sample. Quantum mechanical imaging schemes that exploit the stable,

high-coherence electron beams and aberration-corrected optics available in modern

electron microscopes have the potential to further extend the types of samples and in-

formation obtainable in these tools [2–4]. However, the widespread adoption of these

techniques is limited by a lack of analysis of the capabilities of quantum mechanical

schemes implementable with current technology, as well as the lack of availability

of single-electron sensitive detection in some electron microscopy modalities. Fur-

ther, the applicability of electron microscopy to the imaging of biological samples

remains limited by the challenge of beam-induced sample damage. In this thesis, we

will address these challenges by combining ideas from compressed sensing, adaptive

illumination, and quantum mechanics to develop new, reduced-incident-electron-dose
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imaging algorithms and expand the availability of single-electron-sensitive imaging in

electron microscopy.

In this introductory Chapter 1, we will discuss basic electron microscopy tech-

niques, recent ideas and advances towards reducing sample damage in these tech-

niques, and current challenges in their widespread implementation. This chapter

is organized into four sections. In Section 1.1, we will introduce the two funda-

mental electron microscopy modalities: transmission/scanning transmission electron

microscopy (TEM/STEM) and scanning electron microscopy (SEM). Following this

introduction, we will discuss limitations imposed by sample radiation sensitivity on

the types of samples that can be imaged in electron microscopes as well as recently

proposed and adopted methods to reduce the imaging dose in electron microscopy

in Section 1.2. In Section 1.3 we will discuss challenges in and requirements for the

adoption of the low-dose imaging schemes introduced in the previous section. In Sec-

tion 1.4, we will summarize the work in this thesis that meets these requirements and

expands the application of adaptive imaging and quantum mechanical protocols to

different electron microscopy modalities.

1.1 Introduction to electron microscopy modalities

In this section we will describe the two fundamental imaging modalities in electron

microscopy: the imaging of thin samples in transmission mode (transmission/scan-

ning transmission electron microscopy, TEM/STEM), and the imaging of the surface

of thick samples (scanning electron microscopy, SEM). These techniques together can

be used to obtain surface and cross-sectional imaging and chemical composition in-

formation of a specimen with atomic or close-to atomic resolution. This introduction

will form the basis of our discussions of image formation, quality, and sample damage

in the rest of this thesis.
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1.1.1 Transmission and Scanning Transmission Electron Mi-

croscopy (TEM/STEM)

Figure 1-1(a) is a schematic of TEM imaging. Pre-specimen electromagnetic lenses

produce a collimated electron beam that is incident on the sample and gets scattered

as it transmits through the sample. If the sample is thin (< 100 nm), a small frac-

tion of the electrons scatter inelastically and the rest scatter elastically and undergo

diffraction. The transmitted electrons are imaged by post-specimen electromagnetic

lenses.

There are several sources of contrast in TEM/STEM images. First, contrast

can arise from thickness or atomic mass differences between different parts of the

sample, which lead to differences in inelastic scattering. This type of contrast is

referred to as mass-thickness or z-contrast. Second, contrast can also arise due to

differences in orientation of the atomic lattice in the different parts of the sample,

which lead to differences in how electrons are diffracted . This type of contrast is

called diffraction contrast. Finally, interference between electron beams diffracted

due to phase modulations in the sample can also result in contrast. This type of

contrast is referred to as phase contrast. In summary, diffraction and phase contrast

result from unscattered and elastically forward-scattered electrons, while z-contrast

results from inelastic scattering. TEM images typically show several of these sources

of contrast together.

In Figure 1-1(a) we can see how the post-specimen lower objective lens makes

beams diffracted from the sample (orange) interfere with each other to form an image

at the image plane. Figure 1-1(b) is a high-resolution TEM image of gold nanopar-

ticles deposited on a carbon support membrane suspended over vacuum. The gold

nanoparticles are the dark polygonal regions while the carbon membrane is the lighter,

grainy region. The nanoparticles appear darker than the carbon membrane because

of z-contrast. Inside each nanoparticle the atomic lattice of gold is visible due to

phase contrast. TEMs usually operate at an incident electron beam energy between
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50 - 300 keV and an incident beam current between tens of picoamperes and a few

nanoamperes. With the advent of spherical and chromatic aberration correction, the

resolution of TEM images can be lower than 0.1 nm for sufficiently thin (< 50 nm)

samples [5].

The imaging detector in a TEM is placed in a plane conjugate with the first

image plane of the lower objective lens (indicated in Figure 1-1(a)), after the image

has been further magnified by intermediate and projection lenses. TEM detectors

need to be spatially resolved, i.e., need to be pixelated, so that they can capture

the image of the sample. Charge-coupled device (CCD) cameras, capable of pixel

resolutions higher than 2000 × 2000 pixels at several frames per second, are widely

used [6]. More recently, CMOS cameras that detect electrons directly (rather than

using scintillators as in CCD cameras), are sensitive to single electrons, and have high

frame rates (up to 1000 frames per second), have been used for low-dose cryo-electron

microscopy, as we will discuss further in Section 1.2 [7].

Traditionally, phase contrast, the highest resolution mode of TEM imaging,

has been implemented by using a combination of beam aberrations and defocus, i.e.,

the phase changes introduced in the beam from aberrations are balanced by deliber-

ately defocusing the beam to optimize the transfer of contrast in the microscope [8,9].

However, the use of defocus limits the achievable imaging resolution. More recently,

phase plates that shift the phase of the undiffracted beam by π/2 radians relative to

the diffracted beams, thereby enabling in-focus Zernike-type phase contrast imaging,

have been designed and implemented in the TEM [10, 11]. The use of these plates

has enhanced both the contrast and resolution available in phase contrast TEM im-

ages [12–16].

Figure 1-1(c) is a schematic of STEM imaging. Unlike in the TEM, the incident

electron beam is focused to a spot on the sample and scanned across it. We can think

of the sample as being divided into pixels, and the incident electron beam raster

scans over each sample pixel. The STEM image is a representation of signal intensity
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Figure 1-1: Transmission/scanning transmission electron microscopy (TEM/STEM). (a)
Schematic for phase-contrast TEM imaging. The collimated incident electron beam is
diffracted by the sample, and the diffracted beams are collected and made to re-interfere by
the post-specimen objective lens to create an image at the image plane. (b) Phase contrast
HRTEM image of gold nanoparticles suspended on a carbon support grid. (c) Schematic
for STEM imaging. The focused electron beam scans over the sample, and the annular
dark field (ADF) and bright field (BF) detectors collect inelastically scattered and unscat-
tered electrons respectively. (d) BF-STEM and (e) ADF-STEM image of the same gold
nanoparticle sample as (b).
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from each pixel of the image. Therefore, in this type of imaging, the signal detector

does not need to be pixelated (i.e., it does not need to have spatial resolution);

it simply collects all the signal from each pixel serially. Instead, spatial resolution

is determined by other factors such as the size of a pixel on the sample (i.e., the

gap between successive positions of the electron beam), the spot size of the focused

electron beam, and the type of signal collected [1]. STEM systems operate at the

same ranges of incident beam energies and currents as TEMs. A combination of

aberration-correction, advanced phase retrieval techniques, and high-dynamic range

electron counting detectors have enabled the resolution of STEM images to be as low

as 0.04 nm [17].

A state-of-the-art STEM will have many different modalities to construct im-

ages from the various types of signals that arise from the interaction between the

incident electron beam and the sample. For example, in STEM-based cathodolumi-

nescence, we map the intensity of photons emitted by the sample in response to the

incident electron beam. In electron-energy loss spectroscopy, we map the energy lost

by electrons as they are scattered inelastically by the sample pixels. Here, we will fo-

cus on two imaging modalities available on all STEMs: bright- and dark-field imaging.

The position of the detectors for these imaging modes are shown in Figure 1-1(c).

In bright-field (BF) imaging, the detector detects electrons that transmit

through the sample without any scattering, or electrons that scatter at very small an-

gles. Therefore, the image from this detector is a map of the intensity of the electrons

transmitted through each sample pixel. The image is bright in regions of the sample

that transmit more electrons (very thin regions, regions with low atomic mass ele-

ments, or vacuum) and darker in regions that scatter more electrons (thicker regions

or regions with high atomic mass elements). Figure 1-1(d) is a BF-STEM image of

the same sample of gold nanoparticles deposited on a carbon support membrane as

the TEM image. The gold nanoparticles appear as dark circles or polygons because

they scatter more electrons, while the carbon support grid appears brighter. The

background vacuum over which the carbon membrane is suspended appears brightest
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because it transmits all electrons.

In dark field (DF) imaging, the detector detects electrons that are inelastically

scattered off the sample (shown with red arrows in Figure 1-1(c)). The detector is

annular in shape to allow the unscattered electrons to go through to the BF detector,

and the inner and outer angles of the annulus determine the type of scattering process

to which the DF detector is sensitive. The position of this annular dark field (ADF)

detector is indicated in Figure 1-1(b). Figure 1-1(e) is an ADF-STEM image of

a different region of the same sample of gold nanoparticles on a carbon support

membrane as the TEM and BF-STEM images. In this image, the contrast is reversed

compared to the BF-STEM image. The gold nanoparticles appear brightest because

they scatter the incident electrons more than the carbon membrane, which appears

darker. The background vacuum, which scatters no electrons, is completely black.

1.1.2 Scanning Electron Microscopy (SEM)

In this section we will introduce SEM imaging and describe the two types of imaging

modes used most widely in SEM: secondary electron (SE) imaging and backscattered

electron (BSE) imaging. Since the geometry and behavior of SE detectors in an SEM

will be an important consideration in chapters 4 and 5 of this thesis, we will also

discuss the construction and working of these detectors in this section.

1.1.2.1 Basic SEM operation

Figure 1-2(a) is a schematic representation of SEM. Similar to STEM, the incident

electron beam scans over the sample, which can be thought of as being divided into

pixels. A computer builds the image of the sample serially, and the image is a repre-

sentation of the signal level on the detector from each pixel [19]. Unlike the STEM,

the SEM images electrons emitted from the surface of the sample (instead of elec-

trons transmitted through the sample). Since the electron beam does not need to go
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Figure 1-2: Schematic for Scanning Electron Microscopy (SEM). (a) The focused incident
electron beam raster scans over the sample and generates SEs and BSEs. SEs get detected by
either the in-chamber SE detector or the in-lens SE detector, and BSEs get detected by the
BSE detector. A computer receives the signal from these detectors serially and generates
an image of the sample. (b) Generation of SEs and BSEs in SEM. BSEs are generated
within a micron-sized volume in the sample due to the incident electrons (labelled PE)
undergoing multiple scattering events. SEs generated by the incident electron beam (PE)
in the sample are called SE1s, those generated by BSEs in the sample are called SE2s, and
those generated by BSEs on striking the lens polepiece and SEM chamber walls are called
SE3s. Figure reproduced from [18].
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through the sample, the sample can be a bulk material and need not be thinned down.

Therefore, sample preparation is more straightforward for SEM than STEM. Further,

since the incident electrons are not required to go through the sample, they can be

of lower energy; SEM imaging is typically done at electron beam energies between 1

and 30 keV, as opposed to 50-300 keV and above for STEM. Typical values of the

incident beam current are in the range of 50 pA - 1 nA, and typical pixel dwell time

are in the range of 5 µs - 100 µs.

There are two types of electrons that are emitted from the surface of sam-

ples and imaged in SEMs: secondary electrons (SEs, shown by the blue arrows in

Figure 1-2(a)) and backscattered electrons (BSEs, shown by the red arrows in Fig-

ure 1-2(a)) [18]. SEs are electrons that are part of the sample, get excited by the

incident electron beam and are ejected from the sample surface. The generation of

SEs is depicted schematically in Figure 1-2(b), which is reproduced from Scanning

Electron Microscopy by L. Reimer [18]. SEs typically have energies in the range of

2-10 eV; conventionally the upper bound on SE energies is placed at about 50 eV. Al-

though the incident-beam electrons deposit their energy and excite sample electrons

in a large, micron scale volume inside the sample (depicted by R in Figure 1-2(b),

only electrons from within the first few nanometers of the surface can escape (depicted

by tSE in Figure 1-2(b)) [19]. Therefore, SE imaging is very sensitive to changes in

surface topography: sharp edges or corners offer a greater surface area for SEs to

escape and show up as brighter than surrounding regions in SE images. Hence, SE

imaging is best used for mapping the sample topography. The resolution of SE imag-

ing is typically on the order of a few nanometers, determined by the sample material,

imaging conditions, and type of detector. The yield of SEs (i.e., the mean number of

SEs excited by each incident electron) is very sensitive to the energy of the incident

electrons. At typical SEM energies (between 1-30 keV) it is less than 1 for most

materials [20]. In this range of energies SE yield decreases as energy increases and

vice versa. The SE yield shows some dependence on the sample atomic number, but

this dependence is highly irregular [18]. Therefore, SEs are typically not used to map
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the material composition of the sample.

BSEs are incident electrons that undergo several small-angle nuclear scattering

events inside the sample and eventually get scattered back out of the top surface of

the sample at at an angle to it. The generation of BSEs is depicted schematically in

Figure 1-2(b). Since they undergo several scattering events inside the sample before

turning back, they are emitted over a micron-scale volume in the sample. Further,

because they are generated due to nuclear scattering inside the material, their yield is

much more sensitive to the material composition of the sample than its topography.

Hence, BSE imaging is best used to map sample material composition. The resolution

of BSE imaging is typically lower than SE imaging due to the large volume over which

BSEs are emitted [19].

As we had discussed earlier, the resolution of SE imaging depends on several

factors, including the type of electron source, imaging conditions, type of sample,

and type of detector. The type of electron source and imaging conditions such as the

beam current, beam energy, and working distance determine the size of the incident

electron beam on the sample surface. Another factor that affects resolution is the

source of SEs. SEs are classified into different types based on their source. SEs

emitted directly from the sample surface by the incident beam are called SE1s. Since

these SEs are excited directly from the small volume within the escape depth probed

by the incident beam, they offer the highest resolution SE imaging. BSEs also emit

SEs when they are within the escape depth of the sample surface on their way out.

Due to their lower energy and the oblique angle, BSEs are more efficient at generating

SEs than the incident-beam electrons [21]. The SEs generated by BSEs are called

SE2s. BSEs can also emit SEs after emerging from the sample surface, upon striking

the walls of the SEM chamber, the lens polepieces, etc. These SEs are called SE3s.

The generation of SE1s, SE2s, and SE3s is depicted schematically in Figure 1-2(b).

Although SE2s and SE3s increase the signal from each pixel of the image, they offer

lower resolution SE imaging due to the large escape region of BSEs. However, due to

the larger SE yield of BSEs, SE2s and SE3s can dominate the total SE yield unless care
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is taken about the placement of the SE detector and other imaging conditions [22,23].

We will now turn to a discussion of SE detectors. The detection mechanism as well

as the geometry and placement of these detectors will be important in our discussion

of SE counting and imaging in Chapters 4 and 5.

1.1.3 Detectors for SEs

SE detectors register the intensity of the SE signal for every pixel to generate the SE

image. SE detectors are typically placed in one or both of two locations in an SEM:

in-chamber and in-lens. These two detectors are shown schematically in Figure 1-

2(a). Figure 1-3(a) indicates the positions of the objective lens polepiece, the two SE

detectors, and the BSE detector in the chamber of the SEM used in this work (Zeiss

LEO 1525). This image was captured with the sample stage (attached to the vacuum

chamber door) pulled out, which is why the sample is absent. We have indicated the

typical position of the sample with a black box. We will first discuss the geometry of

each detector and then the common mechanism by which these detectors register the

SE signal.

The in-chamber SE detector is placed inside the vacuum chamber of the SEM

at an angle to the sample, as shown schematically in Figure 1-2(a). As we can see

in Figure 1-3(a), this detector has a Faraday cage around it on which a positive

voltage of several hundred volts is applied. This positive bias attracts SEs towards

the detector. Due to its placement in the SEM chamber, the in-chamber detector

does not discriminate between SE1s, SE2s, and SE3s. Consequently, it typically offers

lower resolution images than the in-lens detector. Further, since the in-chamber

detector is placed at an angle to the sample, SEs emitted from sample surfaces facing

towards the detector can reach the detector with greater probability than SEs emitted

from surfaces facing away from the detector. Therefore, SE images generated by

this detector tend to show shadowing effects. Figure 1-3(b) (reproduced from [22])

is an in-chamber SEM image of a carbon-coated, polished copper standard sample

29



Figure 1-3: Detectors for SEs. (a) View inside an SEM chamber, showing the objective
lens polepiece and in-chamber SE detector. The positions of the in-lens SE detector, the
BSE detector, and the sample are also indicated. (b) In-lens, (c) in-chamber, and (d) BSE
images of a carbon-coated, polished copper standard sample embedded in epoxy resin and
mounted on a brass strip. These images are reproduced from [22].
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embedded in epoxy resin and mounted on a brass strip. We can see some of the

surface topography of the sample in this image. Further, due to the influence of SE2s

and SE3s generated by BSEs, we can also see contrast between the copper sample

and the brass mount. This material contrast is not as high as in the BSE image

(Figure 1-3(d)) but is much greater than in the in-lens image.

The in-lens SE detector is placed inside the objective lens polepiece above the

sample, as shown schematically in Figure 1-2(a). In Figure 1-3(b) we have indicated

the position of this detector. The detector components are inside the polepiece and

cannot be seen in this image. The detector is annular in shape and is placed sym-

metrically around the incident beam optical axis. In the SEM used in this work, the

in-lens detector uses an 8 keV electrostatic field to attract SEs towards it. Due to

its position close to the sample as well as the large electrostatic field to attract SEs,

the in-lens detector tends to be more efficient at collecting SEs than the in-chamber

detector. Also, because of its symmetrical position around the beam optical axis,

in-lens detector SE images do not have shadowing effects. Further, due to its po-

sition inside the lens polepiece, the solid angle subtended on it by BSEs is small.

Therefore, the in-lens detector is much better at collecting SE1s preferentially over

other types of SEs. Consequently, in-lens detector images can have higher resolu-

tion than in-chamber images [22]. Figure 1-3(c) (reproduced from [22]) is an in-lens

image of the same polished copper sample as in the previous paragraph. We can

observe more surface details in this image and lesser contrast between the copper and

brass, indicating that SE1s make a greater contribution to this image compared to

the in-chamber detector image.

The most popular detection method for electrons, common to both the in-

chamber and in-lens detectors, is based on a scintillator - photomultiplier setup first

introduced in SEM imaging by Everhart and Thornley [25]. This detection method

is depicted schematically in Figure 1-4 (image reproduced from Scanning Electron

Microscopy by L. Reimer [24]). SEs emitted from the sample strike a scintillator

plate biased at a positive bias of 8-10 keV and generate photons. These photons are
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Figure 1-4: Schematic representation of an Everhart-Thornley electron detector. A com-
bination of a scintillator and photomultiplier detects SEs from each pixel of the sample to
produce the image. Figure reproduced from [24].

directed to a photomultiplier through a light pipe. On striking the photocathode of

the photomultiplier, the photons generate photoelectrons which are guided through

a series of dynode stages biased at increasingly high voltages up to 1 kV. The dynode

stages amplify the photoelectron signal. The amplified signal is coupled out of the

SE detector. Following this outcoupling, the signal is filtered, amplified further,

quantized to 8-bits, and displayed on the SEM computer screen for each pixel. The

internal quantum efficiency of detection is close to 1, meaning that almost every SE

that is incident on the SE detector contributes to the detector signal [26–29].

Although these SE detector systems are capable of counting individual SEs [24,

27], they are usually used in analog mode, meaning that they integrate the electron

signal. The scintillator materials commonly used in these detectors have an excitation

decay time on the order of 50-100 ns [24], meaning that for each SE that strikes the

scintillator, photons are produced up to 100 ns after the initial excitation. Therefore,

if a second SE excites the detector within the decay time of the first SE, the signal from

these two SEs will overlap and may not be distinguishable. For 100 pA incident beam

current and SE yield δ = 0.2 we would expect to receive ∼ 125 SEs per µs [27]. This

rate of SEs would be far too high for the detector to count each SE, and it would be

32



more accurate to instead find the analog signal from all the detection events. Further,

in many SEM systems, including the Zeiss LEO 1525 used in this work, the SEM

computer software displays the detector signal for every pixel on the screen averaged

over the pixel dwell time. This signal-time averaging is performed to prevent under-

or over-saturation of the image when the pixel dwell time is changed. For example,

suppose the signal level from a particular sample pixel is 10 units at a pixel dwell

time of 5 µs, and it corresponds to an 8-bit pixel brightness level of 150 on the image

displayed on the SEM computer. Now, if the pixel dwell time is doubled to 10 µs, the

signal level from the same pixel would be expected to double to 20 units, which would

correspond to a pixel brightness level of 300. However, an 8-bit image only has 256

levels. Therefore, this pixel would appear to be saturated in the longer dwell time

image. Similarly, as the dwell time is lowered, the pixel brightness would get lower

until it reduces to 0. To prevent this saturation, the SEM displays the signal from

every pixel averaged over the pixel dwell time, so that the expected pixel brightness

level stays constant as the pixel dwell time is changed. Signal-time averaging will have

important consequences in our implementation of SE counting, as we will describe in

Chapter 4.

In the next section, we will use the understanding of electron microscopy

developed in this section to discuss sample radiation damage, which restricts the

types of samples that can be imaged in an electron microscope, and techniques to

lower the incident electron dose and mitigate this damage.

1.2 Techniques for reducing incident electron dose

We discussed in Section 1.1 how electron microscopes operate by radiating the speci-

men with a high energy (50 keV or more for TEM, 1-30 keV for SEM) incident beam

of electrons and collecting the electrons transmitted and/or scattered from the spec-

imen. We also saw the different imaging modalities that arise from the nature of the

signal collected. In TEM imaging, the incident-beam electrons that are transmitted
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or forward-scattered through a thin (≤ 100 nm) specimen are collected. Transmit-

ted and elastically forward scattered electrons are used to form phase-contrast im-

ages, while inelastically forward-scattered electrons are used to image the specimen

(z-contrast TEM imaging and bright- and dark-field scanning transmission electron

microscopy (STEM) mode imaging) and also to study its crystal structure and chem-

ical composition. In SEM imaging, both the SEs generated from the specimen by

the incident-beam electrons (SE imaging), as well as incident-beam electrons that are

backscattered from the sample (BSE imaging) are used for imaging.

An inherent disadvantage of electron microscopy is damage to the specimen

from the highly energetic incident-beam electrons. Typical beam currents are in the

range of ∼ 100 pA to a 10 nA. Focused down to a beam size of 0.01 nm2 (typical

in STEM imaging), or 1 nm2 (typical in SEM imaging), these currents correspond to

electron doses of 105−107 electrons per square nanometer per microsecond for STEM

and 103 − 105 electrons per square nanometer per microsecond for SEM. These elec-

tron doses can damage the specimen through two different mechanisms: knock-on

damage and radiolysis. Knock-on damage refers to the direct displacement of sam-

ple atoms by the high-energy electrons in the incident beam, and radiolysis refers

to ionization and consequent dissociation of chemical bonds in the sample due to

the incident beam. Depending on the operating voltage of the microscope and the

chemical composition of the sample, one or both of these mechanisms may be sig-

nificant [30, 31]. The high electron dose in electron microscopy is tolerable for many

inorganic and non-biological samples but has been a major problem in the application

of electron microscopy in imaging biological samples for which this radiation dose is

damaging to the carbon-based structure [32,33]. To reduce sample damage, we could

reduce the imaging current; however, this reduction would lead to less signal from

the sample, and consequently lower signal-to-noise ratio. This tradeoff between image

quality and sample damage limits the resolution of electron microscope imaging of

biological samples [30].

The effect of radiation damage on the imaging of samples in electron mi-
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croscopy can be quantified as a critical dose Dc, defined as the dose at which the

relative intensity of a ring or spot in the diffraction pattern of the sample fades by

a factor of 1/e [34, 35]. Although Dc varies over several orders of magnitude for dif-

ferent molecules (and also depends on the beam energy and operating temperature),

0.01 C/cm2 is a typical value at 100 keV beam energy [30]. This value equals about

6 × 103 electrons per square nanometer, which, for a pixel dwell time of 1 µs, is in

the range of electron dose for SEM and one order of magnitude below the dose in

STEM specified in the previous paragraph. Therefore, such a sample would undergo

severe radiation damage during electron beam imaging. For many organic samples,

the critical dose is even lower than 6×103 electrons per square nanometer, and it can

be difficult to image such samples in STEM or SEM.

As a consequence of electron-beam-induced sample damage, most live-sample

biological imaging currently uses optical microscopy, where the conventional reso-

lution limit is given by Abbe’s criterion and is about 200 nanometers for visible

light. Although several techniques have been used in recent years to overcome this

limit [36,37], the best achievable resolution is still in the range of tens of nanometers.

Therefore, for true atomic sub-nanometer-scale biological imaging, an electron beam

imaging modality is essential.

Recently, cryogenic electron microscopy (cryo-EM) [38] has been used to im-

age biological molecules at resolutions lower than 0.3 nm [39]. A major advantage

of performing electron microscopy at cryogenic temperatures is that Dc can be more

than one order of magnitude higher at 100 K than 300 K [34]. In cryo-EM, the sample

consists of hundreds of thousands of particles of the biomolecule being imaged. The

electron beam is spread out over this ensemble, and each individual particle gets a

small electron dose which limits damage. An imaging algorithm reconstructs a 3-D

electron density map of the biomolecule using several thousands of noisy, low-dose

images of the biomolecule in different orientations. Since the technique depends on

acquiring images of an ensemble of nanoparticles, it is susceptible to inhomogeneities

in the particle size and composition. Further, the requirement of cryogenic tempera-
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tures precludes any possibility of imaging nanostructures within a live cell.

In this section, we will discuss two techniques that have been proposed and

used for reduced-dose electron microscopy: interaction-free-measurement (IFM) based

quantum electron microscopy (QEM) and adaptive illumination. While QEM is a

proposed electron microscopy scheme, adaptive illumination has already been em-

ployed in STEM and SEM to reduce the electron dose for imaging by several orders

of magnitude [40, 41].

1.2.1 IFM-based QEM

Interaction-free measurement (IFM) was first proposed by Elitzur and Vaidman in

1993 as a thought experiment for detecting the presence of a 100% absorbing or scat-

tering sample pixel (exemplified by a single-photon-sensitive bomb) without interact-

ing with it [42]. In their scheme, sketched in Figure 1-5, the sample being imaged is

placed in one of the arms of a Mach–Zehnder interferometer. We assume the sample

to be made up of opaque (scattering) pixels (shown in black) and completely trans-

parent pixels (shown in white). The Mach–Zehnder interferometer consists of two

beamsplitters and two mirrors. The first beamsplitter divides the amplitude of the

incident probe particles along two ‘arms’ of the interferometer. These two arms of the

interferometer are redirected by the two mirrors and made to interfere by the second

beamsplitter. Detectors D1 and D2 count the particles at the two output ports of the

interferometer.

We denote the photon creation operator along the beam path incident on the

first beamsplitter as ŷ†, along the upper interferometer arm as â†, the lower arm as

b̂†, the upper output from the second beamsplitter as ĉ†, and the lower output with

d̂†. Kets |0⟩ and |1⟩s represent 0 photons and 1 photon along path s respectively;

thus ŝ† |0⟩ = |1⟩s. Here, s ∈ {a, b, c, d}. For 50% transmitting beamsplitters, an input

photon has equal probabilities of being in either of the interferometer arms. Hence,
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Figure 1-5: Interaction-Free measurement. The sample being imaged is placed in one of the
arms of a Mach-Zehnder interferometer, consisting of two beamsplitters and two mirrors.
(a) When the sample pixel is transparent, the two photon paths constructively interfere
with each other along the upper output port leading to each incident photon being counted
at detector D1. (b) When the sample pixel is opaque, the interference between the two
paths is broken. The incident photon scatters off the opaque pixel with probability 0.5 and
gets detected on detectors D1 and D2 with probability 0.25 each. A photon detection at
D2 indicates that the pixel is opaque without the photon having interacted with the pixel.

the creation operator at the input transforms as:

ŷ† → â† + b̂†√
2

.

Similarly at the second beamsplitter,

â† → ĉ† − d̂†√
2

.

b̂† → ĉ† + d̂†√
2

.

where the change in sign for â† occurs because reflection along the upper arm leads to

a phase change of π while reflection along the lower arm does not. When the sample

pixel is transparent and a single photon enters the interferometer along ŷ,

|1⟩y → ŷ† |0⟩ → â† + b̂†√
2

|0⟩ → 1√
2
{ ĉ

† − d̂†√
2

− ĉ† + d̂†√
2

} |0⟩ → ĉ† |0⟩ → |1⟩c . (1.1)

Thus, the photon always exits at the upper output of the interferometer, as shown

in Figure 1-5(a). Physically, this phenomenon occurs because of constructive inter-

ference in the direction of the upper output and destructive in the direction of the

lower output port of the interferometer. Detector D1, placed at the upper output of
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the interferometer, always registers a count for every input photon while detector D2

at the lower output never registers a count.

Now, we place a sample pixel that is opaque (i.e., it absorbs or inelastically

scatters all incident particles) in the upper arm of the interferometer as depicted in

Figure 1-5(b). A photon that takes the upper arm gets scattered by the sample pixel.

Therefore, the interference between the two arms is broken. We get:

|1⟩y → ŷ† |0⟩ → â† + b̂†√
2

|0⟩

→ â†√
2
|0⟩+ |scattering⟩√

2

→ ĉ† − d̂†

2
|0⟩+ |scattering⟩√

2

→ |1⟩c
2

− |1⟩d
2

+
|scattering⟩√

2

Now an input photon will be counted at detectors D1 and D2 with probability 0.25

for each and will be scattered by the sample pixel with probability 0.5. Counts

at detector D1 do not provide us any new information since this detector clicked

for a transparent pixel too. However, counts at D2 tell us that the sample pixel

was opaque, since this detector cannot register counts for transparent pixels as seen

in Equation (1.1). Further, photons registered at detector D2 could not have been

scattered by the sample pixel since they reached the detector. Hence, we have inferred

the presence of the opaque pixel without interacting with or depositing energy in it

with the photon. Photon detection at D2 only happens in 25% of the cases; 50%

of the time photons still hit opaque sample pixels. By scanning the beam over all

sample pixels and checking which detector the photon is counted at, we can generate

an image of the sample. In generating this image, we would only be sure of the opacity

of pixels for which there was a detection in D2, or for which there was scattering. For

pixels where there was a detection at D1, we would have to make a guess. We will

discuss strategies to make and improve this guess in Chapter 2.

IFM with photons was first demonstrated in 1998 by Kwiat and co-workers [43],
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who also proposed a scheme for improving the efficiency of IFM based on the quan-

tum Zeno effect by cascading several Mach–Zehnder interferometers and reducing

the transmissivity of the beamsplitters [44]. Putnam and Yanik [45] suggested a

scheme for implementing high-efficiency IFM with electrons, following which designs

for such a ‘Quantum Electron Microscope’ (QEM) were outlined by Kruit and co-

workers [2, 46]. In these designs, the electron beam is confined inside a resonant

cavity with a beamsplitting element (such as a crystalline grating or a nanofabricated

diffractive electron mirror [47–49]). The beamsplitting element creates two interfer-

ometer arms, and the sample is placed in one of these arms. The electron beam starts

off completely in one arm of the cavity, and its intensity transfers quadratically to

the other arm with increasing circulations in the cavity in the absence of the sample,

or if the sample pixel being imaged is transparent to electrons. If the sample pixel

is opaque, this quadratic buildup does not happen, and sample damage increases lin-

early with the number of circulations. Therefore, as the number of passes increases,

the advantage of reduced damage offered by this scheme builds up linearly as well.

Such a microscope would potentially enable atomic-resolution imaging of the speci-

men with beam-induced damage reduced by several orders of magnitude due to the

reduced interaction between the specimen and incident beam [38].

In parallel with these developments, theoretical work also focused on analyzing

the limits of IFM for imaging semitransparent phase and amplitude objects [50–54],

objects with non-uniform transparency distribution [55, 56], and incorporating non-

ideal detectors and system losses [57,58]. This body of work introduced the idea of a

finite acceptable rate of object misidentification (i.e. error probability) as a trade-off

for lowered sample damage. These studies established that in some cases, quantum

imaging protocols can offer an advantage in terms of reduced sample damage for

the same error probability [59–61], for example, when distinguishing semitransparent

samples from completely transparent or opaque samples, measuring sample phase

in addition to amplitude, detecting the presence of a single defect, or working with

Poisson sources.
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With recent progress in nanofabrication, it has become possible to perform

amplitude-division interferometry with a Mach–Zehnder interferometer in a standard

TEM and STEM. In our previous work, we demonstrated electron interference in a

standard TEM using a monolithic grating consisting of two 40 nm thick single-crystal

silicon membranes as beampslitters, fabricated using focused ion-beam milling [62,63].

Tavabi and co-workers also reported electron interference using a similar crystalline

grating [64]. Following this work, Yasin and co-workers demonstrated electron holog-

raphy in a STEM using a nanofabricated phase grating as the beamsplitter [4,65–67].

Nanofabricated, free-standing amplitude gratings have also been previously used as

electron beamsplitters in a custom-made setup at lower electron beam energies [68].

Therefore, single-stage Mach–Zehnder based IFM can be implemented in an SEM or

STEM with current technology [69].

1.2.2 Adaptive and Structured Illumination

Adaptive and structured illumination of the sample is based on the idea that the

illumination on the sample in electron microscopy need not be a collimated beam

(for TEM) or a focused beam that scans all the specimen pixels (for STEM and

SEM). By structuring the illumination such that we extract only the information

we desire from the sample, we can reduce the total incident dose during imaging.

Similarly, by adapting the illumination to a fraction of the sample pixels and using

prior information about the sample, we can reconstruct an image of the whole sample

at a much lower dose.

Multipass TEM has recently been proposed as a way of obtaining the same

reduction in incident electron dose as in QEM without the need for beamsplitting [3,

70]. Just as in QEM, the electron beam and the sample are placed in a resonant

cavity inside which the electron beam circulates [71]. The electron optics inside the

cavity is configured such that the sample is imaged onto itself at each circulation of

the electron beam. Therefore, the electron beam incident on the sample is structured
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to be an image of the sample itself. This repeated re-imaging builds up contrast in

the sample image quadratically, while the sample damage only builds up linearly with

the number of circulations. This buildup mirrors the intensity build up in the QEM

and offers the same reduction in sample damage [72].

The recent creation and use of electron beams with orbital angular momentum

(OAM) in STEM is another example of structured illumination [73,74]. Conventional

electron probes do not possess magnetic moment and are insensitive to the magnetic

properties of materials. The deployment of OAM beams in STEM has enabled the

exploration of magnetic properties of different materials [75]. Such beams have been

created by the use of nanofabricated phase masks placed in the path of the electron

beam. More generally, there has been progress towards the development of the equiv-

alent of spatial light modulators for electrons, i.e., phase masks that can give electron

beams a desired arbitrary phase profile [76]. Such phase masks have the potential

to reduce the required incident dose for certain kinds of imaging experiments signif-

icantly. For example, by shaping the electron wavefront to match specific molecular

arrangements or orientations, the number of electrons required for finding these ar-

rangements in an ensemble could theoretically be reduced to 1 [59–61]. 4-D STEM

techniques such as matched illumination and detector interferometry (MIDI)-STEM

and STEM holography, aimed at enhancing phase contrast in STEM (and thereby

reducing dose) are also enabled by nanofabricated phase plates that structure the

incident electron beam [4, 65–67,77].

After early work on adapting the incident beam current and pixel dwell time to

meet the critical dose requirements of the sample [78], adaptive illumination has been

implemented in STEM through sparse sampling techniques. In these illumination

algorithms, a randomly selected subset of sample pixels is illuminated by the focused

STEM beam. An image of the whole sample is reconstructed from this undersampled

image by inpainting the missing pixels, using prior knowledge about the beam scan

coils, sample, and detectors. The fraction of sample pixels illuminated can be as low as

6.25% of the overall pixels. In combination with adaptive re-illumination techniques,
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where the pixels are re-illuminated based on the results of previous illuminations,

lattice-resolved images have been obtained at doses less than 100 electrons per square

nanometer [40, 79].

Adaptive illumination schemes that use information about the scan coils and

detectors have not been implemented as widely in SEM as in STEM. Work in this

field has focused more on computational methods of reconstructing whole images from

sparse sampled datasets using inpainting and denosing algorithms [80]. In other work,

an algorithm where a low beam current, fast pixel dwell time image of the sample was

used to identify regions of interest within the sample which were then re-sampled at

higher pixel dwell times was implemented and resulted in 3 times higher SNR than

conventional SEM images at the same incident dose [41].

1.3 Requirements for implementation of adaptive

illumination and quantum imaging in electron

microscopy

In the previous section, we described quantum imaging and adaptive illumination

protocols that are being implemented in electron microscopy to reduce the incident

electron dose on a sample. With the implementation of electron interferometry in

TEM/STEM, an analysis of the advantages offered by these schemes in TEMs is

required. Further, adaptive illumination techniques have been much more widely

implemented in high-energy STEM than lower-energy SEM. One of the main reasons

for this disparity is the availability of electron counting detectors in STEM. As we

had discussed in Section 1.1.1, single-electron-sensitive pixel array detectors with

frame rates above 400 frames per second and dynamic ranges up to 106 : 1 are used

in cryo-EM, adaptive illumination and phase-retrieval STEM imaging [7, 17, 40, 81].

Further, software-based electron counting using the conventional ADF detectors on

the STEM has also been used to implement low-dose imaging [82–84]. Electron
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counting detectors will also play an important role in the implementation of quantum

mechanical schemes such as QEM and multipass TEM. However, the capability of

counting electrons has not been readily available at voltages below 20 keV for SEM

imaging, particularly for counting SEs. Although SE counting has been used in the

past to characterize SEM detectors and perform imaging, this lack of widespread

availability of electron counting on SEMs has been the reason for greater emphasis

on the use of computational techniques for implementing low-dose imaging. In this

section, we will review the history of SE counting and discuss requirements for the

implementation of adaptive illumination schemes at lower incident electron beam

voltages in SEM. We will also discuss requirements for the combination of adaptive

illumination and quantum imaging techniques achievable with current technology in

STEM.

1.3.1 History of electron counting in SEM

SE counting on SEMs has been used as a means of characterizing both SE emission

from materials and detectors for SEs since the early days of SEM. A central ques-

tion of interest to investigators since the late 1930’s has been the nature of noise in

SE emission and the deviations of this emission from an ideal Poisson distribution.

Experimental work by Kurrelmeyer and Hayner [85], and later theoretical analysis

by Everhart and co-workers [86], revealed significant deviations from Poisson statis-

tics in the SE emission. Later experimental and theoretical work by Oatley [28, 87],

Baumann and Reimer [88, 89], and more recently Novák [29], Frank [21], and Sakak-

ibara [90] further characterized these deviations and established that they arise be-

cause the emission of SEs is the result of two successive processes with a Poisson

probability distribution: first, the generation of the incident beam at the electron

gun, and second, the emission of SEs by each incident-beam electron. The resulting

distribution from two coupled Poisson distributions is not a Poisson distribution since

its variance is higher than its mean. However, if the SE yield δ is low (< 0.4 or so),

the probability of one incident electron resulting in the emission of more than one
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SE is also low. In this case, the emission of SEs for each incident electron can be ap-

proximated as a Bernoulli process with a probability of success equal to the SE yield

δ, and the overall emission statistics of SEs will be approximately Poisson [21]. The

assumption of low δ is true at high incident beam energies (for example, the SE yield

of aluminum at 10 keV incident beam energy is ∼ 0.2 [20,21]). Hence, deviations from

Poisson statistics in the SE emission are small at these energies. However, at lower

incident beam energies δ is higher (for aluminum, δ = 1 at 300 eV) which explains

the larger deviations seen in the earlier lower-energy observations of Kurrelmeyer and

Hayner [85] and Everhart [86].

The development and characterization of scintillator-photomultiplier based

electron detectors, particularly the Everhart-Thornley detector [25], was another mo-

tivation to study SE emission and statistics through counting. Early work by Paw-

ley [91], Comins [92], and Oatley [28, 87] measured the noise in such detectors and

established the Detection Quantum Efficiency (DQE) as a measure of the efficiency of

various scintillator materials and detector geometries. In his analysis of the noise in

scintillator-based detectors, Oatley used electron count measurements to evaluate the

number of photoelectrons generated at the photomultiplier cathode per SE incident

on the scintillator and concluded that a large fraction (up to 85%) of the incoming SEs

produced at least one photoelectron and are consequently detected [28,87]. Therefore,

we can conclude that the contribution of missed detections and dark counts to noise

in these detectors should be quite low, and the non-unity DQE of these detectors is

primarily due to geometrical constraints. Later work by Novák [29] can also be used

to reach the same conclusion.

Measurement of the DQE of SE detectors has also been a focus of work by

Joy and co-workers [26, 27]. Joy used SEM image histograms of uniform samples to

find the DQE of different types of SE detectors. We will detail Joy’s technique for

measuring DQE in Chapter 4 Section 4.1.1.2 and use it to benchmark our results for

SE detector DQE in Section 4.1.3.2 of the same chapter. Joy also observed hints of

SE quantization in the image histograms at very low beam currents, but did not use
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the quantized peaks in his analysis. Joy, as well as Griffin [22], also reached the same

conclusion about the non-ideal DQE arising from the geometrical placement of the

SE detector as we discussed in the last paragraph.

The use of electron counting for improving imaging in SEM was pioneered by

the work of Yamada and co-workers [93–97]. In their work, they coupled the signal

from the SE detector to a discriminator-pulse counter circuit to count the number

of SE for every scan position on the object and generate an image. The collection

and readout of pulses for each pixel was synchronized with the SEM scan. The dis-

criminator filtered out background low-voltage thermal noise pulses generated in the

SE detector (the discrimination voltage was set by a preliminary statistical analysis

of the voltage level of the output pulses), and the counter shaped and registered the

filtered pulses. This circuit was used to generate SE count images of different types

of organic and inorganic samples. The authors also extracted the SNR for a chosen

point in the scan area using multiple SE count images and showed that it was up

to 4.4 times higher than the SNR for imaging with the advantage being larger at

lower incident beam currents. They used very long pixel dwell times (typically 41

µs) and relied on low beam currents (down to 0.1 pA) to achieve the required low

number of incident-beam electrons. They also reported some evidence of deviations

from Poisson statistics in the distribution of the SEs.

1.3.2 Challenges and requirements

Having discussed the current state of quantum imaging and adaptive illumination in

STEM and SEM imaging, we will discuss challenges and opportunities in these fields

in this section. We will first focus on STEM, where, as we had discussed in Section

1.1.1, electron counting detectors have been enabling the implementation of dose-

efficient structured and adaptive illumination schemes as well as quantum imaging

protocols. Next, we will discuss SEM, where SE count imaging is not widely available

which limits the application of advanced imaging techniques.
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As we discussed in Section 1.2.1, quantum imaging schemes are starting to be

implemented in STEM. Therefore, an analysis of the performance of schemes such as

IFM in a Mach–Zehnder interferometer is required to establish their advantages com-

pared to conventional imaging. Although such analyses exist for advanced schemes

such as QEM [2, 54] and multipass microscopy [3, 72], they are needed for the lower-

efficiency schemes that can be realized with current technology on STEM systems.

Due to the underlying probabilistic nature of quantum imaging protocols, adapting

the illumination at each pixel to prior statistics could be a way to further maximize

the benefits of quantum protocols. Therefore, an analysis of how well quantum imag-

ing schemes can perform when combined with adaptive illumination would also be of

interest.

For SEM imaging, the development of protocols for SE count imaging would

allow the adoption of structured illumination and quantum imaging schemes to lower

voltages and extend the already existing adaptive illumination schemes discussed in

Section 1.2.2. Although SE count imaging was implemented by Yamada and co-

workers, a simpler scheme that does not require external circuits and nanosecond

synchronization would enable more widespread adoption of SE count imaging. As we

had discussed in Section 1.1.3, current conventional SE imaging uses analog signal

averaging to create images due to the high rate of SEs incident on the detector.

Therefore, any implementation of SE counting would need to use much lower beam

currents than conventional imaging. For example, a beam current of 1 pA and δ = 0.2

would result in ∼ 1 SE per µs, which should be countable on SE detectors with

scintillator decay times on the order of 100 ns. However, such low currents would

result in noisy images due to the inherent shot noise in both the incident beam and

SE emission. To improve the image quality, a protocol for SE counting over multiple

imaging frames and longer dwell times would be needed. Such an SE count scheme

would also mitigate noise due to SE detector background and dark counts, which can

be significant at low beam currents.
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1.4 Work in this thesis

This thesis addresses the challenges and requirements discussed in the previous sec-

tion for STEM and SEM imaging. The thesis is divided into six chapters. Following

this introductory chapter, in Chapter 2 we will theoretically analyze the advantages of

IFM-based quantum imaging over conventional STEM imaging. We will also present

a scheme to adaptively illuminate each pixel based on the statistics from previous

illuminations and calculate the reduction in incident electron dose and sample dam-

age enabled by this scheme. In chapters 3, 4 and 5, we will turn our attention to

SE counting in SEM. In preparation for our implementation of SE count imaging,

in Chapter 3 we will analyze image quality metrics for characterizing and comparing

grayscale images and schemes for extending adaptive re-illumination to SEM imag-

ing. In Chapter 4, we will present two methods of counting SEs in an SEM: image

histograms and oscilloscope outcoupling. We will present evidence of SE counting for

both methods and compare their ease of implementation and versatility. We will use

the two schemes to characterize the detection quantum efficiency (DQE) of both the

in-chamber and in-lens SE detectors and map its variation with the working distance.

In Chapter 5, we will use the oscilloscope outcoupling scheme to implement offline

SE count imaging. We will describe our code for taking the oscilloscope outcoupling

datasets for several frames and counting SEs from every pixel for each frame. We will

also implement the offline conditional re-illumination schemes developed in Chapter 3

and demonstrate reduction in the incident electron dose using the image quality met-

rics from Chapter 3. In the concluding Chapter 6, we will discuss extensions of the

work presented in this thesis, including recent schemes for phase contrast IFM and

SE counting in helium ion microscopy. Appendices A through D will present data,

methods, and code that supplement the discussion in the main thesis chapters.

Finally, teaching has been an important aspect of my PhD and has brought me

just as much joy and opportunities for self-reflection and improvement as my research.

Appendix E is the final paper for a teaching class I took at the Harvard Graduate
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School of Education (T.440: Teaching and Learning: The Having of Wonderful Ideas).

In this essay I describe my journey to understanding the importance of complexity,

confusion, trust, and emotion in the process of teaching and learning.
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Chapter 2

Reduced-dose electron microscopy

through conditional sample

re-illumination

In Chapter 1 we introduced quantum electron microscopy schemes and adaptive il-

lumination schemes as a means of reducing the incident electron dose on the sample

and mitigate sample damage during imaging. As we had discussed in that chapter,

recent progress in nanofabrication has enabled the implementation of Mach-Zehnder

interferometry in a standard TEM/STEM and SEM [62, 64, 65, 68]. Therefore, a

comparison of the performance of a Mach-Zehnder-based IFM setup with that of

conventional STEM imaging is important since such a setup can be implemented in

a TEM with current technology. In this chapter we will combine IFM-based imaging

with a sample illumination scheme that uses Bayesian inference to take the counts at

the imaging detectors from each round of illumination into account, to further reduce

the sample damage for the same probability of imaging error [51,57]. This conditional

re-illumination scheme ties in with previous research in imaging and image processing

schemes that take advantage of prior information about the source, the object, the

imaging apparatus, as well as information gained during the experiment, to adap-
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tively illuminate the sample and use maximum-likelihood reconstruction to improve

the image signal-to-noise ratio at low incident electron doses [40,41,61,79,80,98–103].

We will calculate the damage suffered by the sample and the errors in the image

generated in conventional STEM (or classical) imaging as well as IFM imaging for

opaque-and-transparent samples using this conditional re-illumination scheme. Our

results indicate that the sample damage is significantly lower for IFM-based imaging,

particularly when combined with conditional re-illumination, compared to conven-

tional imaging.

This chapter is divided into three sections. In Section 2.1, we will introduce

the various conventional and IFM imaging setups considered in this chapter and

derive expressions for the sample damage and errors made while imaging opaque-

and-transparent samples with these schemes. Next, in Section 2.2 we will introduce

the conditional re-illumination and calculate error and damage for the conventional

and IFM imaging schemes with conditional re-illumination. Finally, in Section 2.3

we will summarize the results of this chapter and discuss methods of implementing

the conditional re-illumination scheme developed in this chapter. In Section D.1 of

Appendix D we list the MATLAB scripts used to perform the simulations in this

chapter. Our work in the remaining chapters of this thesis is motivated by the need

to overcome challenges of low-dose imaging and fast beam blanking required for the

implementation of conditional re-illumination in SEM.

The text and figures from this chapter are reproduced from [104]. The theory

and simulations in this chapter were performed in collaboration with Yuri van Staaden

(Delft University of Technology), Prof. Vivek Goyal (Boston University) and Prof.

Karl K. Berggren.
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2.1 Error and damage in STEM and IFM imaging

In order to compare STEM and IFM imaging, we need to develop metrics for cal-

culating imaging error and sample damage. In this section, we will describe our

calculation of error and damage in conventional STEM and IFM imaging. In Sec-

tion 2.1.1, we will introduce the STEM and IFM imaging schemes considered in this

paper as well as the terminology used in the results we have derived. To motivate the

need for conditional re-illumination, we will discuss the simplest case of unconditional

re-illumination, where each pixel is illuminated by 2 electrons, with and without IFM,

in Section 2.1.2. In Section 2.1.3 we will discuss the most general case, where the

number of electrons illuminating each pixel is derived from a Poisson distribution.

2.1.1 Apparatus and Terminology

Before analyzing the STEM and IFM schemes with conditional re-illumination, we

introduce the setup of these schemes as well as the notation that is used in the

rest of this paper. In Figure 2-1, we show the STEM and IFM imaging schemes

considered in this paper. In each scheme, the sample is placed in the path of the

incident electron beam. Detectors at the outputs count electrons emerging from the

imaging scheme. In our analysis, we denoted the detector for electrons transmitted

through the sample as D1. This detector is analogous to the bright-field detector

in conventional microscopes. We denoted the analogous detector to the dark-field

detector in conventional microscopes, i.e. the detector for electrons scattered from

the sample, as D3. The electrons that damage the sample lose energy to and scatter

off of it. Therefore, we also used the counts at D3 as a measure of the damage suffered

by the sample. IFM imaging requires another detector at the second output port of

the beamsplitter; we denoted this detector as D2. In our analysis, we considered these

detectors to be 100% efficient, with no dark counts. We also assumed that the imaging

system had no losses. Since a counting detector for scattered electrons is not always

available on typical TEMs/STEMs, we have considered four imaging schemes in total
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in this paper. Scheme A, depicted in Figure 2-1(a), is STEM imaging without D3.

Scheme B, depicted in Figure 2-1(b), is STEM imaging with D3. Scheme C, depicted

in Figure 2-1(c), is IFM imaging without D3. Scheme D, depicted in Figure 2-1(d), is

IFM imaging with D3. The presence of D3 in the imaging schemes eliminated errors

due to the Poisson nature of the electron beam, resulting in fewer electrons required

to achieve a desired error rate.

Figure 2-1: Conventional and IFM imaging schemes. (a) Classical imaging without an
additional scattering detector D3. D1 registers a count when the object is transparent
to electrons. (b) Classical imaging with D3. D3 registers a count every time an electron
scatters off the object. (c) IFM without D3. D1 registers a count every time when the object
is transparent and with probability 1

4 when the object is opaque. D2 does not register a
count when the object is transparent, and registers a count 1

4th of the times the object
is opaque. (d) IFM with D3: D3 registers a count with probability 1

2 when the object is
opaque, and does not register a count when the object is transparent.

As we had mentioned before, we considered only opaque-and-transparent sam-

ples in our analysis. Pixels are imaged independently, so we considered any one ar-

bitrary pixel. We use a random variable X to represent the opacity of the sample:

X = 1 denotes an opaque pixel, and X = 0 denotes a transparent pixel. We denote

the prior probability of an opaque pixel with q. The number of electrons in the in-

cident beam is denoted by N . In calculations that include the Poisson nature of the

electron beam, N becomes a Poisson random variable with mean λt, where λ denotes
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X a pixel’s true opacity: 0 when transparent, 1 when opaque
X̂ our inference for the pixel’s opacity: 0 when transparent, 1

when opaque
q prior probability of opaque pixel
λt mean number of electrons in Poisson beam
N actual number of electrons in the beam
Di imaging detectors; i = 1, 2, 3
ni electron counts at detector Di

Perr total probability of misidentifying a pixel
PMD probability of inferring an opaque pixel as transparent
PFA probability of inferring a transparent pixel as opaque
n̄damage mean number of electrons scattered by opaque pixels

Table 2.1: List of symbols and abbreviations used in this chapter.

the beam current and t the illumination time per pixel. The number of electrons

detected at D1 is denoted by n1, at D2 by n2, and at D3 by n3. In our calculations,

we inferred whether the pixel being examined was opaque or transparent based on

the values of n1, n2, and n3 for that pixel. This inference, also 1 or 0, is denoted

by another binary-valued random variable, X̂. Our analysis of the different imaging

schemes involved evaluation of two quantities for each scheme: the total probability

of misidentifying a pixel, Perr, and the average number of electrons scattered by an

opaque pixel, n̄damage. We split Perr into two components: PMD, the probability of

missed detections (opaque pixels inferred as transparent), and PFA, the probability of

false alarms (transparent pixels inferred as opaque).

Table 2.1 summarizes the abbreviations and symbols used in this chapter.

2.1.2 Analysis of STEM and IFM approaches with single-

shot illumination and N = 2 electrons

Before we consider Poisson-distributed illumination, we will develop our methodology

for calculating Perr and n̄damage by considering the case of N = 2 for STEM and IFM

imaging. The insights from this calculation will inform our consideration of the

more general case. In the case of N = 2, since N is exactly known, we can make
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two simplifying observations. First, the scattering detector D3 does not provide any

additional benefit, since any electron that was not detected by D1 or D2 must have

been scattered. Hence, we expect the same results from Schemes A and B, and

from Schemes C and D. Second, illuminating each pixel with one electron twice is

equivalent to illuminating it once with two electrons. Therefore, we will work out the

theory for simultaneous illumination with two electrons.

2.1.2.1 STEM imaging

Figure 2-1(a) and (b) show the STEM imaging Schemes A and B. If the pixel is

opaque, neither of the 2 incident electrons will be detected at D1. If it is transparent,

both the electrons will be detected. We summarize these observations in Table 2.2.

X n1

0 2

1 0

Table 2.2: Possible outcomes at D1 of STEM imaging with 2 incident electrons.

Therefore, it is straightforward to design a decision rule for X̂. Two detections

at D1 implies that the pixel was transparent. No detections imply that the pixel was

opaque. This decision rule is summarized in Table 2.3.

n1 X̂

0 1

2 0

Table 2.3: Decision rule for STEM imaging with 2 incident electrons.

Here we will never make any errors, so Perr = 0. We can also evaluate n̄damage =

E[N | X = 1] = 2. Thus, even though we get error-free detection, we also damage

the opaque pixels in our sample with both electrons.
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2.1.2.2 IFM imaging

Figure 2-1(c) and (d) show the IFM imaging Schemes C and D. When X = 0,

constructive interference leads to both incident electrons being detected at D1. When

X = 1, a given incident electron is detected at D1 or D2 with probability 1
4

each and

scattered off the pixel with probability 1
2
. Since the detection is probabilistic, we

cannot be sure of how many electrons will be detected at either detector. Hence, we

summarize the probabilities of detection of each incident electron at D1 and D2 in

Table 2.4.

X D1 D2

0 1 0

1 1
4

1
4

Table 2.4: Probabilities at D1 and D2 for IFM imaging.

Any D2 counts tell us that the pixel was opaque, and hence we set X̂ = 1.

Similarly, if there were no counts at both detectors, or only one count at either de-

tector, one or both of the electrons must have been scattered by the pixel. Therefore,

X̂ = 1 again. However, an ambiguity arises when n1 = 2 and n2 = 0, since this

outcome is possible with both X = 0 and X = 1. We denote the probability that the

pixel was transparent, given that n1 = 2 and n2 = 0, by P (X = 0 | n1 = 2, n2 = 0),

which we can evaluate using Bayes’ rule, as follows:

P (X = 0 | n1 = 2, n2 = 0) (2.1)

=
P (n1 = 2, n2 = 0 | X = 0)P (X = 0)

P (n1 = 2, n2 = 0 | X = 0)P (X = 0)
+ P (n1 = 2, n2 = 0 | X = 1)P (X = 1)

=
1− q

(1− q) + (1/16)q
=

1

1 + q/(16(1− q))
. (2.2)

If P (X = 0 | n1 = 2, n2 = 0) > P (X = 1 | n1 = 2, n2 = 0), the decision X̂ = 0 has a

higher chance of being correct. Using the expression for P (X = 0 | n1 = 2, n2 = 0)

in Equation (2.2), we get the final decision rule given in Table 2.5.
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n1 n2 X̂

0 0 1

0 1 1

0 2 1

1 0 1

1 1 1

2 0 0, q≤16/17
1, q>16/17

Table 2.5: Decision rule for IFM imaging with 2 incident electrons.

The decision rule for n1 = 2 and n2 = 0 implies that unless the prior probability

of the pixel being opaque is large (q > 16/17), the decision X̂ = 0 has a higher

probability of being correct with two detections at D1. Physically, the reason that

the decision X̂ = 0 produces fewer errors is that the outcomes n1 = 2 and n2 = 0

occur with certainty for a transparent pixel, but with a probability of 1/16 for an

opaque pixel. This intuition holds unless we were already very sure of the pixel

being opaque (q > 16/17) prior to the experiment. Although the event n1 = 2 and

n2 = 0 reduced our confidence that the pixel was opaque, X̂ = 1 still had the greater

probability of being correct.

We can now evaluate PMD and PFA:

PMD = P (X̂ = 0 | X = 1)

=

 P (n1 = 2, n2 = 0) = 1/16, for q ≤ 16/17;

0, otherwise,

PFA = P (X̂ = 1 | X = 0)

=

 ���0, for q ≤ 16/17;

���1, otherwise.
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The total error probability is given by Perr = qPMD + (1− q)PFA. Hence,

Perr =

 ���q/16, for q ≤ 16/17;

��1− q, otherwise.

This result implies that for most values of q, up to q = 16/17, the error probability

increases linearly but remains small (Perr ≤ 1/17). The only kind of error we can

make in this regime is a missed detection, which happens when n1 = 2 and n2 = 0

for an opaque pixel. This kind of error becomes more probable as q increases, since

the number of opaque pixels in the sample increases. Beyond q = 16/17, we can only

have false alarms, since now we switch to guessing that the pixel is opaque for the

case when n1 = 2 and n2 = 0. However, since most of the pixels are opaque anyway,

the total probability of error reduces.

We can evaluate n̄damage = E[N | X = 1] = 1, since the probability of scatter-

ing for each incident electron is 1
2
. Thus, the IFM imaging Schemes C and D provide

lower n̄damage than the STEM imaging Schemes A and B, at the cost of non-zero Perr.

This example illustrates the fundamental trade-off that appears in all of our

results: accepting a small error probability led to reduction in the expected damage

on the sample. Further, the introduction of a second electron reduced the error

probability, at the cost of increased damage.

2.1.3 Analysis of STEM imaging schemes with single-shot

illumination and N ∼ Poisson(λt) electrons

We will now derive analogous results for the more general case of Poisson illumination,

where the number of electrons in the beam (N) is not determinate. The probability

of having exactly n electrons in the beam is given by:

P (N = n) = e−λt (λt)
n

n!
.
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Here, λt is the mean number of electrons in the beam.

2.1.3.1 Scheme A: STEM imaging without D3

In the absence of an object, each of the N incident electrons will be detected at

D1, while in the presence of an object none of them will. These observations are

summarized in Table 2.6.

X n1

0 N

1 0

Table 2.6: Possible outcomes at D1 for Scheme A.

Since N is Poisson distributed, we do not know beforehand exactly how many

electrons were in the beam. For any n1 ≥ 1, the inference X̂ = 0 (i.e. the pixel is

transparent) would always be correct. However, ambiguity arises when n1 = 0. The

lack of detections at D1 could be because of an opaque pixel (X = 1), or it could be

because the beam did not contain any electrons (N = 0).

We expect our final decision rule for n1 = 0 to depend on both the prior q

and mean number of electrons in the beam λt. For example, if λt was high, the

probability of there being no electrons in the beam would be low. Therefore, the lack

of detections at D1 is more likely to have been caused by an opaque pixel, and we

would expect X̂ = 1 to be the inference that leads to fewer errors. The opposite

would be true for small λt. Similarly, increasing q would indicate greater confidence

that X = 1, and we would make that inference for more of the ambiguous cases where

n1 = 0. We refer to the conditional probability that X = 0, given the value of n1,

as ηA(n1, q, λt) (anticipating its dependence on q and λt). Then ηA(n1, q, λt) = 1 for
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n1 > 0. To determine the decision rule for the case when n1 = 0, we calculate

ηA(0, q, λt) = P (X = 0 | n1 = 0)

=
P (n1 = 0 | X = 0)P (X = 0)

P (n1 = 0 | X = 0)P (X = 0)
+ P (n1 = 0 | X = 1)P (X = 1)

=
e−λt(1− q)

e−λt(1− q) + q
=

1

1 + eλtq/(1− q)
. (2.3)

This expression for ηA is comparable to the expression for P (X = 0 | n1 = 2, n2 = 0)

in Equation (2.2). Just as in the N = 2 case, if P (X = 0 | n1 = 0) > P (X = 1 | n1 =

0), we would want X̂ = 0, and vice-versa. Therefore, we get as our decision rule (for

n1 = 0):

X̂ =

 ��1, for ηA(0, q, λt) <
1
2
;

��0, otherwise.��
(2.4)

As we had anticipated, this decision rule depends on both q and λt. This decision

rule is summarized in Table 2.7.

n1 X̂

0 1, ηA(0,q,λt)< 1
2

0, otherwise

≥ 1 0

Table 2.7: Decision rule for Scheme A.

We plot ηA(0, q, λt) as a function of q, for different values of λt between 0 and

5, in Figure 2-2(a). We also depict the decision threshold ηA(0, q, λt) ≶ 1
2

by the

horizontal dashed line. The probability of the beam having zero electrons is given by

e−λt. Therefore, for low values of λt the probability of no detections at D1 (n1 = 0)

due to the beam having zero electrons is high. Hence, we gain little information from

the illumination experiment, and it makes sense to infer X̂ based on q. Therefore,

ηA(0, q, λt) = 1 − q for λt = 0 in Figure 2-2(a). As λt increases, the probability of

zero electrons in the beam reduces. Therefore, the probability of n1 = 0 being due

to an opaque pixel increases. Hence, we can conclude that X̂ = 1 over a wider range
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of the prior q. As a result, ηA(0, q, λt) < 1
2

over an increasingly wider range of q in

Figure 2-2(a) for λt = 0.5, 2 and 5.

We can now look at the probabilities of missed detections and false alarms,

PMD and PFA. When the pixel is opaque (X = 1), we do not get detections at D1

(n1 = 0). Hence, we either always make a mistake (when ηA(0, q, λt) ≥ 1
2
) or never

make one (when ηA(0, q, λt) <
1
2
). Thus,

PMD = P (X̂ = 0 | X = 1)

=

 0, for ηA(0, q, λt) <
1
2
;

1, otherwise.

When the pixel is transparent (X = 0), if the beam has electrons (N > 0), we never

make a mistake. Errors arise only when N = 0. In this case, if ηA(0, q, λt) ≥ 1
2
,

X̂ = 0 and our inference is still correct. If ηA(0, q, λt) < 1
2
, X̂ = 1 and we have a false

alarm. Hence,

PFA = P (X̂ = 1 | X = 0)

=

 P (N = 0), for ηA(0, q, λt) <
1
2
;

0, otherwise

=

 e−λt, for ηA(0, q, λt) <
1
2
;

0, otherwise.

The total error probability Perr is given by:

Perr =

 (1− q)e−λt, for ηA(0, q, λt) <
1
2
;

q, otherwise.

The condition for ηA(0, q, λt) can be recast into one for q using Equation (2.3), as

follows:

ηA(0, q, λt) <
1

2
⇒ eλt

q

1− q
> 1 ⇒ q >

1

1 + eλt
.
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Hence,

Perr =

 q, for q ≤ 1
1+eλt

;

(1− q)e−λt, otherwise.

This expression is similar to the expression for Perr in the N = 2 case, with the

addition of the statistics of the incident beam (through the e−λt term).

We can evaluate n̄damage = E[N | X = 1] = λt. Hence, Perr can also be

expressed as

Perr =

 q, for q ≤ 1
1+eλt

;

(1− q)e−n̄damage , otherwise.
(2.5)

As an example, consider the case of λt = 1
2

and q = 1
2
. From the equations above,

1
1+eλt

= 1
1+e1/2

≈ 0.378, and n̄damage =
1
2
. Since q > 1

1+eλt
, Perr =

1
2
e−1/2 ≈ 0.303.

2.1.3.2 Scheme B: STEM imaging with D3

In this scheme, we detect every electron in the beam in one of the two detectors D1

and D2. The possible detection events are summarized in Table 2.8.

X n1 n3

0 N 0

1 0 N

Table 2.8: Possible outcomes at D1 and D3 for Scheme B.

Just as for Scheme A, if n1 > 0, we can correctly infer that X̂ = 0. Similarly,

if n3 > 0, we can infer that X̂ = 1. The only case in which we need to guess is when

n1 = 0 and n3 = 0. Due to the presence of D3, we can be sure that all electrons in

the incident beam were counted. Hence, n1 = 0 and n3 = 0 is only possible if N = 0.

In this case, we do not gain any information about the sample from our experiment.

Therefore, we would assign X̂ based on the known prior q, which is unchanged:

ηB(0, q, λt) = P (X = 0 | n1 = 0, n3 = 0) = 1− q. (2.6)
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Figure 2-2: Comparing conventional imaging schemes with and without D3. (a) ηA(0, q, λt),
the probability of the pixel being transparent (X = 0) given n1 = 0, vs. the known prior
q, for λt ranging from 0 (no beam) to 5 electrons in the beam on average. We infer
X̂ = 1 if ηA(0, q, λt) < 1

2 and X̂ = 0 otherwise. The horizontal black dashed line indicates
this threshold for inferring X̂, ηA(0, q, λt) = 1

2 . As λt increases, the value of q at which
ηA(0, q, λt) is less than 1

2 decreases and Perr is minimized by the decision X̂ = 1 over a wider
range of q. (b) Comparing Perr vs. q for Schemes A and B, for (a) n̄damage = 0.5, and (b)
n̄damage = 2. The presence of D3 reduces Perr for q < 0.5. Beyond q > 0.5, the two schemes
give the same Perr.

X̂ = 0 if q ≤ 1
2

and X̂ = 1 if q > 1
2
. The final decision rule is summarized in Table 2.9.

n1 n3 X̂

0 ≥1 1

≥1 0 0

0 0 0 q≤ 1
2

1 q> 1
2

Table 2.9: Decision rule for Scheme B.

We make errors only for pixels where n1 = 0 and n3 = 0. In this case,

PMD = P (X̂ = 0 | X = 1) =

 e−λt, for q ≤ 1
2
;

0, otherwise,

PFA = P (X̂ = 1 | X = 0) =

 0, for q ≤ 1
2
;

e−λt, otherwise.

Here, as in Scheme A, the e−λt term comes from the probability that N = 0. Using
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these results, we can evaluate Perr as follows:

Perr =

 qe−λt, for q ≤ 1
2
;

(1− q)e−λt, otherwise.
(2.7)

Compared to the expression for Perr for Scheme A (Equation (2.5)), we see from

Equation (2.7) that the error probability in Scheme B is reduced by a factor of e−λt

for small values of q. This reduction demonstrates the benefit of the addition of D3

in Scheme B.

We can rewrite Equation (2.5), for the case q < 1
1+e−λt <

1
2
, as

Perr = q = qe−λt + q(1− e−λt).

The first term in this equation is the same as Perr in Equation (2.7) for q ≤ 1
2

and

arises when the beam has no electrons and we guess X̂ incorrectly. The second term

is due to errors made when the beam has electrons, but they are scattered by an

opaque pixel. Since q < 1
1+e−λt , we decide that X̂ = 0, which is an error. These

additional errors in Scheme A are eliminated by having an additional detector for

scattered electrons in Scheme B.

Damage is the same as Scheme A: n̄damage = λt. Hence, Perr can also be

expressed as

Perr =

 qe−n̄damage , for q ≤ 1
2
;

(1− q)e−n̄damage , otherwise.
(2.8)

In the example case outlined for Scheme A (λt = 1
2

and q = 1
2
), Perr =

1
2
e−1/2 ≈

0.303. Hence, for this particular case, there is no advantage in using D3. This result

occurs because q = 1
2
> 1

1+e−λt for any λt > 0. As we have seen above, for q > 1
1+e−λt

the expressions for error probability for the two schemes are identical. Physically, this

result makes sense when we consider the scenarios in which an error could be made

with q = 1
2
. For Scheme A, when the beam contains no electrons (N = 0), we would
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get n1 = 0 and hence assign X̂ = 1 (since q = 1
2
> 0.378). For q = 1

2
, this inference is

incorrect half the time. If the beam contains at least one electron and we get n1 = 0,

we would again assign X̂ = 1. This would always be correct, since n1 = 0 with N ̸= 0

is only possible when X = 1. For Scheme B, with n1 = 0 and n3 = 0, we would assign

X̂ = 0, in accordance with the decision rule above (alternatively, we could guess X̂

at random since q = 1
2
). Both these decision rules would also be incorrect half the

time. When N ̸= 0, we would get counts at either D1 or D3. Hence, we would again

never make an error for any q. Therefore, in both schemes, with q ≥ 1
2
, the only case

in which we make errors is when N = 0. Hence, Perr is equal for both schemes for

q = 1
2
.

In Figure 2-2(b), we compare Perr for Scheme B (solid purple curve) and

Scheme A (dashed blue curve), as a function of q. The top plot in Figure 2-2(b)

is for n̄damage = 0.5, and the bottom plot is for n̄damage = 2. The addition of D3

lowers Perr for Scheme B compared to Scheme A, for q < 1
2
. For q ≥ 1

2
, D3 offers no

advantage, as explained previously.

Scheme C: IFM imaging without D3

For this scheme, due to the possibility of detections at D1 (i.e. n1 > 0) with both

opaque and transparent pixels, there exists a threshold for the number of detections

at D1 below which the decision that the pixel was opaque (X̂ = 1) is a better choice

and vice-versa. We have summarized the detection probabilities at D1 and D2 for

Scheme C in Table 2.4. In the most general case, we will have to infer X̂ with n1 ≥ 0

and n2 ≥ 0 such that n1 + n2 ≤ N . If n2 > 0, regardless of n1, we can decide that

X̂ = 1, and we would never make an error since this event is impossible if X = 0.

The event n2 = 0 is possible in two cases: when X = 0, or when X = 1 but no

electrons reach D2. In the first case, all incident electrons will be detected at D1 with

probability 1, while in the second case this probability is 1
4

for each electron. Hence,

we would expect fewer counts at D1 for X = 1 compared to X = 0. Therefore, there
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should exist a threshold count at D1 below which X̂ = 1 is a better decision and

above which X̂ = 0 is better. We denote this threshold by k∗. This decision rule is

summarized in Table 2.10.

n1 n2 X̂

any ≥ 1 1

< k∗ 0 1

≥ k∗ 0 0

Table 2.10: Decision rule for IFM imaging with Poisson number of incident electrons.

To find k∗, we first look at the conditional probability ηC(n1, q, λt) that X = 0

given the specified value of n1 and n2 = 0, similar to the analysis for Scheme A.

ηC(n1, q, λt) = P (X = 0 | n1, n2 = 0)

=
P (n1, n2 = 0 | X = 0)P (X = 0)

P (n1, n2 = 0 | X = 0)P (X = 0)
+ P (n1, n2 = 0 | X = 1)P (X = 1)

=

(
e−λt(λt)n1/n1!

)
(1− q)(

e−λt(λt)n1/n1!
)
(1− q)

+
(
e−λt/4(λt/4)n1/n1!

)
e−λt/4q

=
1

1 + (eλt/2/4n1) (q/1− q)
. (2.9)

Here, the third equality results from the fact that the counts at D1 and D2 are

independent Poisson processes. When X = 0, the mean of the Poisson process at D1

is λt, while n2 = 0 is a probability 1 event. When X = 1, the means of the Poisson

processes at both D1 and D2 are λt/4.

The decision rule for X̂ is the same as that in Equation (2.4). We can also use

the expression for ηC(n1, q, λt) to find k∗. From Equation 2.9, we get

ηC(n1, q, λt) ≥
1

2
⇒ eλt/2

4n1

q

1− q
≤ 1.
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Solving
(
eλt/2/4n1

)
(q/1− q) = 1 for n1 = k∗, we get

k∗ =
λt

2
log4e+ log4

(
q

1− q

)
. (2.10)

We can now work out the error probabilities:

PMD = P (X̂ = 0 | X = 1)

= P (n1 ≥ k∗, n2 = 0 | X = 1)

= P (n1 ≥ k∗ | X = 1)P (n2 = 0 | X = 1)

=

(∑
k≥k∗

e−λt/4 (λt/4)
k

k!

)
e−λt/4,

PFA = P (X̂ = 1 | X = 0)

= P (n1 < k∗, n2 = 0 | X = 0)

= P (n1 < k∗ | X = 0)P (n2 = 0 | X = 0)

=
∑
k<k∗

e−λt (λt)
k

k!
.

Combining these gives the total error probability, Perr:

Perr = q

(∑
k≥k∗

e−λt/4 (λt/4)
k

k!

)
e−λt/4

+ (1− q)

(∑
k<k∗

e−λt (λt)
k

k!

)
.

In these equations, k is a non-negative integer that represents the possible values of

n1.

Since on average only half of the incident electrons scatter off the sample,
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n̄damage = λt/2. Hence,

Perr = q

(∑
n>k∗

e−n̄damage/2
(n̄damage/2)

k

k!

)
e−n̄damage/2

+ (1− q)

(∑
k<k∗

e−2n̄damage
(2n̄damage)

k

k!

)

= qe−n̄damage

(∑
k>k∗

(n̄damage/2)
k

k!

)

+ (1− q)e−2n̄damage

(∑
k<k∗

(2n̄damage)
k

k!

)
. (2.11)

The first term in Equation (2.11) decays as e−n̄damage , which is the same decay as

Equations (2.5) for Scheme A and (2.8) for Scheme B. The second term decays as

e−2n̄damage , which is faster than the decay for the STEM Schemes A and B. Therefore,

we expect this factor to lower Perr for IFM below that for Schemes A and B.

As an example, consider the case of λt = 1 and q = 1
2
. We take λt = 1

instead of 1
2

(as in the examples for Schemes A and B) to keep n̄damage = 1
2
. From

Equation (2.10), k∗ = 1
2
log4e ≃ 0.36. Since k in Equation (2.11) can only take non-

negative integer values, the first term in the equation will have all values of k greater

than 1, and the second will have just a single term, k = 0. Hence, we get

Perr =
1

2

(∑
n≥1

e−1/4

(
1
4

)n
n!

)
e−1/4

+
1

2
e−1 =

1

2

(
1− e−1/4

)
e−1/4 +

1

2
e−1 ≈ 0.27.

Note that Perr here is lower than that for the STEM imaging Schemes A and B (for

which Perr = 0.303), for the same n̄damage = 1
2
. This lower damage illustrates the

advantage offered by IFM imaging.
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Scheme D: IFM imaging with D3

Here, we add D3 to count scattered electrons, just as in Scheme B. The detection

probabilities are summarized in Table 2.11.

X D1 D2 D3

0 1 0 0

1 1
4

1
4

1
2

Table 2.11: Detection probabilities at D1, D2 and D3 for Scheme D.

If we observe counts at D2 or D3, i.e. either n2 ≥ 1 or n3 ≥ 1 (or both),

we decide that X̂ = 1, regardless of the counts on D1, and we would never make an

error. Ambiguity only arises if n2 = 0 and n3 = 0. As in Scheme C, there should

exist a threshold count k∗ at D1 below which X̂ = 1 is a better decision and above

which X̂ = 0 is better. Table 2.12 summarizes this decision rule.

n1 n2 n3 X̂

any any ≥ 1 1

any ≥ 1 any 1

< k∗ 0 0 1

≥ k∗ 0 0 0

Table 2.12: Decision rule for Scheme D.
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Using the same approach for finding k∗ as before, we begin with

ηD (n1, q, λt) = P (X = 0 | n1, n2 = 0, n3 = 0)

=
P (n1, n2 = 0, n3 = 0 | X = 0)P (X = 0)

P (n1, n2 = 0, n3 = 0 | X = 0)P (X = 0)
+ P (n1, n2 = 0, n3 = 0 | X = 1)P (X = 1)

=

(
e−λt(λt)n1/n1!

)
(1− q)(

e−λt(λt)n1/n1!
)
(1− q)

+
(
e−λt/4(λt/4)n1/n1!

)
e−λt/4e−λt/2q

=
1

1 + (1/4n1) (q/1− q)
. (2.12)

Again, the second equality results from the fact that the counts at each of the three

detectors are independent Poisson processes (with means λt/4 at D1 and D2, and

λt/2 at D3, when X = 1). We can solve for ηD(n1, q, λt) =
1
2

to obtain the value of

k∗:

k∗ = log4

(
q

1− q

)
. (2.13)

This expression is the same as the second term in Equation (2.10) for Scheme C.

Here, we see that k∗ does not depend on the mean number of incident electrons. This

is because by adding D3, we have eliminated uncertainty from the Poisson statistics

of the beam, since each input electron is detected. The only case in which the beam

statistics matter is when there are no electrons in the beam (N = 0).

In Figure 2-3(a), we plot ηA(n1, q, λt), ηC(n1, q, λt) and ηD(n1, q, λt) as func-

tions of the prior q. The curves are plotted at λt = 2, for n1 = 0 (Figure 2-3(a)) and

n1 = 2 (Figure 2-3(b)). When n1 = 0, for Scheme D, we gain no new information

in the experiment. Hence ηD(n1, q, λt) = 1 − q. For Scheme C, the possibility that

n1 = 0 due to X = 1 is not ruled out. Therefore, the range of q over which inferring

X̂ = 1 gives fewer errors is larger than that for Scheme D. In Schemes C and D, on

average half the incident electrons interact with the sample, while in Scheme A all of

them do. Therefore, if we observe n1 = 0 with Scheme A, inferring X̂ = 1 leads to

fewer errors over a wider range of q than with Schemes C and D. When n1 = 2, the

value of ηA(n1, q, λt) remains the same in Scheme A since ηA(n1, q, λt) is the same for
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all n1 > 0. However, for both Schemes C and D, we can be much more certain that

the pixel is transparent for n1 = 2 than for n1 = 0. Therefore, the range of q over

which we infer X̂ = 0 increases.

We can compute the error probabilities for Scheme D in the same way as for

Scheme C:

PMD = P (X̂ = 0 | X = 1)

= P (n1 ≥ k∗, n2 = 0, n3 = 0 | X = 1)

= P (n1 ≥ k∗ | X = 1)P (n2 = 0 | X = 1)

P (n3 = 0 | X = 1)

=

(∑
k≥k∗

e−λt/4 (λt/4)
k

k!

)
e−λt/4e−λt/2,

PFA = P (X̂ = 1 | X = 0)

= P (n1 < k∗, n2 = 0, n3 = 0 | X = 0)

= P (n1 < k∗ | X = 0)P (n2 = 0 | X = 0)

P (n3 = 0 | X = 0)

=
∑
k<k∗

e−λt (λt)
k

k!
,

Perr = q

(∑
k≥k∗

e−λt/4 (λt/4)
k

k!

)
e−3λt/4

+ (1− q)

(∑
k<k∗

e−λt (λt)
k

k!

)
.

We note that the false alarm probability PFA is the same as for Scheme C, since

P (n3 = 0 | X = 0) = 1. However, the missed detection probability PMD is reduced by

a factor of e−λt/2 due to the presence of D3. Intuitively, some of the pixels for which

we incorrectly inferred X̂ = 0 without D3 are now correctly assigned as opaque due

to detections at D3, lowering the rate of missed detections.
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Figure 2-3: Comparison of posteriors for conventional and IFM imaging. η(n1, q, t) vs. q
at λt = 2 for conventional imaging Scheme A, and IFM imaging Schemes C and D, for (a)
n1 = 0 and (b) n1 = 2. Also indicated by the horizontal dotted black line is the threshold
for inferring X̂, η(n1, q, λt) = 1

2 . For Scheme A, ηA is the same for all n1, and remains
unchanged in (a) and (b). For Schemes C and D, as n1 increases, the probability of the
pixel being transparent increases, and hence the range of q for which inferring X̂ = 0 leads
to lower Perr grows larger.

n̄damage is the same as for Scheme C, i.e. λt/2. Hence,

Perr = q

(∑
k≥k∗

e−n̄damage/2
(n̄damage/2)

k

k!

)
e−3n̄damage/2

+ (1− q)

(∑
k<k∗

e−2n̄damage
(2n̄damage)

k

k!

)

= qe−2n̄damage

(∑
k≥k∗

(n̄damage/2)
k

k!

)

+ (1− q)e−2n̄damage

(∑
k<k∗

(2n̄damage)
k

k!

)
. (2.14)

Equation (2.14) has two terms, both with a decay factor of e−2n̄damage . Just as for

Equation (2.11) in Scheme C, we can expect this factor to lower Perr for Scheme D

below that for Schemes A and B (Equations (2.5) and (2.8)). Further, since this fac-

tor is present in both terms (as opposed to just the second term in Equation (2.11)),

we can expect Perr for Scheme D to be lower than in Scheme C as well. From Equa-

tion (2.13), with the same example parameters as Scheme C (λt = 1 and q = 1
2
),
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Figure 2-4: Comparison of Perr and n̄damage for the imaging schemes. (a) Perr vs. q for the
four imaging schemes. Scheme D gives the lowest Perr. (b) Perr vs. n̄damage for the imaging
schemes. The curve for Scheme B overlaps with that for Scheme A. Again, Scheme D gives
the lowest Perr for a given value of n̄damage.

k∗ = 0. This value of k∗ eliminates the second term from the expression for Perr, and

we get

Perr =
1

2

(∑
k≥0

e−1/4

(
1
4

)k
k!

)
e−3/4 =

1

2
e−3/4 ≈ 0.236.

We see that Perr for Scheme D is lower than Schemes A, B and C, for the same value

of n̄damage.

Figure 2-4(a) is a comparison of Perr vs. q for the four different schemes out-

lined above. Each curve was plotted for n̄damage = 2, to compare the schemes at

constant damage. The kinks in the curves are due to changes in the optimal decision

scheme (and therefore, the expression for Perr) as a function of q (see Equations (2.5),

(2.8), (2.11) and (2.14)). For Schemes C and D, there are multiple kinks due to the

dependence on q of k∗ (see Equations (2.10) and (2.13)).

The advantage of the scattering detector D3 in terms of lowering Perr for both

STEM and IFM imaging is apparent in Figure 2-4(a). Further, the error for Scheme D

is the lowest of all four schemes for a broad range of q. This range of q includes two

important regimes: low q, which is applicable to most electron microscopy samples,

and q = 1
2
, which is a reasonable initial guess for a completely unknown sample.
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We see that Scheme C offers an advantage over Scheme A for low values of q as

well, although the reduction in Perr here is not as large as the reduction in Perr for

Scheme D. Finally, Scheme C has a larger error than Scheme B for all values of q.

For q > 0.5, the error in Scheme C is larger than all other schemes, because of missed

detections due to scattering from opaque pixels.

Figure 2-4(b) shows Perr as a function of n̄damage for all the schemes, at q = 1
2
.

As described earlier, for all λt > 0, eλt > 1, and hence 1
1+eλt

< 1
2
. Therefore,

the expressions for Perr are identical for Schemes A and B. Hence, the two curves

overlap in Figure 2-4(b). We see that Scheme C provides a lower Perr than STEM

imaging for n̄damage < 0.93. Beyond this value of n̄damage, missed detections due to

scattering from the sample result in a greater Perr than Schemes A and B. Since

q is constant, the kinks in the curve for Scheme C indicate the values of the mean

number of beam electrons λt (and correspondingly, n̄damage) at which the threshold

k∗ changes, in accordance with Equation (2.10). As in Figure 2-4(a), the optimal

decision scheme evolves, this time with λt. We had already made this observation

in Figure 2-3. Removing missed detections by introducing D3 in Scheme D further

reduces Perr below Schemes A and B for all values of n̄damage. As we had noted

earlier, the expression for k∗ (Equation (2.13)) for Scheme D does not depend on λt.

Therefore, k∗ does not change with n̄damage, leading to a smooth curve for Perr for

Scheme D.

2.2 Conditional re-illumination

As seen above, the Poisson distribution of the source creates an ambiguity in the

interpretation of the electron counts at the detectors, leading to errors. One possible

strategy to reduce these errors is to re-illuminate each pixel with the same beam. In

this case, the error would be equivalent to single-shot illumination with a beam that

has twice the dose (i.e. twice the λt). As seen from the expressions for the error

probability Perr in each scheme, an increase in λt would lead to a reduction in Perr
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for a given value of prior q.

However, we do not need to re-test each pixel. Pixels that we are sure are

either opaque or transparent (i.e. the inference of X̂ for those pixels is not made

on the basis of a probabilistic decision rule) need not be re-tested. For example, for

Scheme C (IFM imaging without D3), we would re-test pixels for which the number

of counts on detector D2, n2 = 0 (for any value of the counts on D1, n1), since this

was the only case in which the pixel value is not known with surety. We will refer to

such a re-illumination scheme as conditional re-illumination.

Even after re-illumination, some pixel values will not be known with surety.

For some of the pixels for which n2 = 0 in Scheme C, the probability of making

an incorrect inference for X̂ will be low. For example, if the number of detections

at D1 is high, we can be confident that the pixel is transparent. One way to use a

confidence level is to set a re-illumination threshold, ϵ, such that if η(n1, q, λt) < ϵ or

η(n1, q, λt) > 1 − ϵ, we do not re-test the pixel under consideration. Thus, we only

re-illuminate pixels for which η(n1, q, λt) ∈ [ϵ, 1 − ϵ]. Note that here we have used

a general η(n1, q, λt) to refer to the probability of a pixel being transparent given

n1, q and λt, since these considerations can apply to any of the schemes considered in

Section 2.1.3.

A sequence of illuminations updates our belief on the opacity of the pixel.

Starting with prior qm−1 on the probability that the pixel is opaque before the mth

round of illumination, we again use Bayes’ rule to update the prior to

qm = 1− η(n1, qm−1, λt),

after the mth round of illumination. Note that we now use λt to refer to the mean

electron number per pixel per illumination. The initial prior is q0 = q, and based

on the re-illumination threshold above, we re-illuminate when qm ∈ [ϵ, 1 − ϵ], which

we call the range of uncertainty. Illuminations are repeated until qm falls outside

the range of uncertainty, or a pre-defined maximum number of illuminations M is
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reached.

Before considering the general case of a Poisson-limited beam for all four imag-

ing schemes, we illustrate the idea of conditional re-illumination through two short

examples, for Schemes A (STEM imaging without D3) and C (IFM imaging without

D3).

Example 1: Scheme A

We consider the imaging Scheme A with λt = 2 and q0 =
1
2

and set the re-illumination

threshold at ϵ = 0.1. After the first round of illumination, we would infer that any

pixels for which n1 > 0 are transparent (X̂ = 0); this decision is always correct, and

no re-testing is required. For pixels where n1 = 0, we have

q1 = 1− ηA(n1, q0, λt) = 1− ηA(0,
1
2
, 2)

= 1− 1

1 + e2 1
2
/(1− 1

2
)
≈ 0.881,

by substituting in Equation (2.3). Since q1 falls in the range of uncertainty, we re-test

each of these pixels.

In the second round of illumination, if n1 > 0 for any of the re-tested pixels,

X̂ = 0 as before. If n1 = 0 again,

q2 = 1− ηA(n1, q1, λt) = 1− ηA(0, 0.881, 2)

= 1− 1

1 + e2 (0.881/0.119)
≈ 0.992.

Now, since q2 falls outside the range of uncertainty, we will not re-test any of these

pixels and assign X̂ = 1. The probability of error is still non-zero, but smaller than

that with just one round of illumination. In this case all the opaque pixels will be

re-tested, and on average we will not gain any advantage in terms of reduced damage.

As a final remark, we note that if λt = 3, ηA(n1, q0, λt) ≈ 0.047 for pixels for
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which n1 = 0, after the first round of illumination. Thus, we would not re-test any

pixel. As λt increases, the probability that there was at least one electron in the

beam increases. Therefore, if n1 = 0, there is a smaller chance of making an error if

we set X̂ = 1 with increasing λt.

Example 2: Scheme C

We consider the imaging Scheme C with λt = 10 and q0 =
1
2
. Ambiguity arises when

n2 = 0. We can evaluate ηC(n1, q0, λt) for these parameters using Equation (2.9):

ηC(n1, q0, λt) = ηC(n1,
1
2
, 10) =

1

1 + e5/4n1
.

In Figure 2-5(a), we plot ηC(n1, q0, λt) as a function of the counts at D1, n1. This

figure shows that ηC(n1, q0, λt) is small for low values of n1, and increases to ≈ 1 for

n1 ≥ 7. If we detect few electrons at D1, it is more probable that an opaque pixel is

scattering the incident electrons than for the pixel to be transparent and the number

of illumination electrons being very low. Therefore, we can be confident that X = 1.

If we detect more electrons at D1, it is more probable that the pixel was transparent.

In these limits, the probability of making an error is low. The solid orange horizontal

lines in Figure 2-5(a) show the re-illumination thresholds with ϵ = 0.05. We can

see that the re-illumination condition is satisfied for 2 ≤ n1 ≤ 5. Instead, if we

use ϵ = 0.25, as shown by the dashed orange horizontal lines in Figure 2-5(a), the

re-illumination condition is satisfied for 3 ≤ n1 ≤ 4. For each value of ϵ, outside the

corresponding range of n1, the probability of incorrectly inferring X̂ is below our re-

illumination threshold. For example, if n1 = 2 for a particular pixel, ηC(n1, q0, λt) =

0.097 (hence q1 = 0.903), and this pixel would be re-tested if we work with ϵ = 0.05.

In the second round, if n1 = 2 again for this pixel, ηC(n1, q0, λt) = 0.044. Hence we

would assign X̂ = 1 with a very low Perr. However, if we work with ϵ = 0.25, this

pixel would not be re-tested. Hence, n̄damage with ϵ = 0.25 would be lower than that

with ϵ = 0.05, at the cost of increased Perr.
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Figure 2-5: Conditional re-illumination applied to IFM imaging Scheme C. (a) ηC(n1, q0, λt)
(black dots) as a function of n1, with λt = 10 and q0 =

1
2 . Also indicated are re-illumination

ranges corresponding to two values of the re-illumination threshold ϵ: ϵ = 0.05 (solid orange
line) and ϵ = 0.25 (dashed orange line). (b) Three examples of the evolution of q with
multiple illuminations for Scheme C. These q trajectories were obtained using Monte Carlo
simulations, with a maximum of M = 20 illuminations, a dose per illumination λt = 0.1
electrons per pixel, and ϵ = 0.05. The top panel is for a transparent pixel (X = 0);
qm decreased with each detection at D1, and dropped below ϵ = 0.05 after the third D1

detection. For the pixel in middle panel, a D2 detection at the 7th round of illumination
confirmed qm = 1 (hence X̂ = 1). For the pixel in the lower panel, there were no detections
in any of the illuminations. qm slowly increased but did not cross the error threshold.
Therefore, at the end of the 20th illumination, we were forced to make a guess for this
pixel. Since q20 > 0.5, we guessed X̂ = 1.

2.2.1 Evolution of qm

As we had discussed before, the basis of conditional re-illumination is the varying

trajectories of qm for different sample pixels. In order to visualize this variation in

the trajectory of qm, in Figure 2-5(b) we plot the evolution of qm for three sample

pixels over multiple rounds of conditional re-illumination, for Scheme C. We obtained

this plot using a Monte Carlo simulation, the details of which are described later, and

Bayesian inference to update qm as described before. For this simulation, we chose

the dose per illumination λt = 0.1, M = 20, and ϵ = 0.05.

For the pixel in the top plot in Figure 2-5(b), there was a detection at D1 on

the first illumination. Hence, q1 reduced from its initial value of 1
2
. Following this
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detection, there were no further detections till the fourteenth illumination. However,

since this imaging scheme does not have a D3, the lack of detections could be because

of electrons scattering off the pixel. Therefore, qm slowly increases to account for

this possibility. Further D1 detections in the fourteenth and fifteenth illuminations

reduced q15 to below ϵ, and we inferred X̂ = 0. This pixel was not illuminated in

future rounds.

For the pixel depicted in the middle plot in Figure 2-5(b), there were no

detections until the seventh round of illumination, when there was a detection at D2.

This detection set q7 to 1. Hence, we inferred that X̂ = 1 and stopped illuminating

this pixel in future rounds.

For the pixel in the bottom plot, there were no detections in any of the twenty

rounds of illumination. Just as for the pixel in the top panel, qm slowly increased,

but did not cross 1 − ϵ. At the end of the twentieth round, we were forced to make

a guess for X̂. Since q20 is closer to 1, we guessed X̂ = 1, which was correct in this

case.

These three examples demonstrate different trajectories that the prior q can

take for different pixels. Conditional re-illumination ensures that the illumination

strategy for each pixel is tailored to the trajectory being followed by that pixel’s

prior.

2.2.2 Error and damage in conditional re-illumination

The acceptable ranges of the error probability Perr and scattered electrons n̄damage

dictate the parameter space for designing a conditional re-illumination experiment.

Figure 2-6(a) shows Perr as a function of the maximum number of illuminations M

for ϵ = 0.05 (solid orange curve with cross markers) and ϵ = 0.25 (dashed orange

curve with circular markers), for q = 1
2
, λt = 0.2. As M increased, Perr continuously

decreased. This trend is as we would expect; more illuminations drive qm for each
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pixel closer to 0 or 1, reducing errors. Figure 2-6(b) shows the corresponding values

of n̄damage; we see that n̄damage increased with increasing M , saturating to 0.95 for

ϵ = 0.25 and 1.8 for ϵ = 0.05. This saturation occurs because as the number of

illuminations increases, the number of pixels being re-tested reduces, and hence the

contribution of each successive round of illumination to the damage reduces. There-

fore, Figure 2-6 illustrates the trade-off between error probability and sample damage

with increasing conditional re-illumination. Further, this figure also shows the impact

of the acceptable re-illumination threshold on error probability and damage: a larger

re-illumination threshold leads to a greater probability of error but a smaller amount

of sample damage, and vice-versa. For example, suppose for a particular imaging

experiment, an acceptable value of Perr is ≈ 0.16. As can be seen from Figure 2-6(a),

we can obtain this value by choosing M ≈ 30 and ϵ = 0.25, or M ≈ 16 and ϵ = 0.05.

From Figure 2-6(b), we see that the value of n̄damage for the first choice of parame-

ters would be ≈ 0.95, while for the second choice of parameters it would be ≈ 1.15.

Hence, the first choice seems preferable. However, there might be other experimental

constraints that influence the choice of parameters (for example, data collection time,

and therefore M , might be limited by sample drift).

In order to determine the optimal set of parameters to obtain a given Perr

and n̄damage point, we performed Monte Carlo simulations of the conditional re-

illumination process for all four imaging schemes. We use an object with 106 pixels

and an initial q = 1
2
. In our simulations, we picked the number of electrons incident

on each pixel per illumination from a Poisson distribution with mean λt. Then, we

allocated electrons to each detector for the imaging scheme under investigation (IFM

without D3), based on the detection probability at that detector. At the end of each

round of illumination, we used the expressions for η(n1, q, λt) derived for each scheme

(Equations (2.3), (2.6), (2.9) and (2.12)) to update qm for each pixel. We used this

updated qm as the prior for the next round of illumination. During the simulation, we

used counts at D3 to keep track of the number of electrons incident on each opaque

pixel, even for schemes in which we did not use the counts at D3 to update qm. We
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Figure 2-6: Error and damage for IFM imaging Scheme C. λt is kept constant at 0.2 for
these simulations. (a) Perr as a function of the maximum number of illuminations M , for
both re-illumination thresholds in Figure 2-5(a). The solid orange curve with cross markers
is for ϵ = 0.05, and the dashed orange curve with circular markers is for ϵ = 0.25. Perr
decreased with increasing illuminations for both values of ϵ. Increasing the re-illumination
threshold ϵ from 0.05 to 0.25 led to an increase in the values of Perr (b) n̄damage vs. M .
n̄damage increased with increasing illuminations, saturating at n̄damage ≈ 1.8 for ϵ = 0.05,
and n̄damage ≈ 0.95 for ϵ = 0.25.

repeated this process for each pixel until one of two stopping conditions were met:

either the updated qm fell outside the re-illumination range, or the number of illumi-

nations reached a predefined maximum, M . At the end of the simulation, we made

an inference for pixels for which qm was still inside the re-illumination range based on

whether qm was greater or less than 1
2
. Following this decision, we calculated Perr by

averaging the absolute difference between the actual pixel value X and the inferred

value X̂ over all the pixels. We calculated n̄damage by dividing the total counts at D3

for all the pixels by the number of opaque pixels. We performed these simulations

for λt ∈ [0.1, 2], M ∈ [1, 100], and ϵ ∈ [0, 0.2], for each imaging scheme.

In Figure 2-7 we plot the convex hull of the (n̄damage, Perr) points obtained from

these simulations for each scheme. As an example, for Scheme D (IFM imaging with

D3, green curve with square markers in Figure 2-7), the 10 points with the smallest

Perr values on the convex hull, along with the (M, ϵ, λt) values at these points, are

summarized in Table 2.13.

The general trend in these values is for ϵ to reduce towards 0, λt to increase,
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Figure 2-7: Perr vs. n̄damage for all 4 imaging schemes, with varying ϵ, λt and M . Each curve
represents the convex hull of (n̄damage, Perr) points obtained from Monte Carlo simulations,
whose details are described in the text. For schemes B, C and D, n̄damage saturates (at
n̄damage = 1 for Scheme B, 2 for Scheme C and 2

3 for Scheme D).

and M to increase towards 100 as Perr reduces and n̄damage increases. The choice of

parameters in a potential experiment would depend on the acceptable Perr and n̄damage

values, along with the achievable λt and M values in the experimental setup.

ndamage Perr(×10−2) M ϵ λt

0.5686 8.783 25 0.15 0.1

0.5883 7.834 25 0.05 0.1

0.5958 6.900 30 0.15 0.1

0.6261 4.495 40 0.10 0.1

0.6458 3.079 100 0.10 0.1

0.6796 0.778 100 0.05 0.1

0.6901 0.059 90 0 0.1

0.6917 0.035 100 0 0.1

0.7172 0.0058 60 0 0.2

0.7184 0.0006 75 0 0.2

Table 2.13: Detection probabilities at D1, D2 and D3 for Scheme D.

As can be seen in Figure 2-7, there appears to be no advantage of using condi-
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Figure 2-8: Image simulation using conventional and IFM imaging with conditional re-
illumination. We performed all simulations at n̄damage = 1 electron per opaque pixel, and
M = 10. (a) Original object used for image simulations. The object has an equal number
of opaque (black) and transparent (white) pixels. (b) Simulated image using Scheme B,
without conditional re-illumination. Perr = 0.18 for this image. (c) Simulated image using
Scheme D, without conditional re-illumination. Perr = 0.11 for this image. (d) Simulated
image using Scheme B with conditional re-illumination. Perr = 5.1 × 10−2 for this image.
(e) Simulated image using Scheme D with conditional re-illumination. Perr = 1.3×10−3 for
this image.
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tional re-illumination for Scheme A (STEM imaging without D3) – the curve for this

scheme is identical to the one in Figure 2-4(b). We had already made the observation

that conditional re-illumination does not benefit Scheme A in Example 1 earlier in

this section. However, for the other three schemes, we obtain a saturation in n̄damage

with increasingly low values of Perr. This saturation occurs for the same reasons as

for Figure 2-6(b). For Scheme B (STEM imaging with D3), n̄damage saturated to ∼ 1

at low Perr. This value makes sense because for correct identification of an opaque

pixel, we would ideally need only one electron. For Scheme C (IFM imaging without

D3), n̄damage saturated at 2. In this scheme, we want a detection at D2 to correctly

identify an opaque pixel. The probability of this event is 1
4
. On average, we need

4 electrons to identify an opaque pixel, 2 of which will scatter off the sample. For

Scheme D (IFM imaging with D3), n̄damage saturated at ∼ 2
3
. This value also makes

sense: to correctly identify an opaque pixel, we want a detection at either D2 or D3

in this scheme. The total probability of a detection at D2 or D3 is 3
4
. Therefore, on

average, we need 4
3

electrons to identify an opaque pixel. Half of these electrons will

scatter off and damage the sample, giving n̄damage =
2
3
. Overall, Scheme D also gives

the lowest n̄damage for a given Perr, which demonstrates the benefits of IFM imaging.

In Figure 2-8, we show simulated images of a butterfly, using STEM and IFM

imaging schemes with and without conditional re-illumination. Figure 2-8(a) is the

original object we used in our imaging simulations. We added an equal number of

transparent (white) pixels outside the opaque (black) butterfly pixels, so that q = 1
2
.

We performed imaging simulations using the same Monte Carlo method as before.

We varied λt to ensure that n̄damage = 1 for all simulations, and we fixed M at 10 and

ϵ = 0.01. Figure 2-8(b) is the simulated image using Scheme B (STEM imaging with

D3) without conditional re-illumination. The image reproduces the general shape

of the butterfly, but has a lot of missed detections; Perr = 0.18. Figure 2-8(c) is

the simulated image using Scheme D (IFM imaging with D3) without conditional

re-illumination. It has fewer errors than Figure 2-8(b); Perr = 0.11. Figure 2-8(d)

is the simulated image using Scheme B with conditional re-illumination. The use
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of conditional re-illumination reduced Perr to 5.1 × 10−2. Finally, Figure 2-8(e) is

the simulated image using Scheme D with conditional re-illumination. This imaging

scheme produced the fewest errors, with Perr = 1.3× 10−3. Therefore, these imaging

simulations again demonstrate the error reduction in IFM imaging and conditional

re-illumination.

2.3 Conclusions

In this chapter, we analyzed the performance of conventional and IFM imaging, with

and without a detector for scattered electrons. We found that for a given rate of

misidentifying sample pixels (Perr), the additional detector reduces the required elec-

tron dose, and hence the damage suffered by the sample (n̄damage). We also presented

a sample re-illumination scheme, where the decision to re-illuminate the sample is

made based on the result of previous illuminations. This conditional re-illumination

scheme can be applied to both classical and IFM imaging. We showed that this scheme

further reduces n̄damage for a given Perr. We reduced n̄damage to ≈ 1 for Scheme B,

≈ 2 for Scheme C, and ≈ 2
3

for Scheme D, for Perr ≤ 10−3. Our imaging simulations

further confirmed the advantages of using IFM and conditional re-illumination.

In order to implement conditional re-illumination on an electron microscope,

we would need to address two major issues. The first is the requirement of fewer

than one electron per pixel to reach low damage values, as shown in Figure 2-7. With

a pixel dwell time of 0.2 µs, a dose of 1 electrons/pixel would require an incident

beam current of 0.64 pA. Although these dwell times and currents are achievable

on current STEMs [78, 84], getting lower doses would be challenging. One possible

solution could be the employment of fast electron gated mirrors [2]. The second

issue is the requirement of a fast beam blanker. Ideally, we would want to blank the

electron beam before changing the voltages on the beam deflector coils to move it to

the next pixel to be imaged, to avoid exposing the sample during the beam motion.

The speed of this blanking would need to be on the order of nanoseconds, to ensure
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that the probability of the sample being exposed while the beam is being blanked is

small. A possible solution to this challenge is to perform re-illumination experiments

at lower electron beam energies (lower than 30 kV), to make fast beam blanking

easier. Recent implementation of sub-ns beam blanking on an SEM [105,106] would

enable our conditional re-illumination scheme.

A major limitation of our analysis is the treatment of the object. Our as-

sumption of opaque-and-transparent pixels is an inherent limitation of IFM [42].

Semitransparent objects would require higher dose to distinguish between areas with

similar transparencies. We expect that our re-illumination scheme would need to be

modified for semitransparent objects, since we would not be inferring a binary-valued

random variable (X̂) anymore [107,108]. Instead, X̂ would now take continuous val-

ues between 0 and 1, which would require a more sophisticated probabilistic decision

scheme. We expect that the incorporation of conditional re-illumination into existing

investigations of IFM imaging with semitransparent objects [50–54], as well as with

Quantum Zeno-enhanced IFM [2,43–45] will be an interesting area of future research.

A related issue is the assumption that opaque pixels in the object remain opaque upon

being scattered by electrons. In real microscopy experiments, beam-induced damage

degrades sample contrast [30]. This loss of contrast would increase the error prob-

ability Perr, and accounting for would again require extension of our formalism to

semitransparent samples.

A second major limitation of this work is the exclusion of the effect of the

object on the phase of the electron beam. Interferometric schemes are ideally suited

for detecting phase, and previous work [53] has shown that IFM imaging provides an

advantage for phase objects. A third limitation is the assumption of perfect detectors

(no losses or dark counts) and a lossless system. We will address the impact of

object phase, as well as lossy beamsplitters and detectors on the efficiency of our

re-illumination scheme in future work.

Our work in the rest of this thesis is aimed at addressing these challenges to-
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wards the implementation of conditional re-illumination. In our work we will use an

SEM as a testbed for implantation of low-dose imaging and conditional re-illumination

schemes. We chose to use an SEM for implementing low-dose imaging due to the ease

of setting up different configurations of the sample and detectors in it. In chapters 4

and 5, we will address the challenges posed by the requirement of low incident dose

by implementing SE count imaging on an SEM. We will use fast pixel dwell times

(0.44 µs) and low incident beam currents (< 5 pA) to ensure that the incident dose

on the sample and the number of generated SEs are low. Further, in Chapter 4, we

will implement offline conditional re-illumination with SE counting on an SEM. We

will also discuss schemes for implementation of live conditional re-illumination on an

SEM in chapters 3 and 5. In Chapter 3, we will propose schemes for conditional

re-illumination for grayscale SEM imaging. We will also describe three metrics for

characterizing the image quality in grayscale images which we will use in our imple-

mentation of offline conditional re-illumination for grayscale samples in Chapter 5.

These schemes and metrics for grayscale SEM samples can be extended to semitrans-

parent STEM samples as well

The conditional re-illumination scheme outlined in this chapter provides mi-

croscopists with a method of using both prior knowledge about the sample and in-

formation gained during the experiment to reduce sample damage and allow the

investigation of radiation-sensitive samples, such as organo-metallic frameworks, pro-

teins and biomolecules. The scheme could also be combined with existing schemes of

sparse sampling, and using denoising and inpainting algorithms for low-dose STEM

and SEM imaging [40, 41, 79, 80].
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Chapter 3

Image quality metrics and schemes

for conditional re-illumination for

grayscale samples in an SEM

In Chapter 2, we introduced the idea of conditional reillumination and evaluated the

reduction in sample damage from this scheme for opaque-and-transparent samples

with STEM and IFM imaging. However, almost all real-world samples of interest in

electron microscopy are grayscale and have many pixel intensity levels. Therefore, the

simple re-illumination schemes we had proposed in Chapter 2 based on two possible

pixel intensity levels have to be modified. We cannot define an error probability

of misidentifying opaque pixels as transparent and vice-versa, since we now have

multiple grayscale levels. As a consequence, the magnitude of the error depends on

the difference between the estimated pixel value and the real value.

In this chapter, we will analyze image quality and accuracy metrics for sam-

ples with more than two pixel brightness levels and discuss conditional re-illumination

schemes for such greyscale samples. As we will describe in Chapter 5, we implemented

these re-illumination schemes on an SEM, so we will focus on describing the schemes

for an SEM. However, since these schemes are based on making decisions on illumi-
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MARE Mean Absolute Relative Error
a(n) 1-dimensional signal
ra(m) Autocorrelation of a(n) at offset m
E [a(n)] Expectation value of a(n)
N(µ, σ2) Gaussian distribution with mean µ and variance σ2

Poisson(λ) Poisson distribution with mean λ
τ Pixel dwell time
ϕ(m,n) 2-dimensional image autocorrelation at offset (m,n)
ϕNF (m,n) 2-dimensional noise-free image autocorrelation at offset (m,n)
ϕN(m,n) 2-dimensional noise autocorrelation at offset (m,n)

ϕ̂NF (m,n) Estimator for 2-dimensional noise-free image autocorrelation
at offset (m,n)

ϕ̂N(m,n) Estimator for 2-dimensional noise autocorrelation at offset
(m,n)

A Scaling factor for 8-bit image
M Maximum number of illuminations
Nill Number of illuminations
NSE Number of SEs per pixel
NSE,T Threshold number of SEs per pixel

Table 3.1: List of symbols and abbreviations used in this chapter

nation depending on the current pixel intensity level, they can be adapted to TEM

and STEM as well, similar to the scheme we described in Chapter 2.

This chapter is organized into three sections. In Section 3.1 we will describe

three metrics that can be used to characterize image quality of noisy, grayscale im-

ages: contrast, mean absolute relative error (MARE), and signal-to-noise-ratio (SNR).

In Section 3.2 we will describe schemes for conditional re-illumination imaging of

grayscale objects in an SEM, where the image quality metrics we introduce in Sec-

tion 3.1 would be used to characterize the images. These conditional re-illumination

schemes were developed in collaboration with John Simonaitis (Massachusetts Insti-

tute of Technology). Finally, in Section 3.3, we will summarize our results from this

chapter.

Table 3.1 lists the abbreviations and symbols used in this chapter. MATLAB

scripts used to generate the plots in this chapter are reproduced in Section D.2 of

Appendix D.
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3.1 Image quality metrics for grayscale images

In this section we will show how contrast, MARE, and SNR can be calculated using

real SEM images and discuss the conditions under which their use is appropriate. We

will use these metrics in Chapter 5 when we compare the image quality and incident

electron dose of conventional and SE count images and conditional re-illumination.

Note that we did not consider the dependence of the spatial resolution of our SEM im-

ages on the incident electron dose in this thesis. Therefore, we did not use techniques

such as Fourier-ring-correlation [109] to characterize the resolution of our images, nor

did we compute the contrast transfer function (CTF) of our SEM [110].

3.1.1 Contrast

The contrast of a feature or region of interest in an image is a measure of how clearly

the feature can be seen against its background or another adjacent feature. There are

many different ways of defining contrast depending on the precise imaging situation

and type of sample [111]. The common thread among these measures of contrast is

that it is usually defined as a ratio of the difference between the intensities of the

feature of interest and the background, and the background intensity. In this thesis,

we will use the Michelson contrast, which is defined as follows. Suppose the pixels

representing the feature of interest have a mean pixel value of Isample and the pixels

representing the background have a mean value Ibackground. The Michelson contrast

K is defined as:

K =
Isample − Ibackground

Isample + Ibackground

If Isample >> Ibackground, K will be close to 1. If the Ibackground ≈ Isample, K will be close

to zero. This type of contrast is often used in optical lithography and microscopy

systems, where it is calculated as a function of feature size and is called the modula-

tion transfer function (MTF) [112]. It is an appropriate contrast measure when the

difference between the sample and the background levels is substantial or when the
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Figure 3-1: Contrast for SEM images.(a) SEM image of a TEM support grid suspended
in vacuum, courtesy Navid Abedzadeh. (b) Simulated lower contrast image, generated by
scaling down the intensities of the pixels corresponding to the TEM grid by 2. (c) Contrast
as a function of the scaling factor used to generate the simulated image. As the scaling
factor increased from 1 to 4, the contrast reduced from 0.61 to almost 0.

sample being imaged is periodic. We chose to use this type of contrast in our work

because, as we will discuss in more detail in Chapter 5, the sample we imaged was a

copper grating suspended over vacuum, where the difference between the brightness

of the pixels representing copper and those representing the background vacuum was

large.

Figure 3-1 shows an example of the calculation of contrast. Figure 3-1(a) is an

SEM image of the supporting bars of a TEM grid, courtesy Navid Abedzadeh. We

can see that there are two types of pixels in this image: bright pixels representing

the support grid and dark pixels representing the background. Figure 3-1(b) is a

simulated image of the same sample, where we scaled the intensities of the bright
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pixels by a factor of 2. We can see that the support grid appears to be much dimmer

with respect to the background, i.e., its contrast is lower. As the scale factor is

increased, we would expect the contrast to reduce. Figure 3-1(c) is a plot of the

contrast K as a function of the scale factor. We can see that as the scale factor

increases from 1 to 4 and the support grid becomes dimmer against the background,

the contrast reduces from 0.61 to nearly 0, as expected.

As we had discussed earlier, the Michelson contrast is appropriate if there

are clearly demarcated sample and background pixels which can be used to measure

Isample and Ibackground. Further, the distribution of the pixel values in the sample

and background should be relatively narrow so that defining Isample and Ibackground

is meaningful. In our discussion of SE count imaging in Chapter 5, we will use the

contrast to quantify the advantage of SE count imaging compared to conventional

imaging.

3.1.2 Mean absolute relative error

There are several error-based metrics that are used to characterize the quality of

images, such as the mean squared error (MSE) and the root mean squared er-

ror (RMSE) [113]. In this work, we will consider the mean absolute relative error

(MARE). MARE is a measure of the relative error between the pixel values in a noisy

image of a sample and in the ‘ground truth’ [113,114], which is an image of the same

sample that contains the correct pixel values. We suppose that the image is a matrix

of size R × S with pixel values A(i, j), 1 ≤ i ≤ R and 1 ≤ j ≤ S, and the ground

truth image is represented by T (i, j). Then, MARE is given by [113, 115]:

MARE =
R∑
i=1

S∑
j=1

| A(i, j)− T (i, j) |
T (i, j)

.

Therefore, MARE measures the mean of the absolute error at a pixel as a fraction

of the ground truth value of that pixel and can be thought of as a percentage error
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relative to the ground truth image. As stated earlier, MARE extends the definition

of Perr from Chapter 2, being linearly dependent on the absolute difference between

the experimental image and the ground truth. MARE is a widely applicable image

quality metric and can be calculated for any type of image.

By virtue of its definition, MARE requires knowledge of the ground truth

image, which is rarely available in a real-world imaging scenario. Due to this require-

ment, MARE differs from other image quality metrics, such as contrast (discussed in

Section 5.3.2.1) and signal-to-noise-ratio (discussed in Section 5.3.2.2), which do not

require a ground truth image. The need for a ground truth limits the applicability

of MARE to comparing different microscopy techniques on known, well-characterized

samples for which the ground truth is known, rather than a technique to compare the

quality of micrographs of real samples that have not been imaged before.

A second disadvantage of MARE is that due to the scaling by the ground

truth pixel intensity T (i, j), MARE gives greater weight to errors on pixels that have

a low ground truth intensity. This overemphasis on dimmer pixels could lead to

an inaccurate error metric for electron microscopy images, where samples are often

suspended over vacuum. For some imaging modes (such as ADF imaging as discussed

in Chapter 1), vacuum regions provide very little signal. Consequently, errors/noise

in such pixels would be greatly overemphasized by MARE. Conversely, in other types

of samples, dim regions might correspond to the thinnest, most interesting regions of

the sample. In such cases, a greater weight on errors made on dim pixels would be

advantageous.

Figure 3-2 shows an example MARE calculation. Figure 3-2(a) is an SEM im-

age of tin nanoparticles attached to a copper support grid, courtesy Navid Abedzadeh.

We used this image as the ground truth and generated noisy versions of it to calculate

the MARE. Figure 3-2(b) is an example of such a noisy image. In this image each

pixel value was one trial of a Poisson-distributed random variable with mean equal to

the corresponding pixel value in the ground truth image. The MARE of this image
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Figure 3-2: Mean absolute relative error for SEM images. (a) SEM image of tin nanopar-
ticles on a copper support grid, courtesy Navid Abedzadeh. We used this image as the
‘ground truth’ in our calculation. (b) Noisy version of the image in (a), where each pixel
value is the result of one trial of a Poisson process with mean value equal to the correspond-
ing pixel value in (a). (c) Same as (b), except the pixel values are averaged over 5 trials.
The image is less noisy than (b) due to averaging. (d) Mean relative absolute error as a
function of the number of trials used to generate the noisy images. As the number of trials
increases, the MARE reduces due to increasing image accuracy.

was 1.06. Figure 3-2(c) is another noisy image generated in the same way as 3-2(b),

except that each pixel value was the average of five trials of a Poisson-distributed

random variable instead of one. Consequently, the image was less noisy and had a

MARE of 0.41. Figure 3-2(d) is a plot of the MARE as a function of the number

of trials used to form the noisy images. We can see that as the number of trials

increases, the MARE drops due to the improvement in the accuracy of the generated

image.

In our analysis of different schemes for conditional re-illumination in Chapter 5,
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we will use the MARE to characterize the accuracy of the generated images. In this

case, we will have a ground truth available (an SE count image of the same sample

generated without re-illumination) which we will use to calculate the MARE for the

conditional re-illumination schemes.

3.1.3 Signal-to-noise ratio

The SNR is a standard measure used in many fields of signal processing and imaging

to characterize the quality of a signal. However, defining SNR for a single SEM image

is challenging, because of the difficulty in differentiating signal from noise in an image

of an unknown sample. A method for solving this problem was proposed by Thong

et al. [116], who developed an SNR measure for a single SEM image by looking at

the autocorrelation of the image. The autocorrelation function can be thought of as

a measure of how similar an image is to an offset copy of itself. Here, we note that

the autocorrelation is defined for a probabilistic model of a random process. From a

single realization of a random process, we cannot compute the autocorrelation, but

we can compute an estimate of the autocorrelation of the underlying random process.

Here, will model a noise-free image as a realization of a two-dimensional wide-sense

stationary random process, and an observed signal is another two-dimensional wide-

sense stationary random process with statistical dependence on the noise-free image.

The autocorrelation ra(m) of a one-dimensional wide-sense stationary random

signal a(n) is defined as:

ra(m) = E [a(n)a(n−m)] (3.1)

Here m is called the offset or lag, and n and n −m are two points along the signal.

E denotes expectation value. Note that the lack of dependence of the expectation

on n is a requirement of wide-sense stationarity. We would find the autocorrelation

function of a physical image for a given pixel offset by multiplying it by a duplicate

of itself offset by the required number of pixels. If the image has features that extend

over a many pixels, a displaced copy of the image will have similar intensities in the
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same pixels as the original image. Therefore, the autocorrelation of such an image

would be high. Conversely, if the pixel values in the image vary rapidly over a few

pixels, the autocorrelation will be small.

Here, we will describe Thong et al.’s SNR measure and present a new, rigor-

ous justification behind the measure. This SNR measure is based on the assumption

that the contribution to the image autocorrelation from the ‘signal’ component of the

image varies slowly (i.e., over several pixels), whereas the ‘noise’ component of the

autocorrelation varies rapidly and is zero for m ̸= 0 in the definition of autocorre-

lation in Equation 3.1. This difference in the nature of signal and noise allows the

extraction of their relative contributions to the autocorrelation, and the ratio of these

contributions is a measure of the image SNR.

We will first consider an ideal Poisson signal derived from an underlying ground

truth image and analyze its autocorrelation. Then, we will introduce some of the non-

idealities present in an SEM and derive Thong et al.’s expression for the SNR measure.

Finally, we will demonstrate the effectiveness of the SNR measure by calculating it

for SEM images taken at different pixel dwell times.

Let f(n) ∼ Poisson(s(n)) be a Poisson process derived from s(n). We assume

that if s(n) is known, the values of f(n) at two points n1 and n2, n1 ̸= n2, would be in-

dependent of each other. This assumption is equivalent to assuming that the noise for

any pair of pixels is uncorrelated (and hence has an expected value of zero). We want

to find the autocorrelation of f(n), i.e., we want to find rf (m) = E [f(n)f(n−m)].

We consider two cases: m ̸= 0 and m = 0.

Case 1: m ̸= 0

E [f(n)f(n−m)] = E [E [f(n)f(n−m)|{s(n)}]]

= E [E [f(n)|s(n)]E [f(n−m)|{s(n)}]]

= E [s(n)s(n−m)]

= rs(m)

95



Here, the second equality results from our assumption about the independence of

f(n1) and f(n2), and the third equality results from the definition of f(n). Therefore,

we conclude that rf (m) = rs(m) for m ̸= 0.

Case 2: m = 0

E [f(n)f(n−m)] = E
[
f(n)2

]
= E

[
E
[
f(n)2|{s(n)}

]]
= E

[
s(n)2 + s(n)

]
= rs(0) + E [s(n)]

Here, the third equality again results from the definition of f(n). Therefore, we finally

get:

rf (m) =

 rs(m), m ̸= 0;

rs(0) + E [s(n)] , m = 0.

Hence, the autocorrelation rf (m) of the noisy image f(n) derived from the ground

truth s(n) will be the same as the autocorrelation of s(n) everywhere except at m = 0,

where there is an additional term due to the fact that f(n) is derived from a random

process s(n) and is therefore noisy. As we had stated earlier, the assumption we

made about the independence of values of f(n) at different pixels is equivalent to

assuming that the noise is uncorrelated between neighbouring pixels, which is why

the contribution due to noise only affects the autocorrelation at zero offset. At zero

offset, we expect the autocorrelation to have a sharp peak due to the additional noise

contribution. At non-zero offsets, this noise contribution is zero because the noise in

neighbouring pixels is uncorrelated.

Our assumption that f(n) ∼ Poisson(s(n)) is not justified for SEM imaging.

A conventional SEM image is not a count of SEs per pixel. As we had discussed in

Chapter 1 Section 1.1.3, the SEM image is a map of the average signal level from

the SE detectors for every pixel, which is quantized and displayed as an 8-bit image.

Further, in addition to noise due to the randomness inherent in the generation of SEs,
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the SE image can also have noise due to imperfect detection of SEs, background counts

in the detector, variation in the signal waveform from the detector (see Chapter 4

Section 4.2), and quantization of the SE signal. We can model the scaling to 8-bit

and noise addition in an SEM as a linear scaling of the number of SEs observed for

that pixel, along with zero mean Gaussian noise, as follows:

f(n) ∼ A · Poisson(s(n)) +N(0, σ2)

Here, the factor A accounts for scaling to 8 bits [117], and N(0, σ2) accounts for

the additional sources of noise discussed above. Using the same process to find the

autocorrelation rf (m), we get:

rf (m) =

 A2rs(m), m ̸= 0;

A2rs(0) + AE [s(n)] + σ2, m = 0.
(3.2)

Hence, for a real image, we would still expect the autocorrelation to show a sharp

peak at zero offset. Now, the peak at zero offset has contributions from both noise

due to the Poisson process and the variance of the additional Gaussian noise. Thong’s

method provides a way to estimate the “noise-free” component of the autocorrela-

tion, at zero offset (ϕ̂NF (0, 0), an estimator for the true noise-free autocorrelation

ϕNF (0, 0) = A2rs(0)) from the observed autocorrelation at zero offset ϕ(0, 0)) and

estimate both the signal and noise contributions in the image to derive SNR for a

single SEM image. Note that our SEM images are two-dimensional and hence we

specify the offset along both dimensions in our notation. We will demonstrate this

method through an example.

Figures 3-3(a) and (b) are two SEM images of the same region of a bulk copper

sample, taken at the same incident beam current. We acquired Figure 3-3(a) at a

pixel dwell time of 3.6 µs and Figure 3-3(b) at a pixel dwell time of 28 µs. The longer

dwell time we used to acquire Figure 3-3(b) resulted in a less noisy image.

In Figure 3-3(c), we plot the autocorrelations of these two images. The full
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Figure 3-3: SNR for SEM images. (a) SEM image of bulk copper, taken at a pixel dwell
time of 3.6 µs. (b) SEM image of the same sample as (a), taken at a pixel dwell time of 28
µs. (c) Autocorrelation of the 3.6 µs dwell time image (solid blue curve) and the 28 µsdwell
time image (dash-dotted orange curve). The autocorrelation is almost identical except at
zero pixel offset. (d) Autocorrelation of the two images around zero pixel offset. The sharp
peak at zero offset is because of image noise. The peak is lower for the 28 µs pixel dwell
time image because it is less noisy. (d) SNR extracted from the autocorrelation of SEM
images acquired with pixel dwell times between 0.44 µs and 28 µs. The SNR scales linearly
with pixel dwell time.
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autocorrelation is a three-dimensional function since the images can be offset in two

dimensions. In Figure 3-3(c) we have plotted the autocorrelation for offsets in the

horizontal direction; the offset in the vertical direction is zero. The solid blue curve is

the autocorrelation of the image in Figure 3-3(a), and the dash-dotted orange curve is

the autocorrelation of the image in Figure 3-3(b). We can see that the autocorrelation

values for the two images are almost identical at all offsets except 0. Figure 3-3(d) is

a magnified view of the autocorrelations around zero offset. We can see that the less

noisy, longer pixel dwell time image has a smaller autocorrelation peak at zero offset

compared to the higher noise, shorter pixel dwell time image.

From Figure 3-3(d) we can also see that the autocorrelation curves for small,

non-zero offsets are pretty flat, especially when compared to the sharp peaks at zero

offset. For example, between pixel offset values of 1 and 10, the autocorrelation

of the τ = 3.6 µs image reduces from 75 to 46.8 (an average reduction of 3.1 per

additional pixel offset), whereas it jumps to 483.4 at zero offset (an increase of 408.4

from the value at pixel offset of 1). We can use this observation to estimate the

noise-free autocorrelation at zero offset, ϕ̂NF (0, 0). Thong discusses two methods of

finding ϕ̂NF (0, 0). The first method is to simply set it to be equal to the value of the

autocorrelation at an offset of 1 pixel, i.e., ϕ̂NF (0, 0) = ϕ(1, 0). The second method of

estimating ϕ̂NF (0, 0) is to use linear extrapolation of the values of the autocorrelation

for small pixel offsets. Both these methods are justified because, as we had discussed,

the autocorrelation value does not change significantly between consecutive pixels.

We decided to use the second method to extract ϕ̂NF (0, 0) because, as we can see in

Figure 3-3(d), the autocorrelation is close to linear at small pixel offsets.

Once we have extracted ϕ̂NF (0, 0), we can obtain an estimate of the noise

contribution ϕ̂N(0, 0) to ϕ(0, 0): ϕ̂N(0, 0) = ϕ(0, 0) − ϕ̂NF (0, 0). The ratio of these

two quantities gives us a measure of the image SNR:

SNR =
ϕ̂NF (0, 0)

ϕ̂N(0, 0)
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We used this method to find the SNR for images of the same sample of bulk

copper as in Figure 3-3 for pixel dwell time between 0.44 µs and 28 µs. Figure 3-3(e)

is a plot of the extracted SNR values, indicated by unfilled black circles. The solid

black line is a least-squares linear fit to the extracted values. We can see that the

extracted SNR values scale almost linearly (correlation coefficient r2 > 0.99) with

the pixel dwell time. We can derive this linear scaling from our expression for rf (m).

As discussed in Chapter 1, due to the fact that the SEM image pixel intensity is the

average value of the detector signal observed for that pixel, increasing the pixel dwell

time does not change the mean value of the pixel intensities: although the total signal

observed for each pixel increases, the pixel dwell time increases by the same factor.

Therefore, the mean pixel value remains the same. We can include this effect in our

model of a real SEM image as follows: let the two pixel times t1 and t2 correspond to

two images f1 and f2. Let t2/t1 = α. On changing the dwell time from t1 to t2, the

raw signal from the SE detector will scale by α. Therefore, we have:

f1(n) ∼ A1 · Poisson(s(n)) +N(0, σ)

f2(n) ∼ A2 · Poisson(αs(n)) + αN(0, σ)

Due to signal averaging, E [f1(n)] = E [f2(n)]. Hence, A1/A2 = α. Using Equa-

tion (3.2) to find the autocorrelation rf (0), we get:

rf1(0) = A2
1rs(0) + A2

1E [s(n)] + σ

rf2(0) = α2A2
2rs(0) + αA2

2E [s(n)] + α2σ

Here, the expression for rf2(0) results from the fact that scaling a random variable

by k scales its variance by k2. Simplifying this expression for rf2(0), we get:

rf2(0) = A2
1rs(0) + A2

1E [s(n)] /α + α2σ
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Comparing this expression to the expression for rf2(0), we can see that the

noise-free component of the autocorrelation is the same for both but the contribution

due to noise due to the Poisson nature of the signal has scaled down by α. The noise

from other sources in the SEM scales by α2. For the imaging conditions normally

used in an SEM, the contribution of noise from other sources on the SEM is small [27]

and the σ2 term can be ignored. Consequently, the SNR scales linearly with the pixel

dwell time, just as we had observed in Figure 3-3(e).

In summary, this SNR measure provides another way to characterize image

quality and scales linearly with the incident electron dose. We require two conditions

to be fulfilled for this method to work: the noise autocorrelation must be non-zero

only at a pixel offset of 0, and the autocorrelation of the ground truth image must vary

much more slowly than the noise autocorrelation. From the autocorrelation curves

in Figure 3-3(c) and (d) we can see that noise in the SEM images does not show

correlation for any non-zero pixel offsets. We also confirmed that this was the case by

scanning the beam over a region of vacuum and checking the autocorrelation of such

images. Further, we ensured that all samples we scanned had features that extended

over many pixels so that the image autocorrelation varied slowly at non-zero pixel

offsets. We note that the absolute value of this SNR measure for a particular SEM

image is not very informative. For example, the SNR value for the long-dwell time

image in Figure 3-3(b) is about 1.5, which would be considered low in other scenarios.

It is the change in the value of this SNR metric upon varying the imaging conditions

which provides useful information about changes in the image quality. We will use

this SNR measure to quantitatively compare the SE count images we will generate

in Chapter 5 with conventional SEM images and also to compare different schemes

for conditional re-illumination on the SEM. In these comparisons, we will look at the

relative values of the SNRs of the images being compared rather than the absolute

values.

Although the example image we considered in Figure 3-3 is fairly uniform and

does not have a lot of features, the SNR measure works equally well for all types of
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SEM images. Appendix A presents an example calculation of this SNR measure for

an SEM image with more features.

Having defined metrics for grayscale images, we now turn to devising schemes

for conditional re-illumination imaging of such samples in the next section. The

schemes that we develop will be based on the conditional re-illumination schemes we

had developed for opaque-and-transparent samples in Chapter 2, modified to account

for the grayscale nature of the samples.

3.2 Schemes for implementation of grayscale con-

ditional re-illumination for grayscale objects

In Chapter 2 the stopping criterion of our conditional re-illumination scheme was

determined by either the number of detected electrons or the number of illuminations.

In this section we will adapt these ideas to conditional re-illumination in SEM imaging.

As we had discussed in Chapter 1, conventional SEM imaging gives us average SE

signal for every pixel. In chapters 4 and 5 we will show that we can count SEs in an

SEM and that the SE count images have better SNR and contrast than conventional

images taken under the same conditions. Further, just as for STEM imaging in

Chapter 2, we can spread out the total incident electron dose over several rounds

of illumination instead of illuminating the sample with a high dose once. These

possibilities motivated the two SEM re-illumination schemes we will develop here.

The first scheme, which we will call M -limited conditional re-illumination, uses a

stopping criterion based on the number of illuminations. The second scheme, which

we will call NSE-limited conditional re-illumination, uses a stopping criterion based

on the number of SEs detected for each pixel. For each scheme, we will assume that

we have a high-dose reference image to benchmark the errors and incident electron

dose for the scheme.
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Figure 3-4: Schemes for grayscale conditional re-illumination. (a) M -limited scheme. Each
pixel is illuminated and the SE signal from it recorded until the number of illuminations
Nill reaches a threshold M . (b) NSE-limited scheme. Each pixel is illuminated and the SE
signal from it recorded until the number of secondary electrons NSE reaches a threshold
NSE,T.
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3.2.1 M-limited conditional re-illumination

This scheme is depicted for one pixel of the image in Figure 3-4(a). The pixel is

illuminated by a low current incident beam and the number of SEs emitted from

that pixel recorded on the SE detector. If the number of illuminations Nill on that

pixel is less than a threshold M , we continue illuminating it. Once the Nill = M ,

we stop illuminating the pixel. In other words, the total number of illuminations

for every pixel is limited by M . Therefore, the ‘conditioning’ or stopping criterion

in this scheme is simply an upper bound on the number of sample illuminations.

Each pixel would receive the same average dose, equal to M times the dose from one

illumination. At the end of the imaging process, we scale the number of SEs recorded

for every pixel to correspond to the incident electron dose in the reference image for

comparison.

This scheme appears to be equivalent to illuminating the sample once with

M times the dose. However, in Chapter 4 we will show that SE counting becomes

inaccurate due to non-linearities at higher currents (above 8 pA under the conditions

we used). Therefore, limiting the current to low values (we will use 2 pA in Chapter 5

for SE count imaging) gives accurate SE counts per pixel as the image builds up over

M illuminations. Further, spreading the dose out over several illuminations lowers

the dose rate on the sample which is an important factor when considering sample

damage [31].

3.2.2 NSE-limited conditional re-illumination

This scheme is depicted for one pixel of the image in Figure 3-4(b). The pixel is

illuminated by a low current incident beam and the number of SEs recorded on the

SE detector. If the number of SEs from the pixel is below a certain threshold NSE,T,

we illuminate the pixel in the next round. If NSE crosses NSE,T, we skip the pixel

in future rounds of illumination. We continue re-illuminating until all pixels have
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NSE ≥ NSE,T or a maximum number of illuminations is reached. After each round of

illumination we have a map of the pixels that need to be skipped in the next round.

At the end of the imaging process, we know the number of illuminations it took for

each pixel to achieve NSE ≥ NSE,T.

In this scheme the dose per pixel will be variable. On average, pixels on the

sample with higher SE yield will require fewer illuminations than pixels with lower

SE yield. Just as for the M -limited scheme, we create a final image by scaling NSE

for every pixel to correspond to the incident electron dose for the reference image.

However, unlike the M -limited scheme, the scaling factor will vary for every pixel. Due

to the accounting of signal for every pixel and possibility of non-uniform number of

illuminations over the sample, this scheme is similar to the conditional re-illumination

scheme from Chapter 2.

3.3 Conclusions

In this chapter we described three metrics for evaluating image quality: mean absolute

relative error (MARE), contrast, and signal-to-noise-ratio (SNR). We evaluated these

metrics for example SEM images, and we also discussed requirements for using these

metrics and the types of samples and imaging setups each of the metrics is best suited

for. We also presented two schemes to adapt conditional re-illumination to SEM

imaging. These schemes were inspired by the conditional re-illumination scheme of

Chapter 2, adapted to account for the number of SEs.

We will use the image quality metrics from this chapter throughout Chapter 5

to characterize our SE count images as well as compare the two SEM re-illumination

schemes. We will show that SE count imaging has a better contrast and SNR than

conventional imaging under identical imaging conditions. Through our implementa-

tion of both these conditional re-illumination schemes, we will calculate the reduction

in electron dose enabled by these schemes by accepting a lower SNR or higher MARE.
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We will show that there is no clear advantage of using one scheme as opposed to the

other in all cases. The choice of scheme depends on the type of sample and which

image quality metric is important. Our implementation of the two schemes will be

offline (i.e., the schemes will not be implemented on live SE images but instead in

post-processing) due to limitations of the setup we had available. However, we will

propose schemes for live, online conditional re-illumination that could be achieved

with a modified SEM setup.
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Chapter 4

Histogram- and oscilloscope-based

secondary electron counting in

SEM

In this chapter, we will demonstrate SE counting in an SEM using two techniques:

image histograms and oscilloscope outcoupling. Our primary motivation for develop-

ing the image-histogram and oscilloscope-based electron counting methods described

in this chapter was to implement the low-dose imaging and conditional re-illumination

techniques described in Chapter 3. As discussed in Section 3.2 of that chapter, the

implementation of these techniques relies upon counting the number of SEs in order

to be as efficient as possible with the incident electron dose on the specimen. As

we had discussed in Chapter 1, although circuit-based SE counting has been used

to characterize SE detectors, image histograms have not been used for this purpose.

Therefore, we wanted to develop an electron counting method that could be easily

implemented on any SEM without the need to develop complicated external circuitry.

In Chapter 1, we saw how Yamada and co-workers [93–97] implemented SE

count imaging on the SEM using external discriminator and pulse counting circuits

coupled and synchronized with the SEM and showed that the SNR for electron count-
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ing images was better than the SNR for conventional SEM images. However, this

implementation did not lead to electron count imaging being incorporated into com-

mercial SEM imaging. One factor that was responsible for this lack of incorporation

was the complicated external circuitry required for counting SEs and synchroniz-

ing the counting with the SEM scan coils. Developing these external circuits and

making them compatible with different SEM softwares and configurations is a chal-

lenge. Further, the long pixel dwell times required for this implementation of electron

count imaging limited the application of this technique to radiation-damage-resistant

samples. For the kind of low-dose imaging of radiation-sensitive samples that we

are interested in, fast pixel dwell times need to be coupled with low incident beam

currents to limit the damage imparted to the sample during imaging and allow the

microscopist to engineer both the total electron dose (number of incident electrons)

and the dose rate (incident electron current) incident on the specimen [31].

In this chapter, we will demonstrate an alternative implementation of SE

counting in the SEM using image histograms. For low-dose SE count imaging we

aimed to maximize the number of detected SEs from every pixel. Hence, we im-

plemented the histogram-based SE counting technique for both the in-chamber and

in-lens detectors. This implementation requires no external circuits and utilizes his-

tograms of the live SEM images which are available in the SEM software directly.

Therefore, this technique could easily be incorporated into commercial SEM software

and used to perform live electron count imaging. We will also extend Joy’s analy-

sis of the DQE of SE detectors [26, 27] (as discussed in Section 1.3.1 of Chapter 1)

by using our histogram counting technique to measure the DQE at various operat-

ing conditions. Further, we will verify the results we obtain from image histograms

by outcoupling the signal from the SE detectors onto an oscilloscope and analyzing

the statistics of the observed SE pulses. This outcoupling technique is a simplified

version of Yamada’s implementation [95, 97]. We will perform our electron counting

and analysis at pixel dwell times down to 1.8 µs. Coupled with the low incident

beam currents used in Yamada’s work, this work extends electron count imaging to
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be applicable to radiation-sensitive biological samples. In Chapter 5, we will use

these histogram and oscilloscope-based SE counting techniques to implement offline

low-dose and conditional re-illumination imaging schemes.

This chapter is organized into three sections. We will introduce image his-

tograms and provide an example of their use by implementing Joy’s method of calcu-

lating DQE [26,27] in Section 4.1.1. Following this introduction to image histograms,

in Section 4.1.2, we will describe our SE counting results, discuss the optimization

of imaging conditions to obtain the SE quantization, analyze the statistics of our

image histograms, use this analysis to calculate the DQE for both the in-lens and in-

chamber SE detectors, and check these results with those obtained in Section 4.1.1.2

using Joy’s method. We will also analyze the effect of changing working distance on

the DQE. In Section 4.2, we will verify our histogram counting results by coupling the

SE detector signal onto an oscilloscope and comparing the statistics of the histograms

obtained from this signal with the image histogram statistics. Finally, in Section 4.3,

we will summarize our results and discuss possible extensions and implementation

in commercial SEM software. The measurements reported in this chapter were per-

formed in collaboration with John Simonaitis and Navid Abedzadeh (Massachusetts

Institute of Technology).

Table 4.1 lists the abbreviations and symbols used in this chapter. Section

D.3 of Appendix D lists the MATLAB scripts used to generate image histograms and

analyze oscilloscope signals in this chapter.

4.1 SE counting using image histograms

In this section, we will first take a detailed look at the histograms of conventional

SEM images and their use in quantifying the DQE of SE detectors using Joy’s method.

Then, we will consider how the histogram changes when microscope settings such as

the brightness, contrast, beam current, and scan speed are changed. We will see how
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DQE Detection Quantum Efficiency
N Mean number of incident-beam electrons
IB Incident electron beam current
e Fundamental unit of charge; 1.6× 10−19

δ Secondary electron yield
NSE,object Mean number of SEs emitted per pixel
NSE Mean number of SEs detected per pixel
SNRexp SNR from image histogram
SNRideal Ideal SNR for a given IB and δ
Vsup Suppressor voltage
WD Working distance
FWHM Full-width at half maximum

Table 4.1: List of symbols and abbreviations used in this chapter

optimizing these conditions allows us to see SE quantization in the histogram with

both the in-chamber and in-lens detectors. Finally, we will consider the statistics of

the SE distributions obtained from these detectors and use these statistics to calculate

the DQE of the detectors.

4.1.1 Image histograms in SEM

In this section we will introduce histograms in the SEM and describe what they

represent. As an example of the application of image histograms, we will quantify

the DQE of both the in-lens and in-chamber SE detectors on our SEM using Joy’s

method. Our discussion of image histograms in this section will form the basis of the

results in the rest of this chapter.

4.1.1.1 Introduction to histograms of SEM images

Figure 4-1(a) shows an SEM image of spherical tin nanoparticles attached to a copper

support structure on a standard TEM grid (image courtesy Navid Abedzadeh). This

image, as well as all other SEM images used in this chapter, has a pixel resolution of

1024× 768. Each pixel of the image has an 8-bit pixel brightness value, which means

that the pixel brightness lies in the range [0, 255]. Figure 4-1(b) is the histogram of
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Figure 4-1: Image histograms in SEM. (a) SEM image of spherical tin nanoparticles on a
copper TEM support grid, courtesy Navid Abedzadeh. (b) Histogram of the SEM image
in (a). The pixels fall into two broad peaks: darker pixels representing the background and
brighter pixels representing the sample. (c) SEM image of a uniform region of copper taken
at a pixel dwell time τ of 7.5 µs. (d) SEM image of the same uniform region of copper
as (c) taken at a pixel dwell time τ of 28 µs. The image is less noisy than (c). (e) Image
histograms of the SEM micrographs in (c) (solid curve) and (d) (dashed curve). The less
noisy image (d) has a narrower image histogram.
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this image. It is a plot of the number of pixels with a certain pixel brightness versus

the range of pixel brightnesses. We can see that the pixel brightnesses fall into two

broad peaks corresponding to the darker (lower pixel brightness) background pixels

and the brighter (higher pixel brightness) pixels representing the tin nanoparticles

and copper support structure. Therefore, the histogram reveals the distribution of

pixel brightnesses in the image and can be used to quantify noise in it. For example,

Figures 4-1(c) and 4-1(d) are SEM images of the same uniform region of copper,

taken at two different pixel dwell times τ . Figure 4-1(c) was taken at a small pixel

dwell time τ = 7.5 µs, meaning that fewer beam electrons were incident on each

pixel of the image, than Figure 4-1(d), for which τ = 28 µs. As we will discuss in

Section 4.1.1.2, fewer incident electrons lead to a more noisy signal, and the image in

Figure 4-1(c) looks noisier than 4-1(d). Figure 4-1(e), which shows the histogram of

these two images, confirms this observation. The image histogram for Figure 4-1(c)

(dashed curve) is broader than that for Figure 4-1(d) (solid curve) indicating that

the pixel brightness distribution is narrower for the less noisy image in Figure 4-1(d).

Note that the means of the two image histograms are the same (pixel brightness level

of 90) due to signal time-averaging, as discussed in Section 1.1.3 of Chapter 1. As

shown by Joy et al. [26, 27], we can use the width of the histogram to characterize

the SNR of the image and the DQE of the SE detectors. We will demonstrate this

method in the next section as an example of the utility of histograms in SEM.

4.1.1.2 Joy’s method of calculating image SNR and DQE in SEM

Before describing Joy’s method of calculating DQE, we will describe the basic statis-

tics of SE emission and introduce terminology that we will use in the rest of this

chapter.

The average number of incident electrons N on the object is given by:

N =
IBτ

e
. (4.1)
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Figure 4-2: Joy’s method of calculating image SNR and SE detector DQE. (a) Histograms of
two SEM images of the same uniform aluminum sample taken at two incident beam currents:
2.3 pA and 7.8 pA. The higher current histogram has a higher mean pixel brightness as well
as higher width. (b) Variation of mean histogram brightness with incident beam current.
The vertical intercept of the least-square fit line is the offset level due to the image brightness
and contrast settings.

Here, IB is the incident beam current, τ the pixel dwell time, and e the unit of electron

charge; e = 1.602× 10−19 C. Then, the average number of SEs emitted by an object

pixel, NSE,object, is given by:

NSE,object = N · δ = IBτ

e
· δ.

Here, δ is the total SE yield of the object pixel. Finally, the average number of SEs

detected by the SE detector from that pixel, NSE, is given by:

NSE = N · δ · DQE =
IBτ

e
· δ · DQE. (4.2)

Here, DQE is the detection quantum efficiency and measures the fraction of the SEs

produced per object pixel that are detected by the SE detector.

Note that we only discussed the mean number of incident and SEs. As dis-

cussed in Section 1.3.1 of Chapter 1, the full distribution of SEs is complicated, with

several reports detailing deviations from ideal Poisson statistics. These deviations

manifest as an increase in the observed variance of the distribution of SEs [21,90]. In

this chapter, we will only use the mean SE counts.
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Joy’s method of finding the DQE of SE detectors in SEM relies on using image

histograms to calculate the signal-to-noise-ratio (SNR) at different imaging currents.

Note that SNR here is unrelated to the SNR metric introduced in Chapter 3, and it

is related to the mean and width of the image histogram, as we will describe below.

Using the regular SEM imaging process (as described in Chapter 1), we gener-

ated histograms for in-chamber and in-lens SE detector images. Figure 4-2(a) shows

image histograms for the in-chamber detector from a uniform region of aluminum foil

obtained at an incident beam energy of 10 kV and τ = 28 µs, a working distance

of 13 mm, at two beam currents: IB = 2.3 pA (solid black curve) and IB = 7.8 pA

(dashed black curve). The mean pixel brightness for the low-current histogram for is

71 and for the high-current histogram is 124. We expect the mean pixel brightness

to be higher for the image histogram at higher incident beam current due to higher

NSE,object. Further, the histogram for IB = 2.3 pA is narrower than the histogram

for IB = 7.8 pA; the full-width-at-half maximum (FWHM) for the IB = 2.3 pA his-

togram is 18 pixel brightness units, while the FWHM for the IB = 7.8 pA histogram

is 24 pixel brightness units. For a Poisson distributed random variable, the variance

is equal to the mean. Hence, the width of its probability distribution increases as the

square root of the mean. Therefore, as NSE,object increases due to higher current, we

expect the histogram mean to increase linearly and the histogram FWHM to increase

as the square root of the current. For an ideal detector (DQE = 1), assuming Poisson

statistics, we would expect the SNR to be equal to
√
NSE,object. We will refer to this

quantity as SNRideal.

However, before we can use our image histograms to calculate SNR, we have

to correct the histograms for the image brightness and contrast settings we used.

From Equation (4.2), we would expect the image histogram mean to go to zero as the

beam current IB reduces to zero. However, the specific image brightness and contrast

settings we use might offset this value and make it non-zero. In order to find what

this offset level is, we plot the image histogram mean as a function of the incident

beam current in Figure 4-2(b). As expected, the variation of the image histogram
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mean with IB was linear. We extrapolated the least-square fit line (shown in black)

to zero current to find the offset level. In this case, the offset level was 49 pixel

brightness units. We will see in Section 4.1.2 that this value is close to the noise

level for the in-chamber detector at these settings. Next, we subtracted the offset

level from the image histogram means to find the true means at zero offset. The

ratio of the corrected histogram mean to the FWHM gave us SNRexp, which is the

experimental SNR. SNRexp includes the effect of the non-unity DQE and is equal to
√
NSE, the SNR for a Poisson distribution with mean equal to the number of SEs

that are detected at the in-chamber detector. From Equation (4.2),

NSE = NSE,object · DQE.

Using our definitions of SNRideal and SNRexp, we get

SNR2
exp = SNR2

ideal · DQE.

Hence,

DQE = SNR2
exp/SNR2

ideal.

From the image histograms for the different incident beam currents shown in Figure 4-

2 we extracted a DQE between 0.15 and 0.22 depending on the incident beam current.

We ascribe this variation to small non-linearities in the detector at higher currents as

discussed further in sections 4.1.3.1 and 4.2.2. We also performed a similar analysis

for the in-lens detector and obtained a DQE between 0.3 and 0.6. Note that in these

calculations, we used δ = 0.2 for our aluminum sample [18, 20, 21]. The values of

DQE extracted from our implementation of Joy’s method are in the range reported

previously for well-designed in-chamber and in-lens detectors [26, 27] and will serve

as a benchmark for our technique of calculating DQE in Section 4.1.3.2.
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4.1.2 SE quantization in SEM image histograms

In this section, we will demonstrate our observation of distinct peaks in the image

histogram due to the quantization of SEs. As described in Chapter 1, we used a Zeiss

LEO 1525 with a Gemini column in our experiments. The native Zeiss SEM interface

(SmartSEM, V05.01.08) was used to form SEM images. We scanned a featureless

sample of aluminum foil at low magnification (pixel size > 1 µm) at an incident beam

energy of 10 keV. In order to observe SE quantization, we needed to be careful about

the imaging conditions we used. Therefore, we will first discuss the optimization

of imaging parameters: the number of incident electrons on the sample, the image

brightness, image contrast, detector suppressor voltage, and beam blanking. We will

show how peaks due to SE quantization emerged in our image histograms when the

parameters were optimized. Note that in this section we will discuss the optimization

of these parameters for the in-chamber SE detector. We performed a similar analysis

for the in-lens detector, as discussed in Appendix B.

4.1.2.1 Number of incident electrons

As specified in Equation (4.2), the number of SEs detected by the SE detector is given

by NSE = IBτ
e

· δ · DQE. As we had discussed in Section 1.3.1 of Chapter 1, the SE

distribution is close to Poisson for the range of incident beam energies we are working

with. A Poisson distribution resembles a normal distribution at high mean; Joy

reported the transition from normal to Poisson-like in the SE image histogram [27].

In order to observe SE quantization, we ensured that NSE was low by lowering the

incident beam current IB and/or the pixel dwell time τ . Further, we also chose an

incident beam energy of 10 keV to ensure that δ was low enough to resolve single

SEs, as discussed in Section 1.1.2 of Chapter 1. We also used the smallest condenser

aperture (diameter 7.5 µm) on our SEM to limit IB. With the smallest aperture, we

further optimized N by tuning the gun extraction voltage and the pixel dwell time τ

to obtain SE in the image histogram.
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Figure 4-3(a) shows the image histograms for a featureless aluminum sample

for different values of τ . This experiment was carried out at I ≈ 2.3 pA. The

different histograms correspond to a τ of 28 µs (blue curve), 15 µs (orange curve), 7.5

µs (purple curve), 3.6 µs (green curve), and 1.8 µs (dark red curve). Note that each

histogram in this chapter is plotted with the bins on the horizontal axis centered at

each integer between 0 and 255. Further, each histogram, unless stated otherwise,

is normalized so that the total area under the histogram sums to 1. Stated another

way, each histogram is an empirical probability mass function.

As we lowered τ from 28 to 15 µs the histograms became wider but retained

the same mean, just as the histograms in Figure 4-1(e) for the images in Figures 4-

1(c) and (d). When we reduced the dwell time to 7.5 µs, a series of sharp peaks

appeared in the histogram. The first of these peaks was centered at a brightness level

of 44, the second at 51, and the third at 58. Upon reducing τ to 3.6 µs, the first

peak remained at 44, but the second shifted to 58, and the third to 73. This shift

continued on further reducing the dwell time to 1.8 µs, in which case the second peak

appeared at 73 and the third at 105. Simultaneously, as τ was reduced, the first peak

at brightness 44 increased in intensity.

We attributed the peaks that emerged in the histogram at small dwell times

to SE quantization [27]. As we will discuss in greater detail in Section 4.1.2.5, the

constant sharp peak at pixel brightness 44 can be attributed to noise and corresponds

to pixels with zero detected SEs. The shifting of the other peaks’ pixel brightness

levels when the dwell time was lowered can be explained as a consequence of signal

time-averaging. Suppose a pixel that emitted two SEs on average when τ = 7.5 µs

had a brightness of 58. The difference in pixel brightness between the two-SE level

and the noise level would be 14. When τ = 3.6 µs, this pixel would have emitted one

SE on average. However, due to signal time-averaging, the brightness of this pixel

would have remained 58. Therefore, a brightness of 58 would now have corresponded

to one emitted SE, and the gap between the noise level and the one-SE level would

have been 14. In the histogram in 4-3(a), we see that at τ = 3.6 µs (purple curve)
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the first peak is at pixel brightness 58, as we would have predicted from the above

example. At τ = 1.8 µs, we would predict the gap between the zero and one-SE

levels to double to 28 and the one electron level to be at pixel brightness 72. This

is very close to the observed peak at 73. By the same logic, whenever the dwell

time is halved, we would expect the pixel brightness level of each of the SE peaks to

double, leading to doubling of the gap between successive electron peaks observed in

Figure 4-3(a).

In Figure 4-3(b) we show the variation of the histogram with incident beam

current IB. We controlled IB by changing the gun extraction voltage. These mea-

surements were made at τ = 3.6 µs. The values of IB for which we plotted histograms

in this figure are 5.6 pA (dashed blue curve), 3.9 pA (dash-dotted orange curve), and

1 pA (solid purple curve). We can see that as IB reduces, the one-SE peak at pixel

brightness 58 becomes stronger, while the three and higher SE peaks become weaker.

The two-SE peak is stronger for 3.9 pA than the other incident beam current values.

These trends indicate that the mean number of detected SEs reduced on reducing

IB. In Section 4.1.3.1 we will analyze this reduction quantitatively and see that it is

linear (as expected from Equation (4.2)) at low incident beam currents. This linear

trend supports our conclusion that the peaks in the histogram arise due to integral

number of SEs.

Based on the results in Figures 4-3(a) and (b), we decided to use τ = 3.6 µs

as the pixel dwell time for future experiments since this dwell time gave us strong

multi-electron peaks that are well-separated. We varied IB depending on the desired

mean number of SEs per pixel by tuning the gun extraction voltage.

4.1.2.2 Image brightness

The image brightness specifies the DC offset applied on the signal coming from the

SE detector. It is different from the pixel brightness which is the 8-bit value of each

pixel in the image. The SEM software displays the image brightness as a number
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Figure 4-3 (previous page): SE quantization observed on the in-chamber detector in SEM.
(a) Variation of the image histogram with pixel dwell time τ . As we reduced τ , distinct
peaks appeared in the image histogram corresponding to integral numbers of detected SEs.
(b) Variation of the image histogram with incident beam current IB for constant τ . As IB
reduced, the SE peaks became sharper and the histogram transitioned from nearly Gaussian
to Poisson-type. (c) Optimization of image brightness. An image brightness of 51 (solid
blue curve) ensured that the sharp noise peak was well-resolved (unlike image brightness 50,
dotted purple curve) and the SE peaks did not merge into one another (unlike brightness
52, dash-dotted orange curve). (d) Optimization of image contrast. A contrast of 52 (solid
blue curve) ensured that the peaks did not merge into one another (unlike contrast 40,
dotted purple curve) and the noise-artifacts did not become significant (unlike contrast
55, dash-dotted orange curve). (e) Variation of image histogram with in-chamber detector
suppressor voltage. As the suppressor voltage was reduced, the SE peaks became more
distinct and the mean SE count reduced since fewer SEs were attracted to the detector. (f)
Image histograms for beam on (solid blue curve), beam blanked (dash-dotted orange curve),
and beam off (dotted purple curve). When the beam is blanked, the SE peaks disappear
except for a small residual one-SE peak which disappears when the beam is turned off. The
remaining sharp peak corresponds to the zero-SE noise level.

between 0 and 100. We obtained the data shown in Figures 4-3(a) and (b) at an

image brightness of 51.

Figure 4-3(c) shows the change in the image histogram on changing the image

brightness on the SEM software. The image brightness values shown are 51 (solid blue

curve), 52 (dash-dotted orange curve), and 50 (dotted purple curve). As we would

expect from adding a DC offset, the histogram shifted to higher pixel brightness values

for higher image brightness, and vice versa. Further, the peaks in the histogram

merged with each other at 52 image brightness. As we will show in Section 4.2.1,

the maximum voltage output from the SE detector at the image contrast settings we

used was about 5.6 V. Therefore, as we increased the image brightness, the range

over which the signal from the detector could vary reduced. The peak merging was

a result of this reduced dynamic range of the detector signal. Conversely, at image

brightness 50 and below, the sharp noise peak shifts to zero pixel brightness and can

no longer be clearly resolved. Based on the results of Figure 4-3(c), we decided to use

an image brightness of 51 for all experiments to clearly visualize the zero-SE peak

and avoid artifacts in our analysis due to some pixels being saturated at zero pixel

brightness but not lose the quantization of the peaks due to reduced dynamic range
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at higher image brightnesses.

4.1.2.3 Image contrast

The image contrast specifies the overall dynamic range over which the signal from

the SE detector can vary. On the SEM software, the image contrast is specified as a

value between 0 and 100. We obtained the data in Figures 4-3(a),(b), and (c) at an

image contrast of 52.

Figure 4-3(d) shows the image histograms for different values of image contrast.

These histograms were obtained at an image brightness of 51. The values of image

contrast in this plot are 52 (solid blue curve), 55 (dash-dotted orange curve), and 40

(dotted purple curve). We see that reducing the contrast reduced the peak separation

and the peaks merged with each other at image contrast of 40. The merging is a result

of a lower dynamic range, similar to the effect in our discussion about image brightness

in Section 4.1.2.2. At contrast 55, we started seeing shoulders on both sides of the

one-SE peak around pixel brightnesses 50 and 70. We suspect that these shoulders

were due to detector noise that gets amplified at high contrast. Based on the results

of Figure 4-3(d), we decided to use a brightness of 52 for all experiments to get

well-separated SE quantization peaks without introducing artifacts due to detector

noise.

4.1.2.4 Detector suppressor voltage

The suppressor voltage Vsup is applied to the external cage on the in-chamber SE

detector to accelerate and attract the low-energy SEs towards it. In Figure 4-3(e),

we plot the image histograms for Vsup = 300 V (dashed blue curve), Vsup = 50 V

(dash-dotted orange curve), Vsup = 0 V (solid purple curve), and Vsup = −30 V

(dotted purple curve). The change in mean SE count was small when we reduced

Vsup from 300 V to 50 V. At Vsup = 300 V, NSE = 5.59 and at Vsup = 50 V,
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NSE = 4.18. Most SEs have energies less than 50 eV, so an accelerating voltage above

50 V should be sufficient to attract them to the detector. However, the histogram

changed dramatically on reducing Vsup from 50 V to 0 V; NSE = 0.78 at 0 V. Between

50 V and 0 V, the suppressor voltage was in the range of SE energies, and the detector

missed more and more of the SEs as the voltage was reduced. At Vsup = 0V, there was

no voltage to attract the SEs to the detector, and only SEs that were emitted with

sufficient energy and in the direction of the detector were detected. Hence, the mean

number of SEs went down, and very few pixels registered two or three SEs as seen in

the purple curve. On reducing the suppressor voltage to negative values, the electron

peaks were further suppressed, and at Vsup = −30 V only a small fraction of the

pixels registered one SE (NSE = 0.18). In this condition the detector repelled most

SEs and only a very small fraction of them made it to the detector. The contribution

of SE3s (as described in Chapter 1 Section 1.1.2.1) was much more significant in this

condition due to the relative lack of SE1s and SE2s at the detector. The sequential

suppression of the histogram peaks as the suppressor voltage was reduced is more

evidence towards their origin being due to SE quantization.

We decided to use a suppressor voltage of 300 V (the maximum possible value)

to maximize the number of SEs that were registered on our detector. However,

in experiments where the electromagnetic field in the vicinity of the sample was

important (such as SE yield measurements), we reduced this voltage to 50 V since

the statistics of SEs remained almost the same at this lower suppressor voltage.

4.1.2.5 Beam blanking

In Figure 4-3(f), we plot the image histogram in three cases: beam on (solid blue

curve), beam blanked (dash-dotted orange curve), and beam off (dotted purple curve).

We see that when the beam was blanked, most of the pixels had a brightness of 44

except for a small peak at the one SE brightness level of 58. When the incident beam

was switched off this small peak disappeared. When the incident beam is blanked in
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the SEM, deflection plates near the electron gun prevent it from reaching the sample;

however, the beam is still on. Therefore, it is possible for stray SEs from higher up in

the column to make it to the detector leading to the small peak. Note the similarity

between this histogram and the histogram obtained at Vsup = −30 V in Figure 4-3(e).

In both cases, a few SEs made it onto the detector leading to the small one-SE peak.

When the beam was switched off, no secondaries were generated anywhere in the

column which led to the one-SE peak disappearing. The only peak now was at pixel

brightness 44. From this observation, we concluded that this peak was due to detector

noise and corresponds to the zero-SE level. As we had discussed in Section 4.1.2.2,

the exact position of this peak was determined by the image brightness setting.

4.1.3 Characterization of in-chamber and in-lens detectors

using SE counting

In the previous section, we showed how quantized SE peaks emerged in the image

histogram when the number of incident electrons, image brightness, image contrast,

and detector suppressor voltage were optimized. In this section, we will use the image

histogram peaks to analyze the statistics of the SEs. We will look at the mean SE

number NSE obtained from the image histograms and use it to calculate the DQE of

the in-chamber and in-lens detectors. We will compare the DQE obtained for these

detectors with the value obtained in Section 4.1.1.2 using Joy’s method. We will also

look at the variation of the DQE with sample working distance.

4.1.3.1 SE counting for in-chamber detector image histograms

Figure 4-4(a) is an image histogram for the in-chamber detector at an incident beam

energy of 10 keV, IB = 7.5 pA, τ = 3.6 µs, image brightness of 51, contrast of 52,

and a working distance of 13 mm. We can treat this histogram as a probability mass

function and find the mean pixel brightness. Knowing the zero-, one-, and two-SE
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Figure 4-4: Statistics of image histogram SE counting. (a) Image histogram with the mean
pixel brightness level of 1.91, marked with a vertical line. (b) Variation of mean SE number
with incident beam current for the in-lens and in-chamber detectors. Unfilled black circles
indicate extracted NSE values for the in-chamber detector, and red crosses indicate NSE
values for the in-lens detector. Filled black circle indicates NSE for the histogram in (a).
The least-squares fit lines (black for the in-chamber detector and red for the in-lens detector)
are for IB < 5 pA, indicated by the vertical dashed black line. Above this incident beam
current, the extracted NSE values deviate from this fit due to signal pileup. The DQE
extracted from the slope of these lines is 0.16 for the in-chamber detector and 0.32 for the
in-lens detector.

levels, we can translate this brightness to a mean SE number NSE. For the histogram

in Figure 4-4(a), this mean SE number is 1.91, indicated by the dotted black vertical

line.

In Figure 4-4(b), we plot the mean SE number extracted from image his-

tograms for a range of incident beam currents, for both the in-chamber detector

(unfilled black circles) and the in-lens detector (red crosses). The data point corre-

sponding to the histogram in Figure 4-4(a) is indicated with a filled black circle. As

we lowered the beam current from 7.8 pA to 0.5 pA, the mean SE number reduced

from 5.31 to 0.48 for the in-chamber detector and from 9.83 to 1.04 for the in-lens

detector. We see that the mean SE number varies linearly with IB for low currents

and shows some non-linearity at higher currents for both detectors. The solid black

line is a least-square fit to the extracted SE number for IB < 5 pA (indicated by the

vertical dotted black line) for the in-chamber detector, and the solid red line is a fit to

the extracted SE number for the same range of incident beam current for the in-lens
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detector. We expect that the non-linearity at higher currents is caused by increasing

incidents of multiple SEs hitting the detector within a fraction of the pixel dwell time,

causing signal pileup and consequent incorrect extracted SE values. We will discuss

the mechanism for this pileup in more detail in Section 4.2.2. In all our applications

of electron counting in this chapter and Chapter 5, we will restrict ourselves to a very

small probability of multiple incidence by either using low currents (IB < 5 pA) to

extract detector parameters and/or using very fast scans (as in Chapter 5).

We note that the mean SE number is higher by a factor of 2 for the in-lens

detector than for the in-chamber detector. The higher mean SE number indicates that

the in-lens detector is more efficient at collecting SEs than the in-chamber detector,

as reported previously [22, 26].

4.1.3.2 DQE from in-chamber and in-lens detector image histograms

From Equation (4.2), the mean SE number NSE is given by:

NSE = N · δ · DQE =
Iτ

e
· δ · DQE

As mentioned before, we used τ = 3.6 µs for all the image histograms used to extract

the data shown in Figure 4-4. We used a value of 0.2 for the SE yield of our aluminum

sample at 10 kV [18,20,21]. Knowing these values, we extracted the DQE for both the

in-chamber and in-lens detectors from the slope of the best-fit lines for the mean SE

number NSE versus beam current IB plots in Figures 4-4(b) and (c). The extracted

values were 0.16 for the in-chamber detector and 0.32 for the in-lens detector. These

values are close to the range of DQE values we had obtained using Joy’s method in

Section 4.1.1.2 and are also in the range of reported values in the literature for these

detectors [26,27]. As discussed by Joy, DQE values can vary by orders of magnitude

depending on the detector geometry and age [27]. As an example of another source of

this variation, in the next section we will see how the DQE of both detectors varied

with the working distance.
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4.1.3.3 Variation of DQE with working distances

We investigated the variation of the in-chamber and in-lens detector DQE as a func-

tion of the working distance as an application of this technique of finding the DQE.

As discussed in Section 1.1.3 of Chapter 1, our SEM has an 8 kV electrostatic field

along the optical axis to attract SEs to the in-lens detector. Working with a sim-

ilar column design, Griffin [22] has previously reported qualitative improvement in

the fine details observable in the in-chamber detector image with increasing working

distance. All results reported in this section were obtained with the incident beam

energy at 10 kV, IB = 2.3 pA, and τ = 3.6 µs.

In Figure 4-5(a) we plot the image histograms for the in-chamber detector at

two working distances (WD): 13 mm (solid black curve) and 34 mm (dash-dotted black

curve). We see that the SE peaks are well-defined for the lower working distances

but not the higher working distance. This observation indicates that the mean SE

number was higher at WD = 34 mm than at WD = 13 mm. From the histograms,

NSE = 5.78 for WD = 34 mm and NSE = 1.66 for WD = 13 mm. This increase

in mean SE number (and consequent increase in DQE) translates to higher SNR,

consistent with Griffin’s observation.

In Figure 4-5(b) we plot the image histograms at WD = 13 mm (solid red

curve) and WD = 34 mm (dash-dotted red curve) for the in-lens detector. Contrary

to our observations with the in-chamber detector, for the in-lens detector NSE was

lower at WD = 34 mm, where it is 0.32, than at WD = 13 mm, where it was 4.42.

This effect was not reported by Griffin, who noted little variation in the in-lens image

with increasing working distance.

Figure 4-5(c) is a plot of the DQE for both detectors for working distances

between 13 mm and 34 mm. Once again, we can see the trend of increasing DQE for

the in-chamber detector and decreasing DQE for the in-lens detector with increasing

WD. We believe that the reduction in DQE for the in-lens detector with increasing

WD is a result of the diminishing effect of the 8 kV electrostatic field designed to
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Figure 4-5: Variation of DQE with working distance for in-chamber and in-lens SE detectors.
(a) Image histograms for SEM images captured using the in-chamber detector for working
distances of 13 mm (solid black curve) and 34 mm (dash-dotted black curve). The mean
SE number is higher at 34 mm than at 13 mm. (b) Image histograms for SEM images
captured using the in-lens detector for working distances of 13 mm (solid red curve) and 34
mm (dash-dotted red curve). The mean SE number is lower at 34 mm than at 13 mm. (c)
DQE for the in-chamber detector (unfilled black circles) and in-lens detector (red crosses) at
different working distances. The DQE for the in-chamber detector increases with working
distance, while the DQE for the in-lens detector goes down.

attract SEs to the in-lens detector. At higher working distances this field would be

weaker and less effective at drawing SEs back up the column to the in-lens detector.

The weaker field would also result in more electrons being available to be detected by

the in-chamber detector which explains part of the increase in its DQE with increasing

working distance. A second reason for the increase in the DQE of the in-chamber

detector with working distance could be that at larger working distances, the detector

geometry and location with respect to the sample becomes more favorable and allows

more SEs to reach the detector. Further, as the working distance increases, the
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solid angle within which most of the BSEs are emitted covers more of the surface

of the objective lens polepiece and chamber walls of the SEM. Therefore, the BSEs

can generate more SE3s which would be detected by the in-chamber detector. The

in-lens detector, placed along the optical axis so that it is much less sensitive to

SE3s by design, would not see this increase. We believe that the reduction in in-

lens detector DQE was not seen by Griffin because of higher incident beam currents

which ensured that even at large working distances, sufficient SEs were detected at

the in-lens detector to generate a high-SNR image.

4.2 SE counting using oscilloscope outcoupling

In Section 4.1 we described our scheme and observations of SE quantization using the

image histogram. We presented evidence for the observed histogram peaks arising

due to SEs and applied these findings to calculate the DQE of the in-chamber and

in-lens SE detectors and map the variation of the DQE with working distance. In

this section, we will extend the histogram technique by directly analyzing the signal

from the SE detectors by outcoupling it onto an oscilloscope. We performed this

outcoupling to reproduce the image histograms using the direct time-domain signal

from the SE detector and rule out the possibility of the histogram peaks arising

from an artifact of the SEM imaging algorithm. Therefore, this outcoupling provides

further evidence of SE quantization in the image histogram and suggests extensions of

this work towards live electron count imaging and implementation of the conditional

re-illumination schemes described in Chapter 3. We will consider these extensions in

more detail in Chapter 5. As we had done in the discussion of the image histogram

technique, we will focus on the in-chamber SE detector here; we obtained similar

results for the in-lens detector.
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Figure 4-6: Oscilloscope outcoupling of SE detector signal. (a) Scheme for oscilloscope
outcoupling. The signal from the SE detector is directly analyzed on an oscilloscope. (b)
100 µs output signal from the in-chamber detector on the oscilloscope (sampled at 10 ns)
showing pulses due to detected SEs. (c) A single signal pulse with a FWHM time duration
of 148 ns. (d) Histogram of signal pulse heights showing that most pulses are saturated at
5.6 V. (e) Histograms of the FWHM pulse durations for IB between 1.1 pA and 5.4 pA. All
histograms have a mean of 180 ns.
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4.2.1 Introduction to oscilloscope outcoupling

Figure 4-6(a) is a schematic of the oscilloscope outcoupling scheme we will use in this

section. In this experiment, we held the incident beam stationary over one spot on a

uniform sample of aluminum. Since the sample was uniform and the beam was held

stationary, we did not need to synchronize the collection of detector signals on the

oscilloscope with the SEM scanning; we assumed that the expected number of SEs for

a time window corresponding to the pixel dwell time did not vary over the collection

period. The SE signal from the in-chamber detector was coupled to a 2 GHz LeCroy

WaveRunner 6200A oscilloscope through a standard BNC cable. As described in

more detail in Section 4.2.2, we used the outcoupled signal to generate histograms on

the oscilloscope and compared these histograms with the image histograms generated

from the SEM image.

The outcoupling port on our detector was present after a pre-amplification

stage which meant that the signal we obtained on the oscilloscope was not the raw

signal from the photomultiplier tube. Oatley [28,87], Baumann and Reimer [89], and

Novák [29] have quantified the number of photoelectrons generated at the photocath-

ode per incident SE on the scintillator of the SE detector; at 10 kV bias voltage the

mean number of photoelectrons is between 5-10 depending on the material of the

photocathode and configuration of the photomultiplier. Each of these photoelectrons

will create a voltage pulse in the raw signal from the photomultiplier with a pulse

time duration on the order of 10-20 ns [29, 97]. However, as we will describe in more

detail later in section, we observed one pulse per incident SE with a mean time du-

ration of ≈ 180 ns. These longer pulses were a result of the low-pass filtering and

amplification applied at the pre-amplification stage. Therefore, we did not observe

pulses from individual photoelectrons excited by each detected SE. However, for the

purpose of SE counting, the longer-time pulse generated by each detected SE was

sufficient as long as pulses from successive SEs did not overlap with each other. At

the end of this subsection we will show how the settings we used ensured that the

probability of pulses overlapping with each other was very low.
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From Figure 4-6(b) we can also see that the pulses had varying time durations.

In Figure 4-6(e), we plot histograms of the pulse time duration of 2 × 104 observed

pulses, with the time duration measured at the pulse FWHM, for incident beam

currents between 1.1 pA and 5.4 pA. The distribution of pulse time duration was

approximately Gaussian with a mean duration of 180 ns. Moreover, the distribution

remained the same for different incident beam currents up to 8 pA (not plotted here).

As the current increased, the average number of pulses per time window increased,

but their width followed the same distribution as in Figure 4-6(e). Therefore, we

concluded that each pulse was the result of a single SE detection, and the number

of pulses in each time window corresponded to the number of SEs incident on the

detector in that time.

As described in Section 4.1, the maximum beam current we used in our ex-

periments was 8 pA and τ = 3.6 µs. Using Equation (4.2) and assuming that δ = 0.2

and the DQE for the in-chamber detector is 0.16, NSE = 5.7. Therefore, at this beam

current, there is a high probability of multiple SEs incident on the detector within

the pixel dwell time, which increases the probability of overlap between the pulses

generated by these SEs. We ascribed the deviation from linearity of our SE count

measurements in Figure 4-4 to this increasing probability of pulse overlap at higher

incident beam currents. Lowering the beam current reduces the probability of pulse

overlap and results in linear scaling of SE count with beam current.

4.2.2 Oscilloscope histograms and statistics

Once we had determined the origin of the pulses in the outcoupled signal on the

oscilloscope, we could start comparing its statistics to those of the image histograms

we had analyzed in Section 4.1.3.1. As described in Section 1.1.3 of Chapter 1, the

brightness of each pixel on the SEM image corresponds to the average signal level from

that pixel. Therefore, we collected a series of 104 signal windows on the oscilloscope,

each of time duration 5 µs, sampled at 10 ns. The total collection time for all the signal
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Figure 4-7 (previous page): Oscilloscope histograms and their statistics. (a) Histogram
of the average signal level from 104, 5 µs signal collection windows on the oscilloscope
for IB = 8 pA (solid blue curve) and IB = 10.8 pA (dash-dotted orange curve). Both
histograms show a sharp noise peak and two broad integral SE peaks with the intensity of
the SE peaks being higher for the higher incident beam current histogram. The mean SE
number for the IB = 8 pA histogram was 0.94 and for the IB = 10.8 pA it was 1.24. (b)
Image histograms for the same object region at the same incident beam currents as (a).
The mean SE number for the IB = 8 pA histogram was 1.07 and for the IB = 10.8 pA it
was 1.25. (c) Oscilloscope histogram for 5 × 103, 5 µs detector signal windows, acquired
with an oscilloscope trigger voltage of 0.6 V, for IB = 0.3 pA (solid blue curve) and IB = 1
pA (dash-dotted orange curve). The higher current histogram shows higher counts in the
two-SE peak region.(d) Image histograms for the same object scan regions for the same
incident beam currents as (c). The ratio of the one- and two-SE peaks is ∼ 5 at IB = 0.3
pA and ∼ 2.5 at IB = 1 pA for both the oscilloscope and image histograms. (e) Oscilloscope
histograms for 5× 103 detector signal windows of duration 2 µs (solid blue curve) and 5 µs
(dash-dotted orange curve) with trigger voltage of 0.6 V. Both histograms show distinct SE
peaks, and the higher duration histogram has higher intensity for two-SEs and higher SE
numbers indicating a higher mean SE count.

windows was about 40 minutes. We were limited in the number of signal windows

we could collect by the memory of the oscilloscope and contamination buildup as

discussed later in this section. We used random triggering on the oscilloscope to

ensure that the collected signal was not biased. However, a small fraction (< 2%)

of the signal windows had incomplete SE pulses at either the beginning or end of

the window collection time. We did not consider these windows in our analysis of

oscilloscope histograms. Since the fraction of such windows was small, we do not

expect their omission to impact the statistics we will report here.

In Figure 4-7(a), we plot the histogram of the average signal level from the

collected signal windows. Note that this histogram (and others in this figure) is

normalized to the height of the highest peak instead of the histogram area which

was the case for the earlier histograms we have discussed in this chapter. We made

this change to make it easier to visualize the differences between the histograms at

different incident beam currents. The solid blue curve in Figure 4-7(a) corresponds

to a beam current of 8 pA and the dash-dotted orange curve corresponds to 10.8

pA. The histograms for both currents exhibited a sharp peak at an average voltage

value of 0.06 V and two broad peaks at average voltages of 0.15 V and 0.24 V. For
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comparison, in Figure 4-7(b) we plot image histograms for the same currents with

the same settings. Note that the image brightness in this histogram was slightly

different than in Figures 4-4 and 4-5 (50.9 instead of 51) leading to different peak

positions. In the discussion on image brightness in Section 4.1.2.2, we had described

how sensitive the exact peak positions are to image brightness. The image histograms

show the usual sharp noise peak and distinct one- and two-SE peaks. The presence

of these peaks in the histogram generated from the oscilloscope signal, as well as

the similarity between the overall shape and regular spacing of the peaks in the two

types of histograms, provides further evidence that the origin of these peaks is SE

quantization. We also note that the oscilloscope histogram appears to be noisier

because of the fewer signal windows used to generate it (104) compared to the SEM

images which have a size of 1024× 768 pixels.

We can use the oscilloscope histograms to estimate the mean number of SEs

using the same procedure we had discussed for image histograms in Figure 4-4. Using

this process, the mean SE count for the 8 pA oscilloscope histogram was 0.94. The

mean SE count for the 10.8 pA oscilloscope histogram was 1.24. In comparison, the

mean SE count for the 8 pA image histogram was 1.07, and the mean SE count for

the 10.8 pA image histogram was 1.25. Apart from fluctuations due to the fewer

number of signal windows used to generate the oscilloscope histogram, the deviations

between the oscilloscope and image histogram SE counts were caused by two addi-

tional reasons. First, there was significant sample contamination buildup during the

long (40 minute) data collection time. We noticed a significant change in the mean

SE count from image histograms taken at the start of the data collection and the end.

For example, for the 10.8 pA dataset, the mean SE count changed from 1.43 at the

start of the data collection to 0.86 by the end. The image histograms in Figure 4-7(b)

are the average of two histograms taken at the start and end of the data collection,

as are the mean SE counts reported from these averaged image histograms. Since

the statistics for the oscilloscope histograms in Figure 4-7(a) build up over the data

collection time, we compared the mean SE number from these histograms to the av-
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eraged image histograms. The second reason for deviations between the oscilloscope

and image histogram mean values is signal pileup, i.e., the non-linearity due to over-

lapping pulses at high incident beam currents that we had noted in Figure 4-4(b).

At beam currents of 8 pA and 10.8 pA the non-linearity can be significant leading to

distortion in the oscilloscope and image histograms and their statistics.

Figure 4-7(c) shows oscilloscope histograms of 5× 103 signal windows of dura-

tion 5 µs taken at lower beam currents to mitigate the effect of contamination buildup

and detector non-linearity. The solid blue curve is for a beam current of 0.3 pA, and

the dash-dotted orange curve is for a beam current of 1 pA. Further, to collect this

data we used a trigger voltage of 0.6 V on the oscilloscope (instead of using random

triggering as in Figure 4-7(a)) to filter out the noise pulses and get better statistics

on the higher SE number pulses. The oscilloscope for IB = 1 pA shows a higher

signal in the two-electron peak region. Due to the lack of pulses lower than 0.6 V

we could not obtain a mean SE count from these histograms. However, we can com-

pare the ratio of the one- and two-SE peaks from these oscilloscope histograms to

the values from the image histograms. Figure 4-7(c) is an image histogram for the

same scan region under the same settings. The ratio of the one- and two-SE peak

for both the oscilloscope and image histograms at 0.3 pA was approximately 5, and

the ratio for the 1 pA histograms was approximately 2.5. Although the SE peaks in

the oscilloscope histogram are not as well resolved as in the image histogram due to

fewer samples, this equality between the one- and two-electron peak ratios indicates

that the statistics from both types of histograms are equivalent.

In Figure 4-7(e), we plot the oscilloscope histogram for 5 × 103 pulses for

sampling window times of 2 µs (solid blue curve) and 5 µs (dash-dotted red curve).

We obtained both histograms with the oscilloscope trigger voltage set to 0.6 V for an

incident beam current of 4 pA. Note that we used a larger aperture on the SEM (20

µm instead of 7.5 µm for all earlier results) to get higher SE signal levels. The 2 µs

histogram shows two clear peaks at average signal levels 0.27 V and 0.51 V. The 5

µs histogram also shows peaks at these values and higher signal at 0.51 V and above.
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Again, these results are consistent with our interpretation of the peaks as arising from

single SEs. The reduction in histogram counts in going from 5 µs to 2 µs is similar to

the emergence of SE peaks in Figure 4-3(a), showing the consistency between these

two techniques.

4.3 Conclusions

In this chapter, we have shown how SE counting can be performed using two methods-

image histograms and outcoupling of detector signal on an oscilloscope. The image

histogram method builds on work by Joy et al. [26,27] and Timischl et al. [118], while

the oscilloscope outcoupling method builds on work by Oatley [28,87], Baumann and

Reimer [89], and Novák [29]. We used the oscilloscope outcoupling method to verify

the results of the histogram method and also proved the utility of the histogram

method by using it to calculate the DQE of the in-chamber and in-lens SE detectors

and characterize its variation with working distance.

Our analysis of the variation of the detector DQE with working distance re-

vealed that the DQE for the in-chamber detector increases and the DQE for the

in-lens detector falls with increasing working distance. We speculated that the in-

crease in the in-chamber detector DQE arose from greater availability of SEs due to

the reduced effectiveness of the 8 kV in-lens detector attraction field at higher work-

ing distances as well as greater generation of SE3s by BSEs. Establishing which of

these effects is dominant by, for example, varying the in-lens detector field would be

an interesting extension of this work.

Unlike the work of Joy and co-workers, we did not use image histograms to find

an SNR in our work. We found that the variances of the quantized-SE count image

histograms were much higher than the means. Although we found deviation from

Poisson statistics in the SE emission, as we will detail in Section 5.3.3 of Chapter 5,

the deviations from Poisson statistics in the histogram variances were much larger

136



than those reported in Chapter 5. Due to these large deviations we could not extract

reliable SNR values from the image histograms. A more detailed analysis of higher-

order statistics of the image histograms would be an interesting extension of this

study.

The histogram SE counting method is more direct, requires no external cir-

cuitry, and could be incorporated into commercial SEM software easily to understand

the statistics of the images being generated and use those statistics to optimize the

image SNR. The histogram method could potentially also be used to generate elec-

tron count images by assigning an SE number to each pixel in the image based on

its pixel brightness knowing the positions of the quantized electron peaks. However,

as can be seen from the image histograms in Figures 4-3, 4-4, and 4-5, there is sig-

nificant overlap between the one-, two-, and three-SE peaks, and assigning an SE

number to pixels with brightnesses intermediate between the distinct peak regions

would require a probabilistic decision scheme. Such a scheme would lead to errors in

the assignment of some pixels. However, if a few errors are acceptable as a trade-off

for ease of implementation, a histogram electron count imaging scheme is an attrac-

tive option for extending conventional SEM imaging. In designing such a scheme, the

range of incident beam currents would be limited by the non-linearities introduced

by overlapping SE pulses at high incident beam currents; the exact value of the beam

current at which the non-linearity becomes significant would depend on the dead-time

of the SE detector. We also showed that the single electron signal is observable in

the image histogram for pixel dwell times down to 1.8 µs. Although we did not use

currents as low as in Yamada’s work [95, 97] (the lowest current we used was 0.3 pA

compared to 0.1 pA by Yamada), combining these conditions could lead to imaging of

radiation-sensitive samples such as proteins and biomolecules at extremely low inci-

dent electron doses and dose rates. Such low dose-rate imaging could also be applied

to time-resolved SEM imaging [107, 108].

The outcoupling method, on the other hand, requires an external oscilloscope.

Although we used a 2 GHz oscilloscope for the experiments reported here, the mini-

137



mum sampling time we used was 10 ns, which corresponds to a bandwidth of 100 MHz.

Therefore, oscilloscope outcoupling could be achieved with a much cheaper oscillo-

scope with the tradeoff that signal dynamics faster than 10 ns (such as the response

of individual photoelectrons) would not be observable. The oscilloscope outcoupling

method is more versatile than the histogram method because it can allow for dis-

crimination between signal pulses generated by SEs from the sample and background

counts in the detector based on voltage levels, thereby lowering imaging noise. This

method also gives us direct access to the detector signal which allows us to design

custom signal processing algorithms as detailed in Chapter 5. We also note that this

setup is simpler than the circuitry developed by Yamada and co-workers [95, 97] for

electron counting which required several filters, a discriminator, and a pulse counter.

In the next chapter, we will show how outcoupling both the SEM scan waveform and

the SE detector signal allows us to perform offline SE count imaging and conditional

re-illumination and propose a setup for online SE count imaging and conditional

re-illumination.
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Chapter 5

Electron count imaging and

conditional re-illumination for

reduced-dose SEM

In Chapter 4, we described image histogram- and oscilloscope-based SE counting

and used these techniques to find the DQE of the SE detectors in the SEM. In this

chapter, we will extend the oscilloscope outcoupling technique to generate offline SE

count images and implement conditional re-illumination. We will describe how this

implementation achieves the incident electron dose reduction discussed in chapters 2

and 3 and propose a scheme for implementing online SE count imaging and conditional

re-illumination in the SEM.

This chapter is organized into six sections. In Section 5.1, we will discuss the

SEM scan algorithm and waveforms and describe how we outcoupled the SE detector

signal in synchronization with the scan waveform. In Section 5.2, we will describe the

code we developed to generate SE count images from the outcoupled detector data.

In Section 5.3 we will show the generated SE count images and compare the contrast

and SNR of SE count images with conventional SEM images. We will also use the

SE count images to extract SE emission distributions and discuss their statistics.
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Next, in Section 5.4, we will describe the implementation of offline conditional re-

illumination using the SE detector signal and compare the MARE and SNR of images

generated with re-illumination and without. In Section 5.5, we will propose an online

implementation of SE count imaging and conditional re-illumination and describe

the required hardware components and their specifications. Finally, we will discuss

conclusions and extensions of this work in Section 5.6. In Section D.4 of Appendix D

we list the MATLAB scripts used to generate SE count and conventional SEM images,

calculate image quality metrics for these images, and implement offline conditional

re-illumination.

The measurements reported in this chapter were performed in collaboration

with John Simonaitis (Massachusetts Institute of Technology).

5.1 Scan waveforms on the SEM

In this section we will describe the features of the horizontal and vertical SEM scan

waveforms. Understanding the shape and timing characteristics of these waveforms

was an important step in our implementation of SE count imaging. We will also dis-

cuss how we used these features to synchronize the outcoupling of the SE detector sig-

nal with the SE scan to implement SE count imaging and conditional re-illumination.

5.1.1 Analysis of SEM scan waveforms

Figure 5-1 (a) is a schematic of scanning in an SEM. The rectangle represents the

area on the sample over which the SEM beam scans. An SEM image of this sample

area consists of sequentially scanned lines (demarcated by horizontal bars in Figure 5-

1(a)) with a certain number of image pixels on each line (indicated by the vertical

bars within the first scan line in Figure 5-1(a)). There are two types of scan functions

in all SEMs: the fast, horizontal scan and the slow, vertical scan. The horizontal scan
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Figure 5-1 (previous page): Scan waveforms on the SEM. (a) Schematic of SEM scanning,
showing the two scan directions in an image frame: the fast horizontal scan which defines
lines in a frame and the slow vertical scan which defines the whole frame. (b) Horizontal
(top) and vertical (bottom) scan waveforms for a pixel dwell time of 28 µs and a pixel
resolution of 129 lines by 88 pixels per line. Both the horizontal and the vertical scan
waveforms are sawtooth-shaped. The total duration of the image frame in this example was
304 ms. (c) First few lines in the horizontal scan. There is a 0.9 V spike at the end of each
linescan, during the period where the electron beam is retraced to its horizontal starting
position. (d) One linescan, showing the retrace spike, 70 µs front porch, and trace region.
The trace region has discrete steps corresponding to image pixels on the line. (e) Start of
one linescan, showing the retrace spike, front porch, and trace with discrete steps. Before
each step there is a transition region with a local minimum. The time duration between
successive minima is 26 µs, close to the pixel dwell time. (f) Start of one linescan for a pixel
dwell time of 440 ns. Unlike (e), there are no discrete steps in this faster linescan.

defines one line in an image frame while the vertical scan defines one image frame.

Here, an image frame refers to one scan of the incident electron beam over every pixel

on the sample area being imaged. Therefore, within each image frame, the horizontal

scan repeats for every line, while the vertical scan occurs once per image frame.

Figure 5-1(b) is an example of the horizontal (top) and vertical (bottom) scan

waveforms on the SEM. We obtained these waveforms for a scan area consisting of 129

lines by 88 pixels per line at a pixel dwell time of 28 µs. The figure contains the last few

lines of one image frame followed by two full image frames separated by a 30 ms frame

reset time (the flat parts in the horizontal and vertical scans) . Both the horizontal

and vertical scans consist of sawtooth waveforms. The horizontal scan has many

repeated sawtooths in every image frame with each sawtooth waveform corresponding

to one linescan. The resolution in the top image is too low to distinguish between

the linescans. The vertical scan consists of one sawtooth waveform per image frame.

The total duration of the image frame was 304 ms excluding the frame reset time at

the start of every frame.

In Figures 5-1(c) and (d) we take a more detailed look at the horizontal lines-

cans of the first frame. Figure 5-1(c) shows the first few linescan waveforms, and

Figure 5-1(d) shows one linescan. The total duration of each linescan is 2.45 ms.

In these and the following figures, we will see that each linescan consists of three
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regions, which we will call the retrace spike, front porch, and trace regions, following

the terminology used for video scan signals. At the end of each linescan there is a 0.9

V voltage spike, lasting for 30 µs, before the scan waveform resets to the voltage at

the start of the line. This resetting corresponds to the electron beam retracing to its

horizontal starting position after every line. We can see these spikes at 0.1 and 2.5

ms in Figure 5-1(d). This voltage spike occurs because of ringing in the voltage of the

scan electronics as it resets at the end of each line. Following the voltage spike there is

a 70 µs ‘plateau’ (which we will call the front porch region) where the scan voltage is

relatively flat. This region allows the scan voltage to settle to its starting value after

the retrace spike and before the trace across the line on the sample begins. The front

porch is followed by the trace region where the incident electron beam actually scans

over the sample. This section of the scan waveform consists of a series of decreasing

voltage steps, with each step corresponding to one pixel on the scan line.

We can see these steps, along with the retrace spike and front porch regions

of the linescan, in greater detail in Figure 5-1(e). Each step had a size of 4 mV

and a time duration of 26 µs, measured at the valleys between each step. Since the

number of pixels in each line was 88, we would expect the total voltage swing for

one linescan to be 352 mV. This value is close to the observed swing of 380 mV in

one linescan. Further, the time duration of each step was close to the pixel dwell

time of 28 µs calculated from the frame time specified for the scan speed chosen in

the SEM software. Both these observations provide evidence for our assertion that

these voltage steps corresponded to the individual pixels on each line of the image.

We can also see that the steps are not completely flat; at the end of each pixel step

there was a transition period before the scan waveform voltage level reached the value

corresponding to the next pixel. This transition period was approximately 10 µs long

for the settings used in Figure 5-1(e) and was probably caused by the inherent speed

of the scan coil electronics. Due to the presence of this transition period, we observed

the discrete pixel steps for linescan waveforms corresponding to relatively long pixel

dwell times only. For pixel dwell times below ∼ 7.5 µs, we did not observe this
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discretization and the trace decreased continuously. Figure 5-1(f) is an example of

such a scan waveform at pixel dwell time of 440 ns. This difference between slow and

fast scans was important in the code we used to implement EC imaging, as we discuss

more extensively in Section 5.2.1.

5.1.2 Synchronizing SEM scan with oscilloscope frame cap-

ture

Having discussed the features of the SEM scan waveforms in Section 5.1.1, we will now

focus on how we used these features to synchronize the SEM scan with the collection

of SE detector signal on an oscilloscope. This synchronization would be a requirement

in any implementation of SE count imaging, since it provides a reference time axis

for segmentation of the continuous-time detector signal into pixels on the image.

Figure 5-2 is a schematic of our scan synchronization method. When we started

scanning the sample, the SEM computer sent the scan start signal to the SEM scan

coils. We outcoupled the signal from the SE detector as well as the SEM scan coil

voltage waveforms to two channels of an oscilloscope (2 GHz LeCroy WaveRunner

6200A) using BNC cables. We configured the data collection on the oscilloscope to

be triggered by the scan coil voltage channel and set the trigger voltage to be close

to the peak of the retrace spike present at the end of the first linescan in the frame.

This trigger voltage setting ensured that the oscilloscope began data collection on

all channels at the start of the image frame, thereby providing a common time axis

for both the SEM linescan waveform and the SE detector signal. There was some

variation in the exact time at which signal collection was triggered on the oscilloscope

due to noise in the linescan waveform signal. In Section 5.2.2 we will discuss how this

variation affected the data we collected and how we corrected for it in the SE count

imaging code.

We specified the total data collection time on the oscilloscope to be a few
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Figure 5-2: Scheme for oscilloscope synchronization. The scan start signal from the SEM
computer to the scan coils initiates the beam scan over the sample. We outcoupled both
the scan coil voltages and the SE detector signal onto our oscilloscope and set the trigger
voltage for data collection on all channels of the oscilloscope to be very close to the peak
of the retrace spike before each linescan. Therefore, this spike served as an absolute time
reference for all the collected data. Each acquisition frame consisted of the scan waveform
and the SE detector signal with their time axes referenced to the same retrace spike. We
used several such acquisition frames to form the final SE count image offline (dashed black
arrow).

ms larger than the image frame time for the area we were scanning to ensure that

the entire image frame was contained in the collection time. We will refer to the

SEM scan voltage signal and the SE detector signal collected over one such collection

time as an acquisition frame. The typical frames we imaged had a pixel resolution

of around 200 × 200 pixels, and we used a pixel dwell time of 440 ns for all data

acquisition. Therefore, the total acquisition frame time was on the order of 20 ms.

As discussed in Chapter 4, we found an oscilloscope sampling time of 10 ns to be

adequate for sampling the SE detector signal pulses. Over a total collection time of

20 ms, this sampling rate corresponded to 2 × 106 signal samples. This number is

close to the maximum number of samples that could be stored on our oscilloscope

per acquisition frame (4 × 106 samples). This limitation in the maximum number

of samples per acquisition frame limited the pixel resolution of the images we could
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capture.

We collected several acquisition frames from the same scan area to construct

SE count images of that area. We note that saving the data corresponding to each

acquisition frame on the oscilloscope took several seconds. We manually blanked the

incident electron beam during this time. In Section 5.5.1 we will discuss schemes for

live, online implementation of SE count imaging where the beam blanking can be

automated and which do not require an oscilloscope. Therefore, these schemes would

overcome both the limitations of long acquisition frame save times, as well as limited

acquisition frame sizes mentioned in the previous paragraph.

5.2 Analysis of acquisition frames

So far, we have discussed features of the SEM scan waveform and how we used these

features to synchronize the acquisition of SE detector data with the SEM scan on the

oscilloscope. The acquisition frames we collected contained the SEM linescan as well

as the detector signal referenced to a common time axis. The next step was to use the

acquisition frames to generate SE count images. In this section, we will describe the

MATLAB code we used to generate SE count images from these acquisition frames.

In the MATLAB code we addressed several challenges in order to generate SE

count images. First, we needed to find the number of lines and number of pixels per

line in the acquisition frames. We will describe how we used the linescan waveform

to determine these parameters in Section 5.2.1. Second, we needed to account for

slight variations in the triggering time on the oscilloscope due to noise in the linescan

waveform, which we will describe in Section 5.2.2. Finally, we needed to extract the

section of the SE detector signal that corresponded to the trace section of the linescan

where the incident beam was actually scanning over the sample. We will describe this

extraction in Section 5.2.3. With these challenges addressed, we counted the number

of SE pulses for every pixel in each acquisition frame. We will describe our counting
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algorithm in Section 5.2.4. The MATLAB code described in this section is reproduced

in Section D.4 of Appendix D.

5.2.1 Calculating image resolution from linescan waveforms

In our SE imaging code we used the linescan waveform to calculate the number of lines

and the number of pixel per line in the image. As we had discussed in Section 5.1.1,

each line in the horizontal scan was preceded by a retrace spike associated with the

resetting of the scan voltage. We can see these spikes in Figures 5-1(c), (d) and (e)

for a pixel dwell time of 28 µs and in 5-1(f) for a pixel dwell time of 440 ns. Since one

spike was associated with the end of one line, a count of the number of spikes was

also a count of the number of lines in the image. Therefore, in the SE count imaging

code, we used threshold discrimination to determine the number of spikes and hence

the number of scan lines in the scanned sample area.

We used a similar technique to calculate the number of pixels in every line.

As we had discussed in Section 5.1.1, each pixel step in the trace section of a slow

linescan was followed by a transition period during which the scan voltage transitioned

to the next pixel. In Figure 5-1(d) we can see the scan voltage during this transition

period had a minimum from which the voltage reached the next pixel voltage value

in 10 µs. We used a count of these minima to count the number of pixels for each

linescan. Discrete steps in the linescan corresponding to pixels were only present for

slow linescans, and we did not observe them for linescans that corresponded to a

pixel dwell time faster than 7.5 µs. This pixel dwell time was an order of magnitude

larger than the pixel dwell time of 440 ns we used to generate the SE count images.

Figure 5-1(f) shows the trace portion of the linescan sawtooth waveform for a pixel

dwell time of 440 ns, and we can see that it does not show discrete steps corresponding

to each pixel in the linescan. Therefore, to count the number of pixels in the linescan,

we acquired a slow linescan waveform (at pixel dwell time 28 µs) at the same image

pixel resolution. Since we were only interested in collecting the scan waveform and
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not the SE signal from the object, we collected this slow linescan with the incident

electron beam turned off to prevent unnecessary incident electron dose on the sample.

5.2.2 Aligning acquisition frames and finding linescan period

The next challenge we addressed in the SE count imaging code was temporal align-

ment of all the acquisition frames. Figure 5-3(a) shows the linescan waveforms for the

first few lines for the first (solid orange curve) and second (solid blue curve) acquisi-

tion frames captured on the oscilloscope during one imaging experiment. Note that in

this figure we added a vertical voltage offset to the scan waveform for the first acqui-

sition frame for ease of viewing. We can see that the two frames were misaligned by

a time duration corresponding to one linescan. As we had discussed in Section 5.1.2,

we set the trigger level on the oscilloscope to be close to the peak voltage of the spike

that followed each linescan. The misalignment in Figure 5-3(a) was caused by noise

in the linescan waveform. This noise caused the exact trigger level to be first reached

on different spikes for different frames. Each acquisition frame still had SE detector

signal and scan waveform referenced to the same time axis, but the misalignment

caused the time axis to differ for different frames. We ensured that this misalignment

between frames was small enough that the signal from the whole image frame was

still captured in the acquisition frame on the oscilloscope.

In the SE count imaging code, we decided to use the linescan waveform for the

first frame as the absolute reference to measure the misalignment of all other frames.

We used the one-dimensional cross-correlation between the linescans for first frame

and those for each of the succeeding frames to measure the misalignment between

that frame and the first frame. Figure 5-3(b) is the cross-correlation between the

linescans for the two acquisition frames from Figure 5-3(a). The cross-correlation of

two input signals is the product of the two signals as a function of a delay introduced

in one of the signals. As the delay changes, one signal ‘slides over’ the other, and the

cross-correlation magnitude depends on how similar the two signals are at that delay.
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Figure 5-3: Acquisition frame alignment and SE pulse extraction. (a) Linescans from two
acquisition frames at a pixel dwell time of 440 ns. The top linescan (orange) is misaligned
with the bottom linescan (blue) by one line. We added a vertical offset of 1.1 V to the orange
linescan for ease of viewing. (b) Cross-correlation of the two linescans in (a). The offset
between zero delay (indicated by the dashed black line) and the highest cross-correlation
peak (indicated by the dotted red line) equals the misalignment of 118.4 µs between the two
linescans. (c) Extraction of useful SE signal, i.e., the sections of the raw SE signal (yellow)
corresponding to the trace section of the linescans, during which the incident beam scans
over the sample (orange). We added a vertical offset of 6 V to the raw SE detector signal
for ease of viewing. (d) Counting SE pulses. The dotted black square waveform shows
successive image pixels, with even pixels assigned a value of 0 and odd pixels a value of
5. The first of the SE pulses (solid black) is within an odd pixel. However, although the
second pulse originates in an even pixel, most of its intensity is present in the next (odd)
pixel.
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Since the two linescan waveforms were periodic, the cross-correlation showed periodic

peaks. Figure 5-3(b) shows a few of these peaks around zero delay. The highest

of these peaks occurred for a delay at which the two linescans were exactly aligned

with each other. In Figure 5-3(b), we have indicated zero delay with a dashed black

vertical line. The delay for the highest peak was 118.4 µs, indicated by the dotted red

vertical line. The lower bound on the alignment precision of this technique was equal

to the sampling time of 10 ns. Using this technique we extracted the misalignment

for the linescan in each acquisition frame and delayed or advanced the scan waveform

and the SE detector signal for that frame by this misalignment to ensure that all

frames were aligned to the same time axis.

An additional advantage of calculating the cross-correlation was that the gap

between successive peaks of the autocorrelation gave us the periodicity of the linescan

waveform. We averaged the values of the gap between the 20 highest cross-correlation

peaks to get the value of the linescan period. This period would have been much

more difficult to extract from the waveform directly due to noise on the signal, and

the cross-correlation was a much more accurate way to measure the periodicity. For

the linescans shown in Figure 5-3(a), we measured this period to be 118.4 µs.

5.2.3 Finding linescan duration and extracting SE signal dur-

ing scanning

The final step before counting the number of SE pulses for each image pixel was

determining the start and end time of the trace section of each linescan in every

acquisition frame. This step was important because, in addition to the expected

signal pulses during the trace section of the linescan, the SE detector also recorded

signal pulses during the retrace spike and front porch periods between successive

trace sections. Figure 5-3(c) shows the raw signal from the in-chamber SE detector

(in yellow) and the scan waveform (in blue). Note that in this figure we added an

offset of 6 V to the raw SE signal for ease of viewing. We can see that there are signal
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pulses during the spike and front porch sections of the linescan, in addition to the

pulses in the trace region. These signal pulses originated from the sample material

at the rest position of the incident electron beam before it started the next linescan.

Since this signal does not correspond to the sample region being imaged, it should

not be used to generate the image. By finding the start and end time of the trace

sections in all the linescans, we can exclude this signal from our analysis and count

only the pulses that were recorded when the beam was scanning. Further, having

determined the number of pixels per line as described in the previous section, we can

use these start and end times as references to segment the signal from one linescan

into pixels.

We found the start and end time of the trace section of first linescan in the

first acquisition frame manually. With all the acquisition frames aligned and knowing

the period of the linescan waveform (as discussed in the previous section), the SE

count code automatically determined the start and end times of the trace sections

in all other linescans in all frames. Once we had determined these times we could

determine which sections of the SE signal were acquired during the trace sections

and ignore the rest of the detector signal. Figure 5-3(c) shows the sections of the

in-chamber detector signal acquired during the trace section in red (without any

offset). These sections line up with the trace section of the linescan waveform. After

extracting these sections, we divided the trace period into pixels using the extracted

number of pixels as described in the previous section. With this segmentation done,

our code was ready to count the number of pulses in each pixel.

5.2.4 Counting SE pulses

We generated SE count images by counting the number of SE pulses in each pixel in

our code. As described in Chapter 4 Section 4.2.2, we used contrast and brightness

settings so that most of the SE pulses were saturated at a voltage of 5.6 V. This

saturation enabled us to use a simple threshold in our code to filter out low voltage
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noise pulses and count SE pulses originating from the sample. In the SE code we set

this threshold voltage to be 1 V.

Figure 5-3(d) shows an example of the in-chamber detector signal pulses (solid

black). In this figure, we have also plotted a square waveform corresponding to

successive pixels that the code segmented the trace section of the linescan into (dotted

black curve), with odd pixel numbers arbitrarily assigned a value of 5 and even pixels

a value of 0 for ease of viewing. We can see that the first SE detector pulse originates

in one of the odd pixels and is fully contained within it. The SE imaging code counted

one SE in that pixel for this frame. There were no SE pulses for the next 6 pixels. The

next SE pulse originated close to the end of an even pixel, but most of its intensity

was present in the next (odd) pixel. We assigned this pulse to the even pixel it

originated in. The conventional imaging scheme used by the SEM computer would

have accounted most of its intensity in the next, odd pixel, leading to inaccuracy in

the displayed intensity of that pixel. This ‘spillover’ effect has been discussed in the

context of STEM imaging [84] and is one of the reasons we expect SE count images

to be more accurate that conventional SEM images.

5.3 Results of SE count imaging

Having described our MATLAB imaging code, we can now discuss the results of

applying this code to the acquisition frames collected on our SEM. In this section,

we will describe the SE count images we generated using the oscilloscope acquisition

frames on one or both SE detectors. We acquired our frames at I = 2 pA, pixel dwell

time τ = 440 ns, incident beam energy 10 keV, using the smallest (7.5 µm) condenser

aperture, a working distance of 13 mm, an image brightness of 51, and an image

contrast of 52. We chose the beam current and dwell time settings to ensure that the

number of SEs per pixel was low enough that we could resolve the individual pulses.

In Section 4.1.3 of Chapter 4, we noted that overlap between pulses introduced errors

in the SE counting for I > 5.5 pA. Therefore, we chose a current much lower than this
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value. Using Equation (4.1), the number of incident electron per pixel N = 5.5 at the

settings we used. We saw in Chapter 4 that the DQEs of the in-chamber and in-lens

detectors at this working distance were 0.16 and 0.32 respectively. Assuming an SE

yield of 0.3, we get NSE = 0.26 for the in-chamber detector and NSE = 0.68 for the in-

lens detector using Equation (4.2). Therefore, we expect most acquisition frames to

have fewer than 2 SEs in one pixel for both detectors. From Chapter 4 Section 4.2.1,

we also know that the average width of the SE pulse is 180 ns. Therefore, even if some

of the pixels record 2 SE pulses, we expect to be able to resolve them. To generate

the SE count images reported in this section, we recorded 32 acquisition frames on

the oscilloscope and summed the SE counts for all pixels over these frames.

We will first show the SE count images generated using just the in-chamber

detector in Section 5.3.1. Then, in Section 5.3.2, we will show the the SE count image

generated from combining the signal from the in-lens and in-chamber detectors and

demonstrate that the contrast and SNR are both higher for the SE count images than

conventional images. We will also analyze the statistics of the SE emission distribution

extracted from these images and measure their deviation from ideal Poisson statistics

in Section 5.3.3.

5.3.1 SE count imaging with in-chamber detector

Figure 5-4(a) is an SE count image of a freestanding copper mesh with a period of 120

µm, generated using the SE signal on the in-chamber detector. The pixel resolution

of this image is 262× 188. The colorbar in Figure 5-4(a) indicates the number of SEs

for a given pixel greyscale level. The maximum number of SEs for any pixel in the

image was 26 (summed over all 32 acquisition frames), and the mean number of SEs

per pixel in the image was 3.13.

Figure 5-4(b) is an image of the same sample generated by finding the average

signal for every pixel using the same acquisition frame dataset as 5-4(a). This image

represents a conventional SEM image; we checked that the statistics of this image
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Figure 5-4: SE count imaging with in-chamber SE detector. (a) SE count image of a 120
µm period copper mesh suspended over vacuum. We collected the 32 acquisition frames
used to generate this image at an incident beam current of 2 pA, energy of 10 keV, and a
pixel dwell time of 440 ns. The image pixel resolution is 262 × 188. The mean SE count
per pixel in the image was 3.13. (b) Conventional image of the same copper mesh grating
under the same imaging conditions as (a). We scaled this image so that it has the same
mean pixel intensity as the mean SE count in (a). The contrast between the copper mesh
and the background vacuum appears to be lower in this image than in (a).

were close to those of an image of this sample generated by the SEM computer. We

scaled the pixel intensities in this image so that the mean intensity in this image was

equal to the mean SE count in Figure 5-4(a), 3.13. We can see that the contrast of

the copper mesh compared to the background vacuum appears to be lower than the

contrast in the SE count image. In Section 5.3.2 we will quantitatively analyze the

contrast and SNR of the SE count and conventional images generated by combining

the counts from both SE detectors. We will show that both the contrast and the SNR

for the SE count images was higher than for the conventional images.

5.3.2 SE count imaging with in-chamber and in-lens detec-

tors

Figure 5-5(a) is an SE count image obtained by adding the number of SE counts from

the in-chamber and in-lens detectors on the SEM, using the same imaging conditions

as in Section 5.3.1. The mean number of SE counts from just the in-lens detector

signal was 5.05, compared to 3.13 from the in-chamber detector image in Figure 5-
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Figure 5-5 (previous page): Statistics of SE count imaging. (a) SE count image generated by
adding the counts from the in-chamber and in-lens detectors over all 32 acquisition frames.
The mean SE count in the image is 8.18. (b) Conventional image scaled to the same mean
SE count, showing lower contrast between the copper mesh and background than (a). (c)
Histogram of the SE number (for the SE count image, unfilled circles) and the pixel intensity
(for the conventional image, solid line). The histogram shows two peaks, corresponding to
the darker background pixels and the brighter copper mesh pixels. The gap between the dark
and bright peaks is higher for the SE count image than the conventional image, indicating
that the SE count image has higher contrast. (d) Magnified view of the peak corresponding
to the copper mesh pixels, again showing that the mean of the peak in the SE count image
histogram is higher than the mean in the conventional image histogram. (e) Contrast K
(refer text for definition) as a function of mean SE count for the SE count (unfilled circles)
and conventional (crosses) images. We varied the mean SE count by varying the number
of acquisition frames used to generate the final images. The contrast stays constant as the
mean SE count increases and is always higher for the SE count image (0.95) compared to
the conventional image (0.64). (f) SNR (refer text for definition) as a function of the mean
SE count for the SE count and conventional images. The SNR increases for both images
with mean SE count and is always ∼ 30% higher for the SE count image. The SNR for the
SE count image is also more linear than the SNR for the conventional image.

4(a). The higher mean SE count again demonstrates the higher DQE of the in-lens

detector at this working distance, as we had discussed in Chapter 4 Section 4.1.3.

Figure 5-5(b) is a conventional image of the same sample. Just as in Section 5.3.1,

we scaled this image so that its mean was equal to the mean of the SE count image in

Figure 5-5(a). Again, the contrast of the copper mesh compared to the background

appears to be lower in the conventional image than in the SE count image.

In Figure 5-5(c), we plot the image histogram of the SE count image (unfilled

circles) and the conventional image (solid curve). In Figure 5-5(d) we plot the same

histogram scaled to make viewing of the counts at higher intensities easier. Note

that in case of the SE count histogram, the horizontal axis represents the number of

SEs detected at a particular pixel, while for the conventional image, the horizontal

axis represents a scaled pixel intensity. Both histograms show two prominent peaks:

at low intensities due to the background (vacuum) pixels, and at higher intensities

due to the copper mesh. We used an SE count/pixel intensity of 7 as a threshold

between these two types of pixels, since both histograms had local minima at this

value. There are two important features in these histograms. First, the peak in the
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SE count histogram due to the copper mesh is at higher counts than the peak for

the conventional histogram. The mean SE count for the pixels containing the copper

mesh is 21.29, compared to a mean intensity of 16.17 in the corresponding pixels

in the conventional image. Second, the mean SE counts in the pixels representing

vacuum is 0.52 in the SE count image, compared to a mean intensity of 3.52 in the

conventional image. Therefore, the mean level of the background pixels is higher in

the conventional image than in the SE count image.

We will now compare SE count imaging to conventional imaging using the

image quality metrics we had introduced in Chapter 3. In that chapter, we discussed

three metrics: contrast, SNR, and MARE. While contrast and SNR can be evaluated

for a single image, to calculate MARE we need a ‘ground truth’ image with which

to compare the SE count and conventional images we generated. Using a long-pixel-

dwell-time conventional SEM image of the sample as the ground truth would bias the

results in favor of the generated conventional image since they would both use the

same method to assign pixel intensities. Therefore, in the absence of a ground truth,

we will use the contrast and SNR to compare the two images.

5.3.2.1 Comparison of contrast for SE count and conventional imaging

As we had stated in Chapter 3 Section 3.1.1, we can calculate the Michelson contrast

K of the sample pixels against the background pixels, as follows:

K =
NSE,sample −NSE,background

NSE,sample +NSE,background

Here, NSE,sample is the mean number of SEs in the sample pixels, and NSE,background is

the mean number of SEs in the background pixels. In the SE count and conventional

images we have generated, we can use the pixels that represent the copper grid as

the sample and the pixels that represent vacuum as the background. Using the mean

values of the histogram peaks for these two types of pixels in the equation for contrast,

we get K = 0.95 for the SE count image and K = 0.64 for the conventional image.
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Hence, the contrast between sample and background pixels was almost 50% higher

for the counting image than the conventional image.

Figure 5-5(e) shows the contrast in the SE count image (unfilled circles) and

the conventional image (crosses) as a function of the mean SE count in the image.

We varied the mean SE count by varying the number of acquisition frames used

to generate the final image; the mean SE count varied linearly with the number of

acquisition frames. We can see that the contrast remains constant for both the SE

count image and the conventional image as the acquisition frames build up to form

the final image. This constant behavior of the contrast indicates that we can choose

the incident electron dose we want to work with independent of contrast. In the next

section, we will consider the SNR, which provides another way to quantify the image

quality with respect to the incident electron dose.

5.3.2.2 Comparison of signal-to-noise-ratio for SE count and conventional

imaging

A second metric for the quality of the SE count and conventional images is the SNR.

In the SNR measure we introduced in Chapter 3 (based on work by Thong et al. [116]),

we estimated the signal and noise by considering the image autocorrelation near zero

offset. Figure 5-5(f) is a plot of the SNR for the SE count (unfilled circles) and

conventional image (crosses) as a function of the mean SE count. We can see that

for both images the SNR increases as a function of the mean SE count. Further, the

SNR for the SE count image is always ∼ 30% higher than the SNR for conventional

imaging. For example, an SNR of 8 is first achieved for SE count imaging at a mean

SE count of 5.38, while for conventional imaging it is achieved at an SE count of 7.68.

Since the mean SE count scales linearly with the incident beam current (as discussed

in Chapter 4), this difference represents an incident electron dose reduction of 30%

due to SE count imaging for the same SNR. We also note that the conventional image

SNR shows some non-linearity in the high-mean SE count region, while the SE count
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SNR is much more linear for the entire range of mean SE count. Such non-linearity

in the SNR of conventional images was also observed by Yamada et al. [95, 97].

Taken together, our results show that SE count imaging can lead to signifi-

cant reduction of the incident electron dose for the same image quality, compared to

conventional imaging. We considered two metrics for the image quality: contrast and

SNR. Both metrics were higher for the SE count image compared to the conventional

image. Although we did not implement a live SE count imaging scheme, the live

implementation scheme we will outline in Section 5.5.1 would achieve these benefits

of SE count imaging.

5.3.3 Probability distribution of SEs

In the previous section, we compared the mean SE signal of image pixels corresponding

to the sample (copper mesh) with image pixels corresponding to the background

(vacuum) to obtain the contrast. Segmenting the pixels in this way also allowed us

to analyze the statistics of the SE distribution and quantify its deviations from an

ideal Poisson process. We recall from Chapter 1 Section 1.3.1 that this question has

motivated a lot of work into SE counting. Oatley, Frank, Baumann and Reimer, and

Sakakibara have all reported varying degrees of deviation from ideal Poisson statistics

in the SE emission distribution [21, 28, 87, 89, 90].

Figure 5-6(a) is a plot of the relative count of pixels that represent the back-

ground vacuum (unfilled blue circles) as a function of the number of SEs in those

pixels. In this plot, we have normalized the counts so that they sum to 1 over the

different numbers of SEs. Therefore, this plot can be thought of as a probability

distribution of the number of SEs. As we had noted in Section 5.3.2, the mean SE

counts for these background pixels was 0.52. To visualize the deviation from an ideal

Poisson process, we have also plotted the probabilities for a Poisson process with the

same mean (orange crosses). We can see that the probability of 0 SEs is higher and

that of 1 SE is lower for the distribution we extracted from our data than for the ideal
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Figure 5-6: Probability distribution of SE emission. (a) Distribution of the number of SEs
extracted from the background (vacuum) pixels in Figure 5-5(a) (unfilled blue circles). The
mean SE count for this distribution is 0.52 and the variance was 0.74. The orange crosses
indicate the probabilities of a Poisson process with the same mean SE count. (b) Same as
(a) with the y-axis on a log scale. The extracted SE distribution deviates significantly from
an ideal Poisson distribution beyond 3 SEs, reflecting its larger variance. (c) Distribution of
the number of SEs extracted from the sample (copper mesh) pixels in Figure 5-5(a) (unfilled
blue circles). The mean SE count for this distribution is 21.29 and the variance was 29.8.
The orange crosses indicate the probabilities of a Poisson process with the same mean SE
count. The Poisson distribution has a higher and narrower peak than the extracted SE
distribution. (d) Same as (c) with the y-axis on a log scale. The extracted SE distribution
deviates significantly from the ideal Poisson distribution above 30 SEs and below 14 SEs,
reflecting its larger variance.
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distribution. Figure 5-6(b), which is the same as 5-6(a) but with the y-axis on a log

scale, shows that at higher SE numbers the extracted probabilities are much higher

than the probabilities from the Poisson distribution. From these plots, we would ex-

pect the variance of the extracted probabilities to be higher than the variance for an

ideal Poisson process, which should be equal to 0.52. The variance of the extracted

distribution is 0.74, confirming this intuition. From these numbers, the B-factor [21]

of this process is 0.42.

We performed a similar calculation for the pixels representing the copper mesh.

Figure 5-6(c) is a plot of the relative number of copper mesh pixels (unfilled blue

circles) as a function of the number of SEs in those pixels. Figure 5-6(d) is the same

plot with the y-axis on a log scale. Just as in Figure 5-6(a) and (b), we scaled the

pixel numbers so that they summed to 1. we have also plotted the probabilities of an

ideal Poisson process with the same mean as the extracted distribution (21.29) using

orange crosses. From these plots we can see that the extracted distribution was wider

than an ideal Poisson distribution. The variance of the extracted distribution was

29.8. This variance value gave us a B-factor of 0.4, which is very close to the B-factor

we had extracted from the vacuum pixel distribution. We note that this B-factor

is about 2 times larger than that reported by Frank for copper at 10 keV [21]. We

expect this deviation to be caused by small non-uniformities in the sample, as well

as the enhancement of SE yield at the edges of the copper grid.

In appendix C, we will show that we can fit the extracted SE distributions

much more accurately with a type of compound Poisson distribution called a Ney-

man type-A distribution. Such compound Poisson distributions, consisting of a sum

of k Poisson random variables (where k is itself a Poisson random variable), have

been used previously to model the emission of SEs [21, 29]. Our extracted SE dis-

tributions provide further experimental evidence towards their applicability. This

preliminary analysis indicates that our method of SE count imaging is a promising

way of characterizing the statistics of SE emission.
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5.4 Offline conditional re-illumination

We have described our implementation of offline SE count imaging and showed that

SE count images can achieve the same SNR as conventional images at a 30% lower

incident electron dose. In this section, we will use the same acquisition frame dataset

to evaluate if the SEM conditional re-illumination schemes we had outlined in Chap-

ter 3 can further reduce this incident electron dose. We recall that conditional re-

illumination schemes are based on trading off some error in the image for reduced

incident electron dose. We will evaluate this tradeoff for the two conditional re-

illumination schemes we had described: M -limited schemes, where we stop illuminat-

ing all pixels after a pre-defined maximum number of illuminations, and NSE-limited

schemes, where we stop illuminating a given pixel if the number of SEs from it reaches

a pre-defined threshold NSE,T. In M -limited schemes the incident electron dose is con-

stant for all pixels, while in NSE schemes it varies from pixel to pixel.

In Section 5.3 of this chapter, we used contrast and SNR to compare SE count

and conventional SEM images. We did not use MARE to compare the images because

we did not have a ‘ground truth’ image. In this section, we will use the SNR and

MARE. Due to the low number of background counts in the SE count images in

Figures 5-4 and 5-5 we found that the contrast was close to 1 for both re-illumination

schemes and was not a very useful metric to compare them. However, now that we

have generated an SE count image, we can use it as the ground truth to compare

SE count images with conditional re-illumination. The implementation of any re-

illumination scheme on the same acquisition frame dataset would introduce errors

in the number of SEs in some of the image pixels, and the SE count image from

Figure 5-5(a), generated using the SE counts from both detectors and all acquisition

frames, is a good reference ground truth with which to compare the re-illumination

images.

We will use the relative incident dose to compare the incident electron dose

for the ground truth and re-illumination images. The relative incident dose is the
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ratio of the mean electron dose per pixel for a particular re-illumination scheme to

the maximum possible electron dose per pixel. The maximum possible dose per pixel

is achieved when we use all 32 acquisition frames to generate the SE count image; in

this case the relative incident dose is 1. Any re-illumination technique would use at

most 32 frames for generating the SE count image. Therefore, the relative incident

dose for the re-illumination schemes would be less than or equal to 1. Our aim in

this section will be to calculate MARE and SNR as a function of the relative incident

dose for the two re-illumination schemes.

5.4.1 Images from conditional re-illumination schemes

Figure 5-7 shows the results of conditional re-illumination experiments on the same

acquisition frames as Figures 5-4 and 5-5. Figure 5-7(a) is the same image as Figure 5-

5(a) and will be the ground truth image. This image has an SNR of 11.2 and a relative

incident dose of 1, meaning that all pixels receive the maximum possible incident

electron dose.

Figure 5-7(b) is an M -limited conditional re-illumination image with M = 14.

We generated this image by limiting M to 14 (instead of 32 as in Figure 5-7(a)) and

scaling the SE counts for every pixel by 32/M so that we can compare it to the ground

truth. This image has an SNR of 5.73, a MARE of 0.21, and a relative incident dose

of 0.44. Therefore, we have reduced the incident electron dose by 56% at the cost of

reducing SNR by a factor of 2.

Figure 5-7(c) is an NSE-limited conditional re-illumination image with NSE,T =

8. As discussed in Section 5.3, the mean number of SEs per pixel per frame was less

than 1, and most pixels received either 1 or zero SEs in every frame. Once the number

of SEs for a given pixel had reached 8, we recorded the number of acquisition frames

it took to reach 8 SEs for that pixel and did not consider SEs on that pixel in the

following frames. As a result, we made a map of the number of acquisition frames

it took to reach 8 SEs for every pixel. For the background, vacuum pixels, which

163



Figure 5-7: SE count imaging with conditional re-illumination. (a) SE count image using
SE counts from both detectors from all 32 acquisition frames. Same image as Figure 5-5(a).
The SNR for this image is 11.2 and the MARE is 0 at a relative electron dose of 1 (i.e.,
all pixels received the maximum possible dose). We used this image as the ground truth.
(b) SE count image generated using M -limited conditional re-illumination, with M = 14.
This image has an SNR of 5.73 and a MARE of 0.21, at a relative dose of 0.44. (c) SE
count image generated using NSE-limited conditional re-illumination, with NSE,T = 8. This
image has an SNR of 5.68 and a MARE of 0.18, at a relative dose of 0.79.
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typically had between zero to 5 SEs over all frames (see Figure 5-5(c)), this number

was 32. Then, we scaled each pixel value by the ratio of 32 to the number of frames

it had taken to reach 8 SEs to get the final SE count image. The SNR for this image

was 5.68 (close to the value for Figure 5-7(b)), the MARE was 0.18, and the relative

incident dose was 0.79. Therefore, in this image we have reduced the incident electron

dose by 21% at the cost of reducing SNR by a factor of 2.

From the colorbar in 5-7(c), we note that a few pixels had many more counts

than the corresponding pixels in the ground truth image. There was a (small) prob-

ability that a given pixel received more than 1 SE in a given frame, and for a small

number of pixels this event happened in multiple acquisition frames and the number

of SEs reached 8 in relatively few frames. Consequently the scaled SE counts on these

pixels were larger than 60 in some cases (the maximum pixel SE count in the ground

truth image was 45).

We can see that the tradeoff between SNR and relative incident dose is worse

for the NSE-limited scheme that in the M -limited scheme, since the relative incident

dose in that scheme was lower (0.44 for M -limited vs 0.79 for NSE-limited) for the

same SNR of about 5.7. However, the NSE-limited scheme produced a lower MARE

than the M -limited scheme (0.21 for M -limited vs 0.18 for NSE-limited) for the same

SNR. In the next section we will take a more detailed look at the SNR and MARE

as functions of the relative incident dose for these schemes.

5.4.2 Analysis of image quality and relative incident dose for

conditional re-illumination schemes

In Figure 5-8 we compare the SNR and MARE for the two conditional re-illumination

schemes as a function of the relative incident dose. For the M -limited scheme we

varied the relative incident dose by varying the number of acquisition frames used to

generate the final image (i.e., M). For the NSE-limited scheme we varied the relative
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Figure 5-8: Comparison of conditional re-illumination schemes. (a) SNR as a function
of the relative electron dose for M -limited and NSE-limited conditional re-illumination.
The M -limited scheme shows higher SNR at the same relative dose than the NSE-limited
scheme. (b) MARE as a function of the relative electron dose for M -limited and NSE-
limited conditional re-illumination. The M -limited scheme shows lower MARE at the same
relative dose than the NSE-limited scheme. (c) SNR as a function of the relative electron
dose on the sample pixels for M -limited and NSE-limited conditional re-illumination. The
SNR for both schemes is almost equal, with the NSE-limited scheme showing slightly higher
SNR for relative dose on sample below 0.3. (d) MARE as a function of the relative electron
dose on the sample pixels for M -limited and NSE-limited conditional re-illumination. The
NSE-limited scheme showed slightly lower MARE than the M -limited scheme for the same
relative dose on the sample.

166



incident dose by varying the threshold number of SEs above which counts from further

acquisition frames were not considered (i.e., NSE,T). From Figure 5-8(a), we can see

that the SNR drops much more rapidly for the NSE-limited scheme as we lower the

relative incident dose than the SNR for the M -limited scheme. Similarly, in Figure 5-

8(b) we can see that the MARE for the M -limited scheme is always lower than the

MARE for the NSE-limited scheme. Both these plots indicate that the simpler M -

limited scheme gives a better tradeoff of SNR and MARE vs relative incident dose

than the more complicated NSE-limited scheme.

So far, we have considered the relative incident dose averaged over the entire

scan region. A lot of the scan pixels generated very few SEs because they represented

the background vacuum. These pixels made a big contribution to the relative incident

dose for the NSE-limited re-illumination scheme. However, the high dose over these

pixels did not correspond to actual sample damage. Therefore, it makes sense to limit

our analysis of the relative dose to just the pixels representing the sample (copper

mesh). For M -limited conditional re-illumination the relative incident dose will be

unchanged because it is the same over all pixels. However, for NSE-limited conditional

re-illumination the relative dose will be much lower because we will have removed

the background pixels and would only consider the higher SE yield sample pixels.

Figure 5-8(a) shows that when we plot the SNR as a function of the relative dose

on sample pixels only, the SNR for both schemes is almost identical as a function of

the relative incident dose on the sample. In fact, at low values of SNR, the relative

incident dose for the NSE-limited scheme is slightly lower than that for the M -limited

scheme. For example, the relative dose for the M -limited scheme is 0.19 at an SNR

of 2.61 while the relative dose for the NSE-limited scheme is 0.14 (i.e., 26% lower) at

an SNR of 2.75. Figure 5-8(b) shows that the MARE for the NSE-limited scheme is

also lower than that for the M -limited scheme as a function of the relative incident

dose on the sample. For example, at a relative incident dose of 0.19, the MARE is

0.37 for the M -limited scheme and 0.29 for the NSE-limited scheme, a reduction of

22%. We can see that the NSE-limited scheme offers a significant reduction in dose
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(81% in this case) at the cost of a moderate MARE of 0.29.

Together, these plots show that when dose on the high-SE-yield parts of the

sample is important, the two re-illumination schemes perform comparably, with the

NSE-limited scheme enabling lower dose at low SNRs. If the dose over the entire

illumination region, including the low-contrast parts of the sample, is important, the

M -limited scheme outperforms the NSE-limited scheme. Depending on which part of

the sample and image quality metric is more important for the type of sample we are

imaging, we could choose one or the other of these re-illumination schemes.

5.5 Schemes for online electron counting and con-

ditional re-illumination

In sections 5.2, 5.3 and 5.4, we implemented offline SE counting and conditional re-

illumination using a 32-acquisition-frame dataset that we acquired by synchronizing

the collection of SE detector signal and the SEM scan function on an oscilloscope.

Using this dataset we evaluated the reduction in incident dose in SE count imaging

compared to conventional imaging at the same image quality, and compared the image

quality obtained from the two conditional re-illumination schemes at reduced relative

incident doses. However, we cannot use the imaging setup shown in Figure 5-2 to

realize this dose reduction in practice because the scanning of the beam over the

sample was not turned off automatically between acquisition frames. Saving each

acquisition frame on the oscilloscope took a few seconds, and the beam was scanning

over the sample for some part of this time before we turned it off manually. Therefore,

the sample was exposed to the electron beam between acquisition frame collections

on the oscilloscope. This additional electron dose offset any reduction in dose we

might have obtained with SE count imaging.

As we had discussed in Chapter 1 Section 1.3.1, Yamada and co-workers [93–

97] implemented live SE count imaging in the early 1990s. Their implementation
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consisted of filters, pulse counting circuits, and registers to store the pulse counts. The

data storing and readout was carefully synchronized with the SEM scan waveforms.

Although this implementation was fast, it required the design and implementation of

complicated circuitry as we discussed in Chapter 4. With the availability of cheap,

high-speed computation, we believe that most of the synchronization requirements

can be incorporated into the acquisition frame dataset processing code.

In Chapter 4, we also described how SE count imaging could be implemented

using image histograms. Such an implementation would be live and not require any

external hardware. From the known positions of the quantized SE histogram peaks,

we could assign the image pixels an SE count number based on their histogram

brightness level. However, as discussed in Chapter 4, this technique would lead to

some errors in the SE count assignment because of the overlap between successive

SE count histogram peaks, which is caused by the spread in width of the SE pulses

(see Figure 4-6 in Chapter 4). However, the probability of making such errors would

be known, and the SE count assignment algorithm could be designed to minimize

it. Such histogram-based SE count imaging could be used to monitor detector DQEs

and image SNRs for optimizing the imaging conditions on the SEM but may not be

suitable for high-SNR SEM imaging.

Ideally, we would want each imaging frame (corresponding to the beam scan-

ning over the sample) on the SEM to correspond to an acquisition frame in the dataset.

Therefore, the ideal workflow would be to blank the beam while an acquisition frame

is being recorded by the oscilloscope, and unblank the beam when the oscilloscope is

ready to receive the next frame. This blanking would need to be synchronized with

the SEM scan waveforms so that each of the acquisition frames begins from the first

line of the scanned area. In this section, we will discuss schemes to implement live,

online SE counting and conditional re-illumination that achieve this workflow. The

schemes we will propose are enabled by the use of a beam blanker in the SEM. For the

live SE count scheme the built-in beam blanker on the SEM is fast enough, while for

conditional re-illumination we need ns-timescale beam blanking to allow the electron
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beam to be blanked over any desired pixel in the scan area.

5.5.1 Scheme for online SE count imaging

Our scheme for live SE count imaging is shown in Figure 5-9(a). The hardware re-

quired is the same as the offline SE imaging scheme we implemented in this chapter,

shown in Figure 5-2, with the addition of a beam blanker in the SEM column. At

the start of the imaging process, the SEM computer sends a scan start signal to the

SEM scan coils to start the first frame. The oscilloscope (as discussed in Chapter 4,

the required oscilloscope bandwidth is 100 MHz) captures the scan waveform and the

synchronized SE detector signal pulses. The only addition in this scheme compared

to the one we have implemented in this chapter would be a beam blanking signal

sent from the SEM scan computer to the beam blanker after every acquisition frame.

From our study of the scan waveform as discussed in Section 5.1.1, we know the total

acquisition frame time and the frame reset time for a given image resolution. There-

fore, the scan start signal from the SEM computer, with an added delay equal to

the acquisition frame time, can serve as the blanking signal the beam blanker. This

signal is shown by the green arrow in Figure 5-9(a). This delay could be introduced

using a simple delay line generator or a comparator circuit. On receiving this signal,

the beam blanker blanks the SEM before the linescans for the next frame can be-

gin, thereby protecting the sample from additional electron dose while the previous

acquisition frame is being saved. As we had described in Section 5.1.2, noise in the

scan signal can lead to variation in which voltage spike triggers data collection on the

oscilloscope. With the trigger voltage set precisely, we observed that this uncertainty

was less than 10 lines, which corresponds to a time delay of ∼ 1 ms. Since the frame

reset time is around 30 ms depending on the pixel dwell time and scan area size,

we have sufficient time to send the blanking signal even with possible delays due to

noise. The time taken to save an acquisition frame on our oscilloscope was constant

for a fixed sampling time and frame size. For example, for the frame parameters in

Section 5.3, the time to save was around 5 s. Since we know when scanning began
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Figure 5-9: Schemes for live SE counting and conditional re-illumination. (a) Live SE
counting scheme. Solid black arrows indicate online steps, and dashed black arrows indi-
cate offline steps. The scan start signal from the SEM computer, with a delay equal to
the acquisition frame time, activates the beam blanker (green arrow). After the frame is
acquired on the oscilloscope, the SEM computer sends an unblanking signal (red arrow) to
the beam blanker before the start of the next frame. After all frames have been acquired,
the SE count image can be generated on the SEM computer offline. (b) Conditional re-
illumination scheme. Now the transfer of acquisition frames and generation of SE count
images has to be performed online. From the SE count image the SEM computer generates
a reillumination waveform which is sent to the beam blanker to enable blanking of the beam
over desired pixels.
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and the frame times, the SEM computer already has an internal clock synchronized

with the scanning frames. Therefore, after the time to save the previous frame has

elapsed, the SEM computer sends an unblanking ‘frame saved’ signal (shown by the

red arrow in Figure 5-9(a)) to the beam blanker before the start of the next scan

frame. The process repeats for capturing the desired number of acquisition frames.

After all the acquisition frames have been collected, the frames are transferred to the

SEM computer and the computer processes the frames to generate the final SE count

image. These offline processes are indicated with dashed arrows in Figure 5-9(a).

Alternatively, they can be brought online and the signal to unblank the beam (indi-

cated in red in Figure 5-9(a)) can be sent after the acquisition frames are transferred

to the computer and the count image is generated.

The major advantage of this scheme over Yamada’s live SE counting scheme is

that we have captured all the fast timing and processing complexity in the SE count

imaging code instead of needing to implement it in hardware circuits as in Yamada’s

work. The only hardware timing signal is the one sent to the beam blanker after

every acquisition frame. Since each frame typically lasts several tens to hundreds

of ms depending on the image size, we do not need any high-speed electronics to

implement this signal. As we discussed in the previous paragraph, we need to blank

the beam during the frame reset time of 30 ms after the completion of one imaging

frame before the next one can begin. The electrostatic beam blanker already built-in

the SEM and used for freezing the SEM scan is sufficiently fast to blank the beam

during this time. The resonant frequency of the build-in blanker on our SEM was

around 10 kHz, and the blanker did not blank the beam effectively above 20 kHz.

This speed corresponds to a blanking time of about 50 µs, which is much lesser

than the frame reset time. Therefore, such a blanker would be good enough for this

implementation of live SE count imaging.

The major bottleneck in terms of speed of imaging in this scheme is the saving

of each acquisition frame on the oscilloscope. Acquisition of the same 32 frame dataset

at a speed of 5 seconds per frame would take about 3 minutes. If we have access to the
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datastream from the SEM to the SEM computer, which is what the SEM computer

would normally use to generate live images, we can take out the oscilloscope entirely

from our scheme and use just the computer to create SE counting images. In this

case, the SE counting scheme would be truly live, since we would just be processing

the same data that the computer would have used anyway to display live images.

However, getting access to this datastream may not be straightforward depending on

the SEM imaging software, in which case an oscilloscope would be needed to outcouple

the detector signal and scan waveform.

The oscilloscope also limits the maximum acquisition frame size. For a 512×

384 pixel image, we would need to save 8×106 samples per channel for a sampling time

of 10 ns. This number is two times the maximum possible number of samples we could

save on our oscilloscope. However, other commercially available oscilloscopes can save

such large acquisition frames. We should note that as the size of the acquisition frame

increases, so does the time required to save it, adding to the total imaging time.

Overall, this proposed scheme of SE count imaging would be be slower than

Yamada’s implementation. However, it would be simpler to implement due to less

stringent timing and hardware requirements. The required beam blanking could be

achievable with the built-in beam blanker on the SEM, and if access to the datastream

from the SEM to the computer is available, an oscilloscope would not be required

either.

5.5.2 Scheme for online conditional re-illumination

A similar setup to the one we proposed for live SE count imaging could also be used

to implement live conditional re-illumination. This setup is shown schematically in

Figure 5-9(b). Implementing M -limited conditional re-illumination is straightforward;

we would just blank the beam permanently after the requisite number of acquisition

frames had been captured. NSE-limited conditional re-illumination would be enabled

by the beam blanker. In this case we would need ns-beam blanking, since we would
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be blanking the beam over individual pixels (with dwell times on the order of a few

hundred ns) within each frame as opposed to blanking it only at the end of the frame.

Recently, sub-ns electrostatic electron beam-blankers have been integrated into the

SEM column [105,106]. Such beam-blankers could be used in our scheme too. Further,

we would now need to generate SE count images after each frame to decide which

pixels to illuminate in the next frame. Therefore, the transferring of acquisition frame

data and generation of SE count images would have to be brought online (represented

by the solid arrows in Figure 5-9(b)). After the computer has generated an SE count

image from one frame, the code decides which pixels are to be re-illuminated and

creates a reillumination waveform with the known pixel dwell times. After sending

the unblank signal to the beam blanker to start the next frame acquisition, the SEM

computer would send the reillumination waveform to the beam blanker in order to

blank the beam over the appropriate pixels. This signal is represented with the red

arrow in Figure 5-9(b). This process would repeat for every acquisition frame until

the SE threshold had been achieved for all pixels.

This implementation of the re-illumination scheme allows flexibility in the

exact re-illumination algorithm used. Since none of the components are implemented

in hardware, we can easily change the re-illumination criteria in the computer code

and no hardware changes would need to be made. Therefore, more complex re-

illumination schemes that, for example, take the number of SEs in neighbouring

pixels [108] into account or assign different weights to the SE counts from the in-lens

or in-chamber detectors could also be implemented.

5.6 Conclusions

In this chapter, we described our implementation of SE count imaging by synchroniz-

ing SE detector signal collection with the SEM scan signal using features of the scan

waveform. We also described the code we used to generate SE count images from the

oscilloscope acquisition frames. Our code incorporated a lot of the ns-synchronization
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achieved through external circuitry in Yamada’s implementation of SE count imaging.

We used the SNR and contrast metrics introduced in Chapter 3 to show that SE count

imaging could produce images with better image quality at the same incident electron

dose than conventional imaging. Further, we implemented conditional re-illumination

using the two schemes we had described in Chapter 3. Using the SNR and MARE,

we showed that image quality metrics can be traded off for reduced incident electron

dose in conditional re-illumination schemes. Our results indicated that illuminating

all pixels uniformly and stopping after a fixed number of illuminations (M -limited

conditional re-illumination) is more effective at reducing incident electron dose than

a re-illumination scheme based on stopping at a threshold number of SEs NSE,T (NSE-

limited schemes) if we consider average dose over all pixels. If we consider average

dose over the (high-contrast) sample only, the NSE-limited scheme gives higher SNR

and lower MARE. The choice of scheme would depend on the sample type, image

quality metrics and imaging conditions. An interesting extension of this work would

be a study of the imaging resolution as a function of the relative incident dose for

the two re-illumination schemes. Resolution standards such as the USAF three-bar

resolution test chart or diffraction gratings with a known pitch could be used for

this work and the resolution of the generated images analyzed using the Fourier-ring

correlation technique. More complicated NSE-limited schemes that use non-uniform

NSE,T, depending on the NSE from a given pixel in previous illuminations, would also

be an interesting extension of the re-illumination schemes considered here.

Although the imaging schemes we implemented in this chapter were offline, we

proposed schemes for both online SE count imaging and conditional-reillumination

that are flexible and can be adapted to a given re-illumination protocol. Our proposed

SE count imaging scheme does not require any additional hardware beyond the SEM,

the SEM computer, a 100 MHz oscilloscope and a delay element. The built-in beam

blanker in the SEM could be used to blank the beam between acquisition frames.

Further, our proposed conditional reillumination scheme requires a ns-beam blanker

to blank the beam within a frame when it scans over pixels that need to be skipped.
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We believe that recent adaptive and sparse-sampling illumination schemes [41, 80]

could also be be implemented on the SEM using the setup we have proposed here.

We used the SE counts from our images to analyze the statistics of the SE

emission distribution and quantified its deviations from an ideal Poisson process.

We found a B-factor that was about 2 times larger than previously reported values in

literature [21]. More accurate characterization of the SE distribution at different beam

energies, incident electron currents and for different materials, as well as investigation

of the reasons for the high B-factor would be interesting applications of our technique

of SE counting.

Our SE counting re-illumination schemes used very simple estimators for the

final pixel SE count. We effectively assumed that the SE count from both detectors on

the pixel after a certain number of illuminations was the best estimator for the ‘ground

truth’ value. This assumption would be justified if there was no carbon deposition

or sample damage, which would cause sample modification during illumination. This

assumption was justified for our high-SE-yield copper grid sample. However, for

lower-SE-yield organic samples this assumption may not be valid and we might need

to assign weights to different acquisition frames since the earlier ones would carry

more high-frequency information. Similar frame-weighing techniques have been used

in cryo-electron microscopy to improve imaging resolution and corrected for beam-

induced motion [7].

As discussed in Chapter 4 Section 4.1.3, the total DQE of our detectors at the

working distance we used in this chapter was about 50%. This non-ideal DQE meant

that we missed about half of the SEs emitted from the sample. Therefore, we had to

illuminate our sample for longer to get the same number of detected SEs, increasing

the incident electron dose. To mitigate this effect, we could include the measured

value of the DQE in our SE count estimation scheme to improve its accuracy. We

could also try to improve DQE by using different detector configurations [26].

In summary, the results of this chapter and Chapter 4 demonstrate that SE
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count imaging can be implemented on an SEM to characterize the SE detectors, gen-

erate high-SNR images, and analyze the statistics of the SE distribution, using the

existing hardware on the SEM. SE count imaging can significantly lower the inci-

dent electron dose required for a given image SNR, particularly when combined with

conditional re-illumination. In combination with the quantum mechanical electron

microscopy schemes considered in Chapter 2, SE counting and re-illumination could

lead to an even greater reduction in the incident dose required for SEM imaging.
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Chapter 6

Summary and future outlook

In this chapter, we will summarize this thesis and discuss progress towards extensions

of this work. This chapter is divided into two sections. In Section 6.1 we will summa-

rize the theoretical and experimental advances made in this thesis, and in Section 6.2

we will discuss possibilities of extending this work to high-efficiency QEM and ion-

beam imaging, as well as the status of implementation of these imaging schemes. In

this chapter, we will discuss extensions of cross-thesis work; extensions of work in

specific chapters were discussed in the respective chapter conclusions.

6.1 Summary of work

In this thesis we have developed adaptive illumination schemes that can be applied to

STEM and SEM imaging, as well as single-SE-sensitive imaging on SEM to facilitate

the implementation of adaptive and quantum imaging schemes in these microscopes.

In Chapter 2, we proposed a scheme called conditional re-illumination, which used the

statistics from previous rounds of sample illumination for every pixel to decide which

pixels would be illuminated in future rounds. We demonstrated that this scheme

allows us to circumvent limitations on sample electron dose due to the Poisson na-
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ture of the incident electron beam and achieve close-to-ideal imaging performance for

both IFM and STEM imaging for high-contrast samples. In Chapter 3, we extended

conditional re-illumination to SEMs by devising metrics for characterizing the quality

of grayscale sample images. We analyzed three metrics: contrast, mean absolute rela-

tive error (MARE) and signal-to-noise-ratio (SNR, based on Thong et al.’s work [116])

and discussed imaging situations in which each metric would be useful. Further, we

developed conditional re-illumination schemes for imaging such grayscale samples in

an SEM. Our schemes used two types of criteria for determining if a pixel should be

re-illuminated: the number of SEs already detected from it (NSE-limited schemes)

and the number of times the pixel had been illuminated (M -limited schemes).

In Chapters 4 and 5, we turned to experimental implementation of the the-

oretical ideas developed in Chapters 2 and 3. First, in Chapter 4, we developed

image histogram- and oscilloscope-based SE counting, and used these techniques to

characterize the DQE of the in-chamber and in-lens SE detectors. We also devel-

oped an understanding of the voltage and temporal characteristics of the SE pulses.

We used this understanding, along with an analysis of the SEM scan waveforms,

to develop techniques for offline SE count imaging in Chapter 5. In our SE count

imaging algorithm most of the complex nanosecond-scale synchronization required for

electron-count imaging was integrated into MATLAB code that processed SEM scan

waveforms and SE detector signal to generate images. We compared these SE count

images to conventional SEM images using the contrast and SNR metrics described

in Chapter 3 and showed a 50% improvement in contrast and 30% improvement

in SNR at the same incident electron dose for SE count imaging compared to con-

ventional imaging. We also evaluated the MARE and SNR for the two conditional

re-illumination schemes developed in Chapter 3 and showed that the choice of scheme

depends upon the type of sample, imaging conditions and type of image quality metric

that is important in the experiment. Finally, we proposed online SE count imaging

and conditional re-illumination schemes that use existing SEM hardware with the

addition of a beam blanker for live implementation of the low-dose imaging schemes
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we described in Chapters 3 and 5.

6.2 Future outlook

Having summarized the work in this thesis, we will discuss progress towards imple-

mentation of IFM and QEM, extensions of conditional re-illumination to QEM, and

other proposed ideas for extending IFM in this section. We will also discuss appli-

cations of our SE count imaging techniques to recently proposed time-resolved SEM

and helium ion-beam imaging schemes.

6.2.1 Combination of conditional re-illumination with quan-

tum mechanical imaging schemes

In Chapter 2, we calculated the reduction in sample damage enabled by a combi-

nation of IFM imaging (using a Mach-Zehnder interferometer) and conditional re-

illumination. Further we referred to our implementation of a Mach-Zehnder inter-

ferometer in a conventional TEM [62, 63] in Chapter 1. Here, we will discuss this

implementation as well as other potential implementations of IFM in more detail and

discuss potential extensions of conditional re-illumination to higher-efficiency QEM

schemes.

Figure 6-1 is a schematic of our Mach-Zehnder interferometer in a TEM. We

fabricated two 45-nm-thick diffraction gratings from a single-crystal silicon TEM sup-

port grid (Hitachi Hi-Tech) using gallium focused-ion-beam (FIB) milling. Fabrica-

tion from single-crystal-silicon ensured that the two gratings were self-aligned with

each other. The gap between the gratings was 20 µm. We placed the two gratings

in the sample holder of a TEM (JEOL 2010F HRTEM). We used an electron beam

with semi-convergence angle 4 mrad and a 240 nm diameter on the first grating. The

first grating acted as beamsplitter and split the incident electron beam into several
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Figure 6-1: Mach-Zehnder interferometer in TEM. The interferometer consists of two silicon
diffraction gratings fabricated from a single-crystal silicon TEM support grid using FIB
milling. The gratings are mounted into the sample chamber of a TEM, where the split and
recombine the electron beam through diffraction to produce 0.32 nm-period interference
fringes.

diffraction orders. The 20 µm gap between the gratings ensured that the diffracted

beams completely separated from each other when they were incident on the second

grating, which diffracted the beams again and caused them to re-interfere at a plane

20 µm below the second grating. On imaging this plane, we observed interference

fringes with period 0.32 nm, equal to the silicon [1̄1̄1] lattice spacing. We used the

contrast of these fringes to calculate the degree of spatial coherence of the electron

beam in our TEM.

The next step to an implementation of IFM using this approach would be the

fabrication of a three-grating setup, with the third grating placed in the interference

plane of the first two gratings. Modulations in the intensities of the diffracted beams
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from this third grating due to the presence of a scattering sample (such as a chunk

of platinum deposited between the first two gratings) could be statistically analyzed

to demonstrate IFM. As detailed in [63], this approach was hampered by lack of

precise control over the thickness of the diffraction gratings, which made it difficult to

separate modulation in diffraction beam intensity due to dynamical diffraction effects

from modulations due to interference. Although the thicknesses of single membranes

can be mapped out using EELS [119], it is challenging to map the thickness of three

gratings.

More recently, Turner and co-workers proposed a promising alternative ap-

proach to demonstrating IFM, using nanofabricated gratings [69]. Two such gratings,

fabricated on SiN using FIB milling, can be placed in the condenser and objective lens

apertures of a TEM. The translational degrees of freedom of the mechanical aperture

alignment system could be used to align the two gratings. The thickness profiles of

these gratings can be individually mapped to model the intensity of diffracted beams.

The sample to be imaged can be placed in the regular TEM sample holder which is

located between the two aperture planes. Fringes from the interference of electron

beams diffracted from the two gratings are imaged on a direct electron detection cam-

era, and modulations in the intensities of the diffracted beams can be used to infer

the transparency of the sample pixel being imaged.

Demonstration of IFM with either of these approaches would be a signifi-

cant step towards the implementation of quantum imaging schemes in TEM. Since

these approaches already use conventional TEMs, it would be relatively easy to in-

corporate conditional re-illumination with these schemes. Especially in the approach

with nanofabricated gratings placed in the lens apertures, the sample pixels could be

scanned normally once, and the statistics from each pixel could be used to inform

future scans. As discussed in Chapter 1, direct electron detectors at TEM energies

have a high DQE and fast frame rate, meaning that longer pixel dwell times could

be used without compromising the accuracy of electron counting, compared to our

implementation of SE counting in Chapters 4 and 5. Therefore, the requirements
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for beam blanking speed would not be as high in STEM as in SEM, and existing

STEM beam blankers and pattern generators could be used to perform conditional

re-illumination.

Recently, Kruit and van Staaden performed an analysis of the performance of

conditional re-illumination when combined with the proposed schemes for IFM-based

QEM [2]. This analysis also relaxed the assumption of opaque or transparent sample

pixels and ideal detectors that we had made in Chapter 2. The major takeaway

of this work was that the inclusion of sample grayscale (in the form of both semi-

transparency and phase) sustained the benefits of conditional re-illumination imaging.

However, the inclusion of QEM schemes with multiple circulations of the electron

beam reduced the benefits of re-illumination because this scheme already provides

damage-free discrimination between high-contrast sample pixels. With realistically

achievable numbers of circulations and typical phases in TEM samples, this analysis

reported more than an order of magnitude lower error at a dose of 1 electron per pixel

using conditional re-illumination for both STEM and IFM imaging.

A related idea was recently proposed by Kruit et al. [120] to extend the appli-

cation of QEM to phase-contrast imaging. In this scheme, the transfer of intensity

between the two interferometer arms inside the electron cavity is mediated by the

phase of the sample pixel being imaged. The number of circulations are chosen such

that the intensity transfers completely for a narrow range of pixel phases and does not

transfer otherwise. At the end of the imaging process, we have a phase ‘contour’ for

the chosen phase. By repeating the experiment for different numbers of circulations,

a phase contour map of the entire sample can be created with much lower damage

and higher precision than conventional STEM. This scheme could also be combined

with conditional re-illumination to, for example, achieve a given phase sensitivity for

all pixels.
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6.2.2 Extensions of SE counting

In Chapters 4 and 5 of this thesis, we developed SE count imaging and showed that

it offers an incident electron dose reduction of up to 30% compared to conventional

SEM imaging. As we had discussed in the conclusion sections of these chapters,

our work can be extended to more accurately analyze the probability distribution

of SEs and characterize deviations from ideal Poisson behavior more accurately. We

found some discrepancies in the degree of non-ideality extracted from our experiments

and that reporeted previously [21], and a more accurate analysis to explain this

discrepancy would be interesting. Further, we restricted our imaging to SEs. Future

extensions could also include counting of BSEs to generate a more complete picture

of the statistics of sample-electron interaction and emission.

Recently, there have been proposals to use ideas from the theory of param-

eter estimation to reduce the required electron dose in SEM and helium ion-beam

imaging [107,108,121]. These ideas rely on eliminating noise in the image due to the

Poisson statistics of the incident ion beam through time-resolved counting of SEs. The

extremely low currents used in helium ion-beam imaging (down to 0.1 pA) combined

with the high SE yield of ions (much higher than 1 for helium) allow such time-based

discrimination between SEs excited by different incident ions. Since our SE counting

technique is inherently time-resolved, it could be directly used to implement these

proposals.

In conclusion, this thesis extends electron count imaging to SEM and enables

its implementation on any SEM system. Further, this thesis also extends adap-

tive illumination to IFM-based QEM imaging and demonstrates that conditional re-

illumination can be used to maximize the benefits of QEM over conventional STEM

and SEM imaging. Combined with the many other proposed adaptive illumination

and quantum imaging schemes in the literature (as reviewed here and in Section 1.2

of Chapter 1), adoption of the counting techniques developed in this thesis would lead

to significant reduction in the electron dose required for electron microscopy.
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Appendix A

Example calculation of

signal-to-noise ratio

In this Appendix, we will present an example calculation of Thong’s SNR metric

(discussed in Chapter 3) for an SEM image with more features than that in figure 3-

3. The purpose of this Appendix is to demonstrate that the SNR metric works for

all kinds of SEM images.

Figure A-1(a) is an SEM image of a brass Faraday cup (the hole in the center

of the image is where the incident electron beam would be positioned to measure the

current). This Faraday cup was adhered to a stainless steel Kimball physics plate

using silver paste, and the assembly was covered by a second Kimball physics plate

with a large central aperture (the outline of the aperture is visible to the left of the

image). This image was acquired at a pixel dwell time of 1.8 µs. Figure A-1(b) is

an SEM image of the same sample, acquired at a pixel dwell time of 3.6 µs. We can

see that this image appears to be less noisy. Figure A-1(c) shows the autocorrelation

for these images (blue curve for the 3.6 µs-dwell-time image and orange curve for the

1.8 µs-dwell-time image) and figure A-1(d) shows this autocorrelation around zero

offset. We can see that the two images have almost identical autocorrelation values at

all offsets except zero, where the higher dwell time image has a lower autocorrelation
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Figure A-1: Example SNR calculation. (a) SEM image of Faraday cup taken at pixel dwell
time of 1.8 µs. (b) SEM image of Faraday cup taken at pixel dwell time of 3.6 µs. (c) and
(d) Autocorrelation of the images in (a) (solid red curve) and (b) (solid blue curve). (e)
Variation of SNR with pixel dwell time, showing linear scaling.

188



peak. This lower peak shows that the higher dwell time image has higher SNR, as

expected. Figure A-1(e) shows the variation of the SNR with pixel dwell time and

demonstrates the same linear scaling discussed in Section 3.1.3 of Chapter 4.
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Appendix B

In-lens detector histograms

In this appendix, we will show the variation in the image histogram for the in-lens

detector with changing imaging conditions. We presented similar data for the in-

chamber detector in Chapter 4. This data shows evidence of integral-SE-count peaks

in the image histograms for the in-lens detector and supports our conclusions in

Chapters 4 and 5.

Figure B-1(a) shows the variation in the in-lens detector image histogram with

pixel dwell time. We obtained these histograms by scanning the electron beam over

a uniform sample of aluminum at a beam current of 2.2 pA , beam energy of 10

keV, and working distance of 13 mm. Just as for the in-chamber detector, at high

pixel dwell time the image histogram is nearly Gaussian. As the pixel dwell time

reduces from 28 µs to 7.5 µs, the mean of the histogram remains at 111 but the width

increases. At a pixel dwell time of 3.6 µs, we see discrete peaks begin to emerge; there

is a sharp peak at brightness 64 and a broader one at brightness 75 in the histogram.

The histogram for 1.8 µs shows a sharp peak at 64, and broad peaks at 87 and 112.

Finally, the 1.8 µs histogram shows a sharp peak at 64 and a broad peak at 112. The

gap between consecutive peaks is 11 pixel brightness units for the 3.6 µs histogram,

∼ 24 for the 1.8 µs histogram, and 48 for the 1 µs histogram. Just as we had observed

for the in-chamber image histograms, the gap between peaks doubled when the pixel
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Figure B-1: In-lens image histogram. (a) Variation in image histogram with changing pixel
dwell time. As the pixel dwell time was lowered from 28 µs to 1 µs, distinct peaks appeared
in the histogram corresponding to 0, 1 and 2 SEs. (b) Variation in image histogram with
changing incident electron beam current at a pixel dwell time of 3.6 µs. Discrete peaks
appear in the histogram at 1 pAbeam current corresponding to integral number of SEs. (c)
Variation in the image histogram when the beam is on, blanked and off.

dwell time was halved due to signal time-averaging. Therefore, we can ascribe these

peaks to integral number of SEs, with the sharp peak corresponding to 0 SEs.

Figure B-1(b) shows the change in the in-lens image histogram with incident

beam current. Each of these histograms was taken at a pixel dwell time of 3.6 µs.

As the incident beam current reduces from 5.6 pA to 1 pA, peaks corresponding to

integral number of SEs appear in the histogram.

Figure B-1(c) shows the in-lens histogram when the beam is on, blanked and

off. Just as for the in-chamber image, a few pixels register one SE when the beam

is blanked due to SEs generated in the electron beam column. When the beam is
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Figure B-2: Joy’s method of finding DQE for the in-lens detector. (a) Change in image
histogram on changing the electron beam current from 7.8 pA to 0.5 pAfor a pixel dwell
time of 28 µs. The histogram mean lowers from 183 to 76 and the histogram gets narrower.
(b) Variation in mean histogram brightness as a function of beam current.

switched off, these SEs disappear and only the sharp, 0 SE peak remains. This result

confirms that the sharp peak corresponds to noise and dark counts in the detector.

In Figure B-2, we show the implementation of Joy’s method for finding DQE

for the in-chamber detector. The images corresponding the these histograms were

acquired for a pixel dwell time of 28 µs, with varying incident beam current. Figure B-

2(a) shows the image histograms for two values of the beam current. The histogram

for I = 7.8 pA has a mean of 183, while that for I = 0.5 pA has a mean of 76.

From these histogram mean values, we extracted the mean SE counts just as for the

in-chamber detector. Figure B-2(b) is a plot of the extracted mean values (unfilled

black circles) as a function of the incident beam current. The solid black line is a

least-squares fit line and gives us the offset in mean values due to the contrast and

image brightness values we used. This value is 72.6, close to the 0 SE-level of 64 we

found from the histograms in Figure B-1. We used the offset-corrected mean pixel

brightness values to find the in-lens DQE reported in chapter 4 Section 4.1.1.2.

193



194



Appendix C

Fitting SE probability distributions

In this appendix, we will show how the Neyman type-A distribution provides a much

better fit to the SE emission probability distributions we extracted from the SE count

images reported in chapter 5. The Neyman type-A distribution is a type of compound

or generalized Poisson distribution consisting of a Poisson sum of independent, iden-

tically distributed Poisson random variables. Suppose X is a generalized Poisson

distributed random variable, it is given by:

X = Y1 + Y2 + .....+ YS

Here S ∼ Poisson(N) and Yi ∼ Poisson(δ) are independent, identically distributed

Poisson random variables. Physically, S represents the number of incident beam

electrons with mean N and Y represents the number of SEs produced per incident

beam electron with mean δ, equal to the SE yield. The mean and variance of X are

given by:

E [X] = Nδ (C.1)

Var [X] = Nδ(1 + δ) (C.2)
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Figure C-1: Probability distribution of SE emission revisited. (a) Distribution of the number
of SEs extracted from the background (vacuum) pixels in Figure 5-5(a) (unfilled blue circles).
The mean SE count for this distribution is 0.52 and the variance was 0.74. The orange
crosses indicate the probabilities of a Poisson process with the same mean SE count, and
the yellow diamonds represent probabilities for a Neyman type-A process with parameters
N = 1.23 and δ = 0.42. (b) Same as (a) with the y-axis on a log scale. (c) Distribution of
the number of SEs extracted from the sample (copper mesh) pixels in Figure 5-5(a) (unfilled
blue circles). The mean SE count for this distribution is 21.29 and the variance was 29.8.
The orange crosses indicate the probabilities of a Poisson process with the same mean SE
count, and the yellow diamonds represent probabilities for a Neyman type-A process with
parameters N = 53.26 and δ = 0.4. (d) Same as (c) with the y-axis on a log scale. For
both sample and background distributions, the Neyman type-A curve fits the experimental
distribution much more closely than the Poisson distribution curve.
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Figure C-1 shows the SE distribution extracted from the SE count images

reported in Section 5.3.2 of chapter 5 and is identical to the distributions reported in

Figure 5-6. In addition to the Poisson distribution with the same mean (red crosses),

I have also plotted a Neyman type-A distribution with parameters extracted from

the mean and variance of the experimental distribution (yellow diamonds). For the

background distribution (Figure C-1(a) and (b)), the mean was equal to 0.52 and the

variance was equal to 0.74. From these values, we can use equations C.2 and C.2 to

extract N and δ. These extracted values are N = 1.23 and δ = 0.42. Similarly, for

the sample distribution (Figure C-1(c) and (d)), the mean was equal to 21.29 and the

variance was 29.8. Therefore, N = 53.26 and δ = 0.4. We can see that the Neyman

type-A distribution fits the experimental distribution much more accurately than the

Poisson distribution, validating the applicability of this model. The accuracy of the

fit is particularly notable for the sample distribution, where it is almost exact. There

are small deviations at the high-SE tail of the background distribution and the low-SE

tail of the sample distribution, due to overlap between these distributions as discussed

in Section 5.3.3 of chapter 5.

In our experiments, we used a beam current of 2 pA and a pixel dwell time of

440 ns, and we collected 32 acquisition frames. Using Equation (4.1), we get N = 176

over all frames. This value is about a factor of 3 larger than the N extracted from the

Neyman type-A distribution parameters. This discrepancy can be accounted for by

the non-ideal DQE of our detectors. As discussed in Section 4.1.3.3, the total DQE for

the two detectors was about 0.5 at the working distance we used in our experiment.

This DQE would reduce the expected number of SEs NSE, thereby reducing the

extracted N and δ too. More accurate accounting of the effects of non-ideal DQE

would be required to extract accurate values of N and δ from this data.
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Appendix D

MATLAB code

In this appendix, we will describe the MATLAB code that was used in the simulations

and data analysis described in this thesis. Section D.1 has the MATLAB scripts

corresponding to chapter 2, Section D.2 the code for chapter 3, Section D.3 the code

for chapter 4, and Section D.2 the code for chapter 5.

D.1 MATLAB code for chapter 2

In chapter 2, Figures 2-1, 2-2(a), 2-3, and 2-5(a) are direct plots of expressions from

the text; code for these plots is not included here. Script classical_IFM_damage

_errors.m was used to generate figures 2-2(b) and 2-4. The function monte_carlo

_func.m was used by the function cond_reill.m to perform Monte-Carlo simu-

lations of conditional re-illumination. Scripts cond_reill_run.m and cond_reill

_plot.m used these functions to generate figures 2-6 and 2-7.

%%−−−−−−−−−−−−classical_IFM_damage_errors.m−−−−−−−−%%

% This code calculates and plots Perr as a function of ndamage and/or q,
% using equations 2.5 , 2.8 , 2.11 and 2.14 for the four imaging schemes.

clear ; clc ;
%ndamarr=[0.5 2];
%ndamarr=2;
ndamarr=0.0011:0.01:10; % To calculcate error probability for a range of ndamage
[~ ,ndamsize]=size (ndamarr) ;

%q=0.001:0.001:0.999; % To calculate error probability for a range of q
q=0.5;
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[~ ,n]=size (q) ;
%%
for nind=1:ndamsize
ndam=ndamarr(nind) ; %0 at 1.5309/2
lt_cl=ndam; % For classical imaging, lamda∗t is equal to the ndamage
lt_ifm=2∗ndam; % For IFM, lambda∗t is twice ndamage
kstar=(ndam+log(q./(1−q)))/log(4) ;
kstar_d3=log(q./(1−q))/log(4) ;
factor_cl=1./(1+exp(lt_cl)) ;
p_md_ifm=zeros(1 ,n) ;
p_fa_ifm=zeros(1 ,n) ;
p_md_ifm_d3=zeros(1 ,n) ;
p_fa_ifm_d3=zeros(1 ,n) ;
perr_cl=zeros(1 ,n) ;
qlim=zeros(1 ,n) ;

for i=1:size (q')
i f (q( i )<factor_cl)

perr_cl( i )=q( i ) ;
else

perr_cl( i )=(1−q( i ))∗exp(−lt_cl) ;
end
i f (kstar( i )<0)

p_md_ifm( i )=exp(−lt_ifm/4) ;
p_fa_ifm( i )=0;

else
qlim( i )=ceil (kstar( i )) ;
for mdi=1:qlim( i )

p_md_ifm( i )=p_md_ifm( i )+exp(−lt_ifm/4)∗(lt_ifm/4)^(mdi−1)/factorial (mdi−1);
p_fa_ifm( i )=p_fa_ifm( i )+exp(−lt_ifm)∗(lt_ifm)^(mdi−1)/factorial (mdi−1);

end
p_md_ifm( i )=exp(−lt_ifm/4)∗(1−p_md_ifm( i )) ;

end
i f (kstar_d3( i )<0)

p_md_ifm_d3( i )=exp(−3∗lt_ifm/4) ;
p_fa_ifm_d3( i )=0;

else
qlim_d3( i )=ceil (kstar_d3( i )) ;
for mdi_d3=1:qlim_d3( i )

p_md_ifm_d3( i )=p_md_ifm_d3( i )+exp(−lt_ifm/4)∗(lt_ifm/4)^(mdi_d3−1)/factorial (mdi_d3−1);
p_fa_ifm_d3( i )=p_fa_ifm_d3( i )+exp(−lt_ifm)∗(lt_ifm)^(mdi_d3−1)/factorial (mdi_d3−1);

end
p_md_ifm_d3( i )=exp(−3∗lt_ifm/4)∗(1−p_md_ifm_d3( i )) ;

end
i f (q( i )<1/2)

perr_cl_d3( i )=q( i )∗exp(−lt_cl) ;
else

perr_cl_d3( i )=(1−q( i ))∗exp(−lt_cl) ;
end

end
perr_ifm=(q) .∗p_md_ifm+(1−q) .∗(p_fa_ifm) ;
perr_ifm_d3=(q) .∗p_md_ifm_d3+(1−q) .∗(p_fa_ifm_d3) ;
perr_cl_mat(: ,nind)=perr_cl ;
perr_ifm_mat(: ,nind)=perr_ifm;
perr_cl_d3_mat(: ,nind)=perr_cl_d3;
perr_ifm_d3_mat(: ,nind)=perr_ifm_d3;
%subplot(2 ,1 ,nind) ; %Figure 3 of paper
%p=plot(q, perr_cl ,q,perr_cl_d3,q,perr_ifm,q,perr_ifm_d3, 'LineWidth' ,2) ;

plot(q, perr_cl , '−−' , 'LineWidth' ,2) ;
hold on;

plot(q,perr_cl_d3, 'LineWidth' ,2 , 'Color ' ,[0.4940 0.1840 0.5560]) ;
hold on;
%plot(q,perr_ifm, ' : ' , 'LineWidth' ,2 , 'Color' ,[0.8500 , 0.3250, 0.0980]) ;
%plot(q,perr_ifm_d3, '−. ' , 'LineWidth' ,2 , 'Color' ,[0.4660 , 0.6740, 0.1880]) ;
set(gca, 'XTick' ,0:0.2:1 , 'Fontsize ' ,18) ;
xlim([0 1]) ;
ylim([0 1.3∗max(perr_cl) ])
xlabel( '$q$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
ylabel( '$P_{\textrm{err}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
%xlabel ( ' probability of opaque pixel ' , ' Fontsize ' ,18) ;
%ylabel ( ' error probability ' , ' Fontsize ' ,18) ;

%set(y, 'Units ' , 'Normalized' , 'Position ' , [−0.1, 0.5 , 0]) ;
%i f (nind==1)
%ylim([0 0.4]) ;
%set(gca, 'YTick' ,0:0.1:0.4 , ' Fontsize ' ,18) ;
%end
%i f (nind==2)
lgd=legend( ' Classical , no $D_3$ ' , ' Classical , $D_3$ ' ) ;
%lgd=legend( ' Classical , no $D_3$ ' , ' Classical , $D_3$ ' , 'IFM, no $D_3$ ' , 'IFM, $D_3$ ') ;
set(lgd , ' Interpreter ' , ' latex ' ) ;

% %lgd=legend( ' Classical , no D_3' , ' Classical , D_3' , 'IFM, no D_3' , 'IFM,D_3') ;
lgd .FontSize=18;

lgd . Position=[0.65 0.83 0.2 0.05];
lgd .Color='White' ;
lgd .Box=' off ' ;
end
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;

%end
%saveas(gcf , 'Fig3.png') ;
%saveas(gcf , ' Figpres11 .png') ;
%%
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plot(ndamarr,perr_cl_mat, '−−' , 'LineWidth' ,2) ;
hold on;
plot(ndamarr,perr_cl_d3_mat, 'LineWidth' ,2 , 'Color ' ,[0.4940 0.1840 0.5560]) ;
%plot(ndamarr,perr_ifm_mat, ' : ' , 'LineWidth' ,2 , 'Color' ,[0.8500 , 0.3250, 0.0980]) ;
%plot(ndamarr,perr_ifm_d3_mat, '−. ' , 'LineWidth' ,2 , 'Color' ,[0.4660 , 0.6740, 0.1880]) ;
set(gca, 'XTick' ,0:2:10 , 'Fontsize ' ,18) ;
xlim([0 10]) ;
ylim([0 0.5])
xlabel( '$\bar{n}_{\textrm{damage}}$ ' , ' Interpreter ' , 'Latex ' , 'Fontsize ' ,18) ;
ylabel( '$P_{\textrm{err}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
%xlabel ( 'dose (electrons/pixel) ') ;
%ylabel ( ' error probability ') ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
%pbaspect([1.5 1 1])
%saveas(gcf , 'chap2_classical_perr_ndam.png') ;
%%
%save( 'reill_data_0.05.mat' , 'ndamarr' , 'perr_ifm_mat','−append') ;
% tit le (strcat ( 'n_{damage}=',num2str(ndam)) , 'Fontsize ' ,14) ;
% end
% saveas(gcf , ' perrvsq5 .png') ;
%textbox5=uicontrol ( 'Style ' , ' text ' , ' Units ' , 'norm' , ' Position ' , [0.1 0.5 0.5 0.05] , 'Fontsize ' ,14) ;
%set(textbox5 , ' String ' , 'a' , 'BackgroundColor' , [1 1 1]) ;

%%
plot(q,perr_cl_d3,q,perr_ifm_d3,q_arr,perr_d3_single_q, 'd' ,q_arr,perr_d3_reill_q, 'bx' ,q_arr,perr_d3_single_cl_q, ' s ' ,

q_arr,perr_d3_reill_cl_q, 'go ' , 'LineWidth' ,2 , 'MarkerSize ' ,10) ;
xlabel( 'q ' , 'Fontsize ' ,14) ;
ylabel( 'P_{err} ' , 'Fontsize ' ,14) ;
ylim([0 0.06]) ;
set(gca, 'XTick' ,0:0.1:1 , 'Fontsize ' ,14) ;
lgd=legend( ' Classical , D3, single i l l . , theory ' , 'IFM, D3, single i l l . , theory ' , 'IFM, D3, single i l l . , Monte−Carlo ' , 'IFM

, D3, cond. r e i l l . , Monte−Carlo ' , ' Classical , D3, single i l l . , Monte−Carlo ' , ' Classical , D3, cond. r e i l l . Monte−
Carlo ' , 'Location ' , 'northwest ' ) ;

lgd .Box=' off ' ;
%saveas(gcf , strcat ( 'Classical_ifm_errors_q ' , ' .png') ) ;
%%
p=plot(ndamarr,perr_cl_mat,ndamarr,perr_ifm_mat,ndamarr,perr_ifm_d3_mat, 'LineWidth' ,2) ;
set(gca, 'XTick' ,0:0.5:5 , 'Fontsize ' ,14) ;
xlim([0 5]) ;
ylim([0 0.5]) ;
xlabel( 'n_{damage} ' , 'Fontsize ' ,14) ;
ylabel( 'P_{err} ' , 'Fontsize ' ,14) ;
lgd=legend( 'D_1' , 'D_1,D_2' , 'D_1,D_2,D_3' ) ;
lgd .Box=' off ' ;
%plot(ndamarr,perr_cl_mat,ndamarr,perr_ifm_mat,ndamarr,0.5∗(1−1.5∗ndamarr) ,ndamarr,0.5∗(1−ndamarr)) ;
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%%−−−−−−−−−−−−−monte_carlo_func.m−−−−−−−−−−−−−%%
% This function returns the counts at detectors D1, D2 and D3 for a
% Monte−Carlo simulation of imaging with N_pixels, given the probabilitites
% at those detectors , the mean number of electrons in the beam, and the pixel
% transparency x.
function [ counts]= monte_carlo_sim(mean,x,p_x1,N_pixels)
counts=zeros(3,1) ;
N_electrons=poissrnd(mean) ;

for j=1:N_electrons
i f (x==0)

counts(1)=counts(1)+1;
else

ab=rand(1,1) ;
i f (ab<=p_x1(3))

counts(3)=counts(3)+1;
e lse i f (ab<=p_x1(3)+p_x1(2))

counts(2)=counts(2)+1;
else

counts(1)=counts(1)+1;
end

end
end
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%%−−−−−−−−−−−−cond_reill.m−−−−−−−−−−−−−%%
% This function performs conditional re−illumination monte−carlo
% simulations and produces ndamage, perror and q given the type of imaging
% scheme, number of pixels , init ial q, mean electron number per
% illumination and number of re−illuminations . It uses monte_carlo_func to
% perform the Monte−Carlo imaging simulation for each scheme.
function [n_damage,p_error, qtracker , retest_threshold_lower]= cond_reill(scheme,N_pixels, qin ,mean_electron_no, N_reill)

%% Detector probabilities
%p_x0=[1 0 0];
i f (scheme==0 | | scheme==2)

p_x1=[0.25 0.25 0.5] ;
else

p_x1=[0 0 1];
end

%% Pixel assignment
%N_pixels=10000;
q0=qin∗ones(1 ,N_pixels) ;
X=zeros(1 ,N_pixels) ;
for i=1:N_pixels

aa=rand(1,1) ;
i f (aa<=q0)

X( i )=1;
end

end
N_black=sum(X) ;

%% Reillumination parameters
retest_threshold_lower=0.05;
retest_threshold_upper=1−retest_threshold_lower ;
%N_reill=99;
N_ill=1+N_reill ;
%pixel_test=1:N_pixels;
q=q0;
%[~ ,N_test]=size (pixel_test) ;
%mean_electron_no=1;
n_damage_per_pixel=zeros(1 ,N_pixels) ;

%% Illumination loop
for j=1:N_ill

counts=zeros(3 ,N_pixels) ;
for i=1:N_pixels

i f (q( i )>retest_threshold_lower && q( i )<retest_threshold_upper)
counts(: , i )=monte_carlo_func(mean_electron_no,X( i ) ,p_x1,N_pixels) ;
i f (counts(3 , i )>0)

n_damage_per_pixel( i )=n_damage_per_pixel( i )+counts(3 , i ) ;
end

% i f (X( i )==1)
% N_black_pixels_r1=N_black_pixels_r1+1;
%n_damage_r1=n_damage_r1/N_black_pixels_r1;
%for i=1:N_test

i f (scheme==0)
i f (counts(2 , i )==0)

q( i )=1−1./(1+exp(mean_electron_no/2)/4^(counts(1 , i )) .∗(q( i )/(1−q( i )))) ;
else

q( i )=1;
end

else i f (scheme==1)
i f (counts(1 , i )==0)

q( i )=1−1./(1+exp(mean_electron_no)∗(q( i )/(1−q( i )))) ;
else

q( i )=0;
end

else i f (scheme==2)
i f (counts(2 , i )==0 && counts(3 , i )==0)

q( i )=1−1./(1+1/4^(counts(1 , i ))∗(q( i )/(1−q( i )))) ;
else

q( i )=1;
end

else
i f (counts(1 , i )>0)

q( i )=0;
e lse i f (counts(3 , i )>0)

q( i )=1;
end

end
end
qtracker(j , i )=q( i ) ;
%i f (counts(2 , i )==0 && counts(3 , i )==0)
% eta_d3( i )=1./(1+1./4.^(counts(1 , i )) .∗(q/(1−q))) ;
%else
%eta_d3( i )=0;

end

end
%q_nod3_r1=1−eta_nod3;
%q_d3_r1=1−eta_d3;
for i=1:N_pixels
i f (q( i )<0.5)

Xhat( i )=0;
else

Xhat( i )=1;
end
end
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n_damage=sum(n_damage_per_pixel)/N_black;
p_error=sum(abs(X−Xhat))/N_pixels;
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%%−−−−−−−−−−−−−cond_reill_run.m−−−−−−−−−−−−−%%
%This code uses the cond_reill .m function to produce and save values for
%ndamage and perror for different mean_electron_number and re−illumination
%threshold values .
clear ; clc ;
scheme=0; %0 for ifm without D3, 1 for classical without D3, 2 for ifm with D3, 3 for classical with D3
N_pixels=1e5;
%mean_electron_no=0.01:0.01:0.1;
mean_electron_no=0.2;
N_reill=[99 89 74 59 49 39 29 19 9 4 1 0]; %desired no. of illuminations −1
%N_reill=99;
[~ , sz_reill]=size (N_reill) ;

%[~ , sz_reill]=size (mean_electron_no) ;
qin=0.5;
for i=1:sz_reill

i
[n_damage( i ) , p_error( i ) , qtracker , eps]=cond_reill(scheme,N_pixels, qin ,mean_electron_no, N_reill( i )) ;

%filename=strcat ( 'ifm_d3_' ,num2str(N_reill+1) , '_' ,num2str(mean_electron_no( i )) , '_eps' ,num2str(eps) , ' .mat') ;
%save(filename , 'n_damage' , 'p_error') ;
beep on;beep;

end
filename='ifm_nod3_fig7_eps0.05.mat' ;
save(filename , 'n_damage' , 'p_error ' ) ;
%qtracker=[qin∗ones(N_pixels,1) , qtracker ' ] ;
%load handel ;
%player = audioplayer(y, Fs) ;
%play(player) ;
%%
%qtracker_plot=qtracker(13 ,:) ' ;
hAxis(1)=subplot(3 ,1 ,1) ;
plot(qtracker (9 ,:) , 'Linewidth ' ,2) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
%hold on;
%plot(qtracker(40 ,:) , 'Linewidth' ,2) ;
%plot(qtracker (2 ,:) , 'Linewidth' ,2) ;
set(gca, 'XTicklabel ' , [ ] ) ;
set(gca, 'YTick' ,0:1:1 , 'Fontsize ' ,18) ;
xlim([1 20]) ;
ylim([0 1]) ;
%pos = get( hAxis(1) , 'Position ' ) ;
%pos(2)=0.626;
%set( hAxis(1) , 'Position ' , pos ) ;
%xlabel ( 'Number of illuminations ' , ' Fontsize ' ,18) ;
%ylabel ( 'Probability of black (opaque) pixel ' , ' Fontsize ' ,18) ;
hAxis(2)=subplot(3 ,1 ,2) ;
plot(qtracker(10 ,:) , 'Linewidth ' ,2) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(gca, 'XTicklabel ' , [ ] ) ;
set(gca, 'YTick' ,0:1:1 , 'Fontsize ' ,18) ;
xlim([1 20]) ;
ylim([0 1]) ;
%xlabel ( 'Number of illuminations ' , ' Fontsize ' ,18) ;
ylabel( 'Probability of black (opaque) pixel ' , 'Fontsize ' ,18) ;
hAxis(3)=subplot(3 ,1 ,3) ;
plot(qtracker (4 ,:) , 'Linewidth ' ,2) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlim([1 20]) ;
ylim([0 1]) ;
set(gca, 'XTick' ,0:5:20 , 'Fontsize ' ,18) ;
set(gca, 'YTick' ,0:1:1 , 'Fontsize ' ,18) ;
pos = get( hAxis(3) , 'Position ' ) ;
%pos(2)=0.193;
%set( hAxis(3) , 'Position ' , pos ) ;
xlabel( 'Number of illuminations ' , 'Fontsize ' ,18) ;
%ylabel ( 'Probability of black (opaque) pixel ' , ' Fontsize ' ,18) ;
saveas(gcf , 'qtrajectoryifmnod3_2.png' ) ;
% plot(n_damage_cl_nod3_10,p_error_cl_nod3_10, 'o−−','Linewidth' ,2 , 'MarkerSize' ,10) ;
%save( 'reill_data_0.49.mat' , 'n_damage_ifm_d3_5' , 'p_error_ifm_d3_5','−append') ;
% figure () ;
% plot(N_reill+1,n_damage_ifm_nod3_10, 'o−−',N_reill+1,n_damage_ifm_nod3_10_5, 'o−−','Linewidth' ,2 , 'MarkerSize' ,10) ;
% xlim([0 100]) ;
% ylim([0 5.1]) ;
% set(gca, 'XTick' ,0:10:100 , 'Fontsize ' ,18) ;
% ylabel ( 'n_{damage} ' , 'Fontsize ' ,18) ;
% xlabel ( 'Number of illuminations ' , ' Fontsize ' ,18) ;
% lgd=legend('\epsilon = 0.25 ' , '\epsilon = 0.05 ') ;
% lgd .Box='off ' ;
% %saveas(gcf , strcat ( 'Cond_reill_ndamvsN_ifm_0.05and0.25threshold_dose_10' , ' .png') ) ;
% % figure () ;
% % plot(N_reill+1,n_damage_cl_nod3_10./mean_electron_no, 'o−−','Linewidth' ,2 , 'MarkerSize' ,10) ;
% % xlim([0 100]) ;
% % ylim([0 3]) ;
% % set(gca, 'XTick' ,0:10:100 , 'Fontsize ' ,14) ;
% % ylabel ( 'n_{damage} per incident electron ' , ' Fontsize ' ,14) ;
% % xlabel ( 'Number of illuminations ' , ' Fontsize ' ,14) ;
% % saveas(gcf , strcat ( 'Cond_reill_perrvsN_ifm_0.05threshold ' , ' .png') ) ;
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% figure () ;
% plot(N_reill+1,p_error_ifm_nod3_10, 'o−−',N_reill+1,p_error_ifm_nod3_10_5, 'o−−','Linewidth' ,2 , 'MarkerSize' ,10) ;
% xlim([0 100]) ;
% ylim([0 0.2]) ;
% set(gca, 'XTick' ,0:10:100 , 'Fontsize ' ,18) ;
% ylabel ( 'P_{err } ' , 'Fontsize ' ,18) ;
% xlabel ( 'Number of illuminations ' , ' Fontsize ' ,18) ;
% %saveas(gcf , strcat ( 'Cond_reill_perrvsN_ifm_0.05ando0.25threshold_dose_10' , ' .png') ) ;
%%
perrormat=zeros(4,12) ;
ndammat=zeros(4,12) ;
load( 'cl_nod3_fig1 ' ) ;
perrormat(1 ,:)=p_error;
ndammat(1 ,:)=n_damage;
load( 'cl_d3_fig1 ' ) ;
perrormat(2 ,:)=p_error;
ndammat(2 ,:)=n_damage;
load( 'ifm_nod3_fig1 ' ) ;
perrormat(3 ,:)=p_error;
ndammat(3 ,:)=n_damage;
load( 'ifm_d3_fig1 ' ) ;
perrormat(4 ,:)=p_error;
ndammat(4 ,:)=n_damage;
semilogy(ndammat(1 ,:) ,perrormat(1 ,:) , '−x ' , 'MarkerSize ' ,10, 'Linewidth ' ,2 , 'Color ' ,[0 , 0.4470, 0.7410]) ;
hold on;
semilogy(ndammat(2 ,:) ,perrormat(2 ,:) , '−o ' , 'MarkerSize ' ,10, 'Linewidth ' ,2 , 'Color ' ,[0.4940 0.1840 0.5560]) ;
semilogy(ndammat(3 ,:) ,perrormat(3 ,:) , '−d' , 'MarkerSize ' ,10, 'Linewidth ' ,2 , 'Color ' ,[0.8500 , 0.3250, 0.0980]) ;
semilogy(ndammat(4 ,:) ,perrormat(4 ,:) , '−s ' , 'MarkerSize ' ,10, 'Linewidth ' ,2 , 'Color ' ,[0.4660 , 0.6740, 0.1880]) ;
xlim([0 12]) ;
ylim([1e−5 1])
set(gca, 'XTick' ,0:2:12 , 'Fontsize ' ,18) ;
xlabel( '$\bar{n}_{\textrm{damage}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
ylabel( '$P_{\textrm{err}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
lgd=legend( ' Classical , no $D_3$ ' , ' Classical , $D_3$ ' , 'IFM, no $D_3$ ' , 'IFM, $D_3$ ' ) ;
lgd .Box=' off ' ;
lgd .FontSize=18;
lgd . Interpreter='Latex ' ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlim([0 12]) ;
ylim([1e−5 1])
set(gca, 'XTick' ,0:2:12 , 'Fontsize ' ,18) ;
xlabel( '$\bar{n}_{\textrm{damage}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
ylabel( '$P_{\textrm{err}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
lgd=legend( ' Classical , no $D_3$ ' , ' Classical , $D_3$ ' , 'IFM, no $D_3$ ' , 'IFM, $D_3$ ' ) ;
lgd .Box=' off ' ;
lgd .FontSize=18;
lgd . Interpreter='Latex ' ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
pos = get(gcf , 'Position ' ) ; %// gives x left , y bottom, width, height
width = pos(3) ;
height = pos(4) ;
%saveas(gcf , strcat ( 'Fig1e ' , ' .png') ) ;
%%
perrormat=zeros(2,12) ;
ndammat=zeros(2,12) ;
filename='ifm_nod3_fig7_eps0.05.mat' ;
load(filename) ;
perrormat(1 ,:)=p_error;
ndammat(1 ,:)=n_damage;
filename='ifm_nod3_fig7_eps0.25.mat' ;
load(filename) ;
perrormat(2 ,:)=p_error;
ndammat(2 ,:)=n_damage;
N_reill_fig1=[99 89 74 59 49 39 29 19 9 4 1 0];
plot(N_reill_fig1+1,perrormat(1 ,:) , '−x ' , 'MarkerSize ' ,10, 'Linewidth ' ,2 , 'Color ' ,[0.8500 , 0.3250, 0.0980]) ;
hold on;
plot(N_reill_fig1+1,perrormat(2 ,:) , '−−o ' , 'MarkerSize ' ,10, 'Linewidth ' ,2 , 'Color ' ,[0.8500 , 0.3250, 0.0980]) ;
xlim([1 100]) ;
ylim([0 0.5]) ;
set(gca, 'XTick' ,0:10:100 , 'Fontsize ' ,18) ;
xlabel( '$\textrm{Maximum number of illuminations } M$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
ylabel( '$P_{\textrm{err}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
lgd=legend( '$\epsilon=0.05$ ' , '$\epsilon=0.25$ ' ) ;
lgd .Box=' off ' ;
lgd .FontSize=18;
lgd . Interpreter='Latex ' ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
saveas(gcf , strcat( 'Fig7a ' , ' .png' )) ;
figure () ;
plot(N_reill_fig1+1,ndammat(1 ,:) , '−x ' , 'MarkerSize ' ,10, 'Linewidth ' ,2 , 'Color ' ,[0.8500 , 0.3250, 0.0980]) ;
hold on;
plot(N_reill_fig1+1,ndammat(2 ,:) , '−−o ' , 'MarkerSize ' ,10, 'Linewidth ' ,2 , 'Color ' ,[0.8500 , 0.3250, 0.0980]) ;
xlim([1 100]) ;
ylim([0 2]) ;
set(gca, 'XTick' ,0:10:100 , 'Fontsize ' ,18) ;
xlabel( '$\textrm{Maximum number of illuminations } M$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
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ylabel( '$\bar{n}_{\textrm{damage}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
saveas(gcf , strcat( 'Fig7b ' , ' .png' )) ;
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%%−−−−−−−−−−−−−cond_reill_plot.m−−−−−−−−−−−−−%%
% This code loads all the saved perror and nadamage datasets for different
%re−illumination thresholds and uses them to plot figures 2−6 and 2−7
clear ; clc ;
eta=[0 0.05 0.1 0.15 0.2 0.25 0.3 0.49];

%%Read eta=0
load( 'reill_data_0 .mat' ) ;
N_ill_50_perr_ifmnod3_0=[p_error_ifm_nod3_2(2) p_error_ifm_nod3_5(2) p_error_ifm_nod3_10(2) p_error_ifm_nod3_15(2) ] ;
N_ill_5_perr_ifmnod3_0=[p_error_ifm_nod3_2(5) p_error_ifm_nod3_5(5) p_error_ifm_nod3_10(5) p_error_ifm_nod3_15(5) ] ;
N_ill_2_perr_ifmnod3_0=[p_error_ifm_nod3_2(6) p_error_ifm_nod3_5(6) p_error_ifm_nod3_10(6) p_error_ifm_nod3_15(6) ] ;
N_ill_1_perr_ifmnod3_0=[p_error_ifm_nod3_2(7) p_error_ifm_nod3_5(7) p_error_ifm_nod3_10(7) p_error_ifm_nod3_15(7) ] ;

N_ill_50_ndam_ifmnod3_0=[n_damage_ifm_nod3_2(2) n_damage_ifm_nod3_5(2) n_damage_ifm_nod3_10(2) n_damage_ifm_nod3_15(2) ] ;
N_ill_5_ndam_ifmnod3_0=[n_damage_ifm_nod3_2(5) n_damage_ifm_nod3_5(5) n_damage_ifm_nod3_10(5) n_damage_ifm_nod3_15(5) ] ;
N_ill_2_ndam_ifmnod3_0=[n_damage_ifm_nod3_2(6) n_damage_ifm_nod3_5(6) n_damage_ifm_nod3_10(6) n_damage_ifm_nod3_15(6) ] ;
N_ill_1_ndam_ifmnod3_0=[n_damage_ifm_nod3_2(7) n_damage_ifm_nod3_5(7) n_damage_ifm_nod3_10(7) n_damage_ifm_nod3_15(7) ] ;

N_ill_50_perr_ifmd3_0=[p_error_ifm_d3_2(2) p_error_ifm_d3_5(2) p_error_ifm_d3_10(2) p_error_ifm_d3_15(2) ] ;
N_ill_5_perr_ifmd3_0=[p_error_ifm_d3_2(5) p_error_ifm_d3_5(5) p_error_ifm_d3_10(5) p_error_ifm_d3_15(5) ] ;
N_ill_2_perr_ifmd3_0=[p_error_ifm_d3_2(6) p_error_ifm_d3_5(6) p_error_ifm_d3_10(6) p_error_ifm_d3_15(6) ] ;
N_ill_1_perr_ifmd3_0=[p_error_ifm_d3_2(7) p_error_ifm_d3_5(7) p_error_ifm_d3_10(7) p_error_ifm_d3_15(7) ] ;

N_ill_50_ndam_ifmd3_0=[n_damage_ifm_d3_2(2) n_damage_ifm_d3_5(2) n_damage_ifm_d3_10(2) n_damage_ifm_d3_15(2) ] ;
N_ill_5_ndam_ifmd3_0=[n_damage_ifm_d3_2(5) n_damage_ifm_d3_5(5) n_damage_ifm_d3_10(5) n_damage_ifm_d3_15(5) ] ;
N_ill_2_ndam_ifmd3_0=[n_damage_ifm_d3_2(6) n_damage_ifm_d3_5(6) n_damage_ifm_d3_10(6) n_damage_ifm_d3_15(6) ] ;
N_ill_1_ndam_ifmd3_0=[n_damage_ifm_d3_2(7) n_damage_ifm_d3_5(7) n_damage_ifm_d3_10(7) n_damage_ifm_d3_15(7) ] ;

N_ill_50_perr_cld3_0=[ p_error_cl_d3_2(2) p_error_cl_d3_5(2) p_error_cl_d3_10(2) p_error_cl_d3_15(2) ] ;
N_ill_5_perr_cld3_0=[p_error_cl_d3_2(5) p_error_cl_d3_5(5) p_error_cl_d3_10(5) p_error_cl_d3_15(5) ] ;
N_ill_2_perr_cld3_0=[p_error_cl_d3_2(6) p_error_cl_d3_5(6) p_error_cl_d3_10(6) p_error_cl_d3_15(6) ] ;
N_ill_1_perr_cld3_0=[ p_error_cl_d3_2(7) p_error_cl_d3_5(7) p_error_cl_d3_10(7) p_error_cl_d3_15(7) ] ;

N_ill_50_ndam_cld3_0=[n_damage_cl_d3_2(2) n_damage_cl_d3_5(2) n_damage_cl_d3_10(2) n_damage_cl_d3_15(2) ] ;
N_ill_5_ndam_cld3_0=[n_damage_cl_d3_2(5) n_damage_cl_d3_5(5) n_damage_cl_d3_10(5) n_damage_cl_d3_15(5) ] ;
N_ill_2_ndam_cld3_0=[n_damage_cl_d3_2(6) n_damage_cl_d3_5(6) n_damage_cl_d3_10(6) n_damage_cl_d3_15(6) ] ;
N_ill_1_ndam_cld3_0=[n_damage_cl_d3_2(7) n_damage_cl_d3_5(7) n_damage_cl_d3_10(7) n_damage_cl_d3_15(7) ] ;

%%Read eta=0.05
load( 'reill_data_0.05.mat' ) ;
N_ill_100_perr_ifmnod3_005=[p_error_ifm_nod3_2(1) p_error_ifm_nod3_5(1) p_error_ifm_nod3_10(1) p_error_ifm_nod3_15(1) ] ;
N_ill_50_perr_ifmnod3_005=[p_error_ifm_nod3_2(2) p_error_ifm_nod3_5(2) p_error_ifm_nod3_10(2) p_error_ifm_nod3_15(2) ] ;
N_ill_25_perr_ifmnod3_005=[p_error_ifm_nod3_2(3) p_error_ifm_nod3_5(3) p_error_ifm_nod3_10(3) p_error_ifm_nod3_15(3) ] ;
N_ill_10_perr_ifmnod3_005=[p_error_ifm_nod3_2(4) p_error_ifm_nod3_5(4) p_error_ifm_nod3_10(4) p_error_ifm_nod3_15(4) ] ;
N_ill_5_perr_ifmnod3_005=[p_error_ifm_nod3_2(5) p_error_ifm_nod3_5(5) p_error_ifm_nod3_10(5) p_error_ifm_nod3_15(5) ] ;
N_ill_2_perr_ifmnod3_005=[p_error_ifm_nod3_2(6) p_error_ifm_nod3_5(6) p_error_ifm_nod3_10(6) p_error_ifm_nod3_15(6) ] ;
N_ill_1_perr_ifmnod3_005=[p_error_ifm_nod3_2(7) p_error_ifm_nod3_5(7) p_error_ifm_nod3_10(7) p_error_ifm_nod3_15(7) ] ;

N_ill_100_ndam_ifmnod3_005=[n_damage_ifm_nod3_2(1) n_damage_ifm_nod3_5(1) n_damage_ifm_nod3_10(1) n_damage_ifm_nod3_15
(1) ] ;

N_ill_50_ndam_ifmnod3_005=[n_damage_ifm_nod3_2(2) n_damage_ifm_nod3_5(2) n_damage_ifm_nod3_10(2) n_damage_ifm_nod3_15(2)
] ;

N_ill_25_ndam_ifmnod3_005=[n_damage_ifm_nod3_2(3) n_damage_ifm_nod3_5(3) n_damage_ifm_nod3_10(3) n_damage_ifm_nod3_15(3)
] ;

N_ill_10_ndam_ifmnod3_005=[n_damage_ifm_nod3_2(4) n_damage_ifm_nod3_5(4) n_damage_ifm_nod3_10(4) n_damage_ifm_nod3_15(4)
] ;

N_ill_5_ndam_ifmnod3_005=[n_damage_ifm_nod3_2(5) n_damage_ifm_nod3_5(5) n_damage_ifm_nod3_10(5) n_damage_ifm_nod3_15(5)
] ;

N_ill_2_ndam_ifmnod3_005=[n_damage_ifm_nod3_2(6) n_damage_ifm_nod3_5(6) n_damage_ifm_nod3_10(6) n_damage_ifm_nod3_15(6)
] ;

N_ill_1_ndam_ifmnod3_005=[n_damage_ifm_nod3_2(7) n_damage_ifm_nod3_5(7) n_damage_ifm_nod3_10(7) n_damage_ifm_nod3_15(7)
] ;

N_ill_50_perr_ifmd3_005=[p_error_ifm_d3_2(2) p_error_ifm_d3_5(2) p_error_ifm_d3_10(2) p_error_ifm_d3_15(2) ] ;
N_ill_10_perr_ifmd3_005=[p_error_ifm_d3_2(4) p_error_ifm_d3_5(4) p_error_ifm_d3_10(4) p_error_ifm_d3_15(4) ] ;
N_ill_5_perr_ifmd3_005=[p_error_ifm_d3_2(5) p_error_ifm_d3_5(5) p_error_ifm_d3_10(5) p_error_ifm_d3_15(5) ] ;
N_ill_2_perr_ifmd3_005=[p_error_ifm_d3_2(6) p_error_ifm_d3_5(6) p_error_ifm_d3_10(6) p_error_ifm_d3_15(6) ] ;
N_ill_1_perr_ifmd3_005=[p_error_ifm_d3_2(7) p_error_ifm_d3_5(7) p_error_ifm_d3_10(7) p_error_ifm_d3_15(7) ] ;

N_ill_50_ndam_ifmd3_005=[n_damage_ifm_d3_2(2) n_damage_ifm_d3_5(2) n_damage_ifm_d3_10(2) n_damage_ifm_d3_15(2) ] ;
N_ill_10_ndam_ifmd3_005=[n_damage_ifm_d3_2(4) n_damage_ifm_d3_5(4) n_damage_ifm_d3_10(4) n_damage_ifm_d3_15(4) ] ;
N_ill_5_ndam_ifmd3_005=[n_damage_ifm_d3_2(5) n_damage_ifm_d3_5(5) n_damage_ifm_d3_10(5) n_damage_ifm_d3_15(5) ] ;
N_ill_2_ndam_ifmd3_005=[n_damage_ifm_d3_2(6) n_damage_ifm_d3_5(6) n_damage_ifm_d3_10(6) n_damage_ifm_d3_15(6) ] ;
N_ill_1_ndam_ifmd3_005=[n_damage_ifm_d3_2(7) n_damage_ifm_d3_5(7) n_damage_ifm_d3_10(7) n_damage_ifm_d3_15(7) ] ;

N_ill_50_perr_cld3_005=[p_error_cl_d3_2(2) p_error_cl_d3_5(2) p_error_cl_d3_10(2) p_error_cl_d3_15(2) ] ;
N_ill_10_perr_cld3_005=[p_error_cl_d3_2(4) p_error_cl_d3_5(4) p_error_cl_d3_10(4) p_error_cl_d3_15(4) ] ;
N_ill_5_perr_cld3_005=[p_error_cl_d3_2(5) p_error_cl_d3_5(5) p_error_cl_d3_10(5) p_error_cl_d3_15(5) ] ;
N_ill_2_perr_cld3_005=[p_error_cl_d3_2(6) p_error_cl_d3_5(6) p_error_cl_d3_10(6) p_error_cl_d3_15(6) ] ;
N_ill_1_perr_cld3_005=[p_error_cl_d3_2(7) p_error_cl_d3_5(7) p_error_cl_d3_10(7) p_error_cl_d3_15(7) ] ;

N_ill_50_ndam_cld3_005=[n_damage_cl_d3_2(2) n_damage_cl_d3_5(2) n_damage_cl_d3_10(2) n_damage_cl_d3_15(2) ] ;
N_ill_10_ndam_cld3_005=[n_damage_cl_d3_2(4) n_damage_cl_d3_5(4) n_damage_cl_d3_10(4) n_damage_cl_d3_15(4) ] ;
N_ill_5_ndam_cld3_005=[n_damage_cl_d3_2(5) n_damage_cl_d3_5(5) n_damage_cl_d3_10(5) n_damage_cl_d3_15(5) ] ;
N_ill_2_ndam_cld3_005=[n_damage_cl_d3_2(6) n_damage_cl_d3_5(6) n_damage_cl_d3_10(6) n_damage_cl_d3_15(6) ] ;
N_ill_1_ndam_cld3_005=[n_damage_cl_d3_2(7) n_damage_cl_d3_5(7) n_damage_cl_d3_10(7) n_damage_cl_d3_15(7) ] ;

%%Read eta=0.1
load( 'reill_data_0 .1.mat' ) ;
N_ill_50_perr_ifmnod3_01=[p_error_ifm_nod3_2(2) p_error_ifm_nod3_5(2) p_error_ifm_nod3_10(2) p_error_ifm_nod3_15(2) ] ;
N_ill_5_perr_ifmnod3_01=[p_error_ifm_nod3_2(5) p_error_ifm_nod3_5(5) p_error_ifm_nod3_10(5) p_error_ifm_nod3_15(5) ] ;
N_ill_2_perr_ifmnod3_01=[p_error_ifm_nod3_2(6) p_error_ifm_nod3_5(6) p_error_ifm_nod3_10(6) p_error_ifm_nod3_15(6) ] ;
N_ill_1_perr_ifmnod3_01=[p_error_ifm_nod3_2(7) p_error_ifm_nod3_5(7) p_error_ifm_nod3_10(7) p_error_ifm_nod3_15(7) ] ;
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N_ill_50_ndam_ifmnod3_01=[n_damage_ifm_nod3_2(2) n_damage_ifm_nod3_5(2) n_damage_ifm_nod3_10(2) n_damage_ifm_nod3_15(2)
] ;

N_ill_5_ndam_ifmnod3_01=[n_damage_ifm_nod3_2(5) n_damage_ifm_nod3_5(5) n_damage_ifm_nod3_10(5) n_damage_ifm_nod3_15(5) ] ;
N_ill_2_ndam_ifmnod3_01=[n_damage_ifm_nod3_2(6) n_damage_ifm_nod3_5(6) n_damage_ifm_nod3_10(6) n_damage_ifm_nod3_15(6) ] ;
N_ill_1_ndam_ifmnod3_01=[n_damage_ifm_nod3_2(7) n_damage_ifm_nod3_5(7) n_damage_ifm_nod3_10(7) n_damage_ifm_nod3_15(7) ] ;

N_ill_50_perr_ifmd3_01=[p_error_ifm_d3_2(2) p_error_ifm_d3_5(2) p_error_ifm_d3_10(2) p_error_ifm_d3_15(2) ] ;
N_ill_5_perr_ifmd3_01=[p_error_ifm_d3_2(5) p_error_ifm_d3_5(5) p_error_ifm_d3_10(5) p_error_ifm_d3_15(5) ] ;
N_ill_2_perr_ifmd3_01=[p_error_ifm_d3_2(6) p_error_ifm_d3_5(6) p_error_ifm_d3_10(6) p_error_ifm_d3_15(6) ] ;
N_ill_1_perr_ifmd3_01=[p_error_ifm_d3_2(7) p_error_ifm_d3_5(7) p_error_ifm_d3_10(7) p_error_ifm_d3_15(7) ] ;

N_ill_50_ndam_ifmd3_01=[n_damage_ifm_d3_2(2) n_damage_ifm_d3_5(2) n_damage_ifm_d3_10(2) n_damage_ifm_d3_15(2) ] ;
N_ill_5_ndam_ifmd3_01=[n_damage_ifm_d3_2(5) n_damage_ifm_d3_5(5) n_damage_ifm_d3_10(5) n_damage_ifm_d3_15(5) ] ;
N_ill_2_ndam_ifmd3_01=[n_damage_ifm_d3_2(6) n_damage_ifm_d3_5(6) n_damage_ifm_d3_10(6) n_damage_ifm_d3_15(6) ] ;
N_ill_1_ndam_ifmd3_01=[n_damage_ifm_d3_2(7) n_damage_ifm_d3_5(7) n_damage_ifm_d3_10(7) n_damage_ifm_d3_15(7) ] ;

N_ill_50_perr_cld3_01=[p_error_cl_d3_2(2) p_error_cl_d3_5(2) p_error_cl_d3_10(2) p_error_cl_d3_15(2) ] ;
N_ill_5_perr_cld3_01=[p_error_cl_d3_2(5) p_error_cl_d3_5(5) p_error_cl_d3_10(5) p_error_cl_d3_15(5) ] ;
N_ill_2_perr_cld3_01=[p_error_cl_d3_2(6) p_error_cl_d3_5(6) p_error_cl_d3_10(6) p_error_cl_d3_15(6) ] ;
N_ill_1_perr_cld3_01=[p_error_cl_d3_2(7) p_error_cl_d3_5(7) p_error_cl_d3_10(7) p_error_cl_d3_15(7) ] ;

N_ill_50_ndam_cld3_01=[n_damage_cl_d3_2(2) n_damage_cl_d3_5(2) n_damage_cl_d3_10(2) n_damage_cl_d3_15(2) ] ;
N_ill_5_ndam_cld3_01=[n_damage_cl_d3_2(5) n_damage_cl_d3_5(5) n_damage_cl_d3_10(5) n_damage_cl_d3_15(5) ] ;
N_ill_2_ndam_cld3_01=[n_damage_cl_d3_2(6) n_damage_cl_d3_5(6) n_damage_cl_d3_10(6) n_damage_cl_d3_15(6) ] ;
N_ill_1_ndam_cld3_01=[n_damage_cl_d3_2(7) n_damage_cl_d3_5(7) n_damage_cl_d3_10(7) n_damage_cl_d3_15(7) ] ;

%%Read eta=0.15
load( 'reill_data_0.15.mat' ) ;
N_ill_50_perr_ifmnod3_015=[p_error_ifm_nod3_2(2) p_error_ifm_nod3_5(2) p_error_ifm_nod3_10(2) p_error_ifm_nod3_15(2) ] ;
N_ill_5_perr_ifmnod3_015=[p_error_ifm_nod3_2(5) p_error_ifm_nod3_5(5) p_error_ifm_nod3_10(5) p_error_ifm_nod3_15(5) ] ;
N_ill_2_perr_ifmnod3_015=[p_error_ifm_nod3_2(6) p_error_ifm_nod3_5(6) p_error_ifm_nod3_10(6) p_error_ifm_nod3_15(6) ] ;
N_ill_1_perr_ifmnod3_015=[p_error_ifm_nod3_2(7) p_error_ifm_nod3_5(7) p_error_ifm_nod3_10(7) p_error_ifm_nod3_15(7) ] ;

N_ill_50_ndam_ifmnod3_015=[n_damage_ifm_nod3_2(2) n_damage_ifm_nod3_5(2) n_damage_ifm_nod3_10(2) n_damage_ifm_nod3_15(2)
] ;

N_ill_5_ndam_ifmnod3_015=[n_damage_ifm_nod3_2(5) n_damage_ifm_nod3_5(5) n_damage_ifm_nod3_10(5) n_damage_ifm_nod3_15(5)
] ;

N_ill_2_ndam_ifmnod3_015=[n_damage_ifm_nod3_2(6) n_damage_ifm_nod3_5(6) n_damage_ifm_nod3_10(6) n_damage_ifm_nod3_15(6)
] ;

N_ill_1_ndam_ifmnod3_015=[n_damage_ifm_nod3_2(7) n_damage_ifm_nod3_5(7) n_damage_ifm_nod3_10(7) n_damage_ifm_nod3_15(7)
] ;

N_ill_50_perr_ifmd3_015=[p_error_ifm_d3_2(2) p_error_ifm_d3_5(2) p_error_ifm_d3_10(2) p_error_ifm_d3_15(2) ] ;
N_ill_5_perr_ifmd3_015=[p_error_ifm_d3_2(5) p_error_ifm_d3_5(5) p_error_ifm_d3_10(5) p_error_ifm_d3_15(5) ] ;
N_ill_2_perr_ifmd3_015=[p_error_ifm_d3_2(6) p_error_ifm_d3_5(6) p_error_ifm_d3_10(6) p_error_ifm_d3_15(6) ] ;
N_ill_1_perr_ifmd3_015=[p_error_ifm_d3_2(7) p_error_ifm_d3_5(7) p_error_ifm_d3_10(7) p_error_ifm_d3_15(7) ] ;

N_ill_50_ndam_ifmd3_015=[n_damage_ifm_d3_2(2) n_damage_ifm_d3_5(2) n_damage_ifm_d3_10(2) n_damage_ifm_d3_15(2) ] ;
N_ill_5_ndam_ifmd3_015=[n_damage_ifm_d3_2(5) n_damage_ifm_d3_5(5) n_damage_ifm_d3_10(5) n_damage_ifm_d3_15(5) ] ;
N_ill_2_ndam_ifmd3_015=[n_damage_ifm_d3_2(6) n_damage_ifm_d3_5(6) n_damage_ifm_d3_10(6) n_damage_ifm_d3_15(6) ] ;
N_ill_1_ndam_ifmd3_015=[n_damage_ifm_d3_2(7) n_damage_ifm_d3_5(7) n_damage_ifm_d3_10(7) n_damage_ifm_d3_15(7) ] ;

N_ill_50_perr_cld3_015=[p_error_cl_d3_2(2) p_error_cl_d3_5(2) p_error_cl_d3_10(2) p_error_cl_d3_15(2) ] ;
N_ill_5_perr_cld3_015=[p_error_cl_d3_2(5) p_error_cl_d3_5(5) p_error_cl_d3_10(5) p_error_cl_d3_15(5) ] ;
N_ill_2_perr_cld3_015=[p_error_cl_d3_2(6) p_error_cl_d3_5(6) p_error_cl_d3_10(6) p_error_cl_d3_15(6) ] ;
N_ill_1_perr_cld3_015=[p_error_cl_d3_2(7) p_error_cl_d3_5(7) p_error_cl_d3_10(7) p_error_cl_d3_15(7) ] ;

N_ill_50_ndam_cld3_015=[n_damage_cl_d3_2(2) n_damage_cl_d3_5(2) n_damage_cl_d3_10(2) n_damage_cl_d3_15(2) ] ;
N_ill_5_ndam_cld3_015=[n_damage_cl_d3_2(5) n_damage_cl_d3_5(5) n_damage_cl_d3_10(5) n_damage_cl_d3_15(5) ] ;
N_ill_2_ndam_cld3_015=[n_damage_cl_d3_2(6) n_damage_cl_d3_5(6) n_damage_cl_d3_10(6) n_damage_cl_d3_15(6) ] ;
N_ill_1_ndam_cld3_015=[n_damage_cl_d3_2(7) n_damage_cl_d3_5(7) n_damage_cl_d3_10(7) n_damage_cl_d3_15(7) ] ;

%%Read eta=0.2
load( 'reill_data_0 .2.mat' ) ;
N_ill_50_perr_ifmnod3_02=[p_error_ifm_nod3_2(2) p_error_ifm_nod3_5(2) p_error_ifm_nod3_10(2) p_error_ifm_nod3_15(2) ] ;
N_ill_5_perr_ifmnod3_02=[p_error_ifm_nod3_2(5) p_error_ifm_nod3_5(5) p_error_ifm_nod3_10(5) p_error_ifm_nod3_15(5) ] ;
N_ill_2_perr_ifmnod3_02=[p_error_ifm_nod3_2(6) p_error_ifm_nod3_5(6) p_error_ifm_nod3_10(6) p_error_ifm_nod3_15(6) ] ;
N_ill_1_perr_ifmnod3_02=[p_error_ifm_nod3_2(7) p_error_ifm_nod3_5(7) p_error_ifm_nod3_10(7) p_error_ifm_nod3_15(7) ] ;

N_ill_50_ndam_ifmnod3_02=[n_damage_ifm_nod3_2(2) n_damage_ifm_nod3_5(2) n_damage_ifm_nod3_10(2) n_damage_ifm_nod3_15(2)
] ;

N_ill_5_ndam_ifmnod3_02=[n_damage_ifm_nod3_2(5) n_damage_ifm_nod3_5(5) n_damage_ifm_nod3_10(5) n_damage_ifm_nod3_15(5) ] ;
N_ill_2_ndam_ifmnod3_02=[n_damage_ifm_nod3_2(6) n_damage_ifm_nod3_5(6) n_damage_ifm_nod3_10(6) n_damage_ifm_nod3_15(6) ] ;
N_ill_1_ndam_ifmnod3_02=[n_damage_ifm_nod3_2(7) n_damage_ifm_nod3_5(7) n_damage_ifm_nod3_10(7) n_damage_ifm_nod3_15(7) ] ;

N_ill_50_perr_ifmd3_02=[p_error_ifm_d3_2(2) p_error_ifm_d3_5(2) p_error_ifm_d3_10(2) p_error_ifm_d3_15(2) ] ;
N_ill_5_perr_ifmd3_02=[p_error_ifm_d3_2(5) p_error_ifm_d3_5(5) p_error_ifm_d3_10(5) p_error_ifm_d3_15(5) ] ;
N_ill_2_perr_ifmd3_02=[p_error_ifm_d3_2(6) p_error_ifm_d3_5(6) p_error_ifm_d3_10(6) p_error_ifm_d3_15(6) ] ;
N_ill_1_perr_ifmd3_02=[p_error_ifm_d3_2(7) p_error_ifm_d3_5(7) p_error_ifm_d3_10(7) p_error_ifm_d3_15(7) ] ;

N_ill_50_ndam_ifmd3_02=[n_damage_ifm_d3_2(2) n_damage_ifm_d3_5(2) n_damage_ifm_d3_10(2) n_damage_ifm_d3_15(2) ] ;
N_ill_5_ndam_ifmd3_02=[n_damage_ifm_d3_2(5) n_damage_ifm_d3_5(5) n_damage_ifm_d3_10(5) n_damage_ifm_d3_15(5) ] ;
N_ill_2_ndam_ifmd3_02=[n_damage_ifm_d3_2(6) n_damage_ifm_d3_5(6) n_damage_ifm_d3_10(6) n_damage_ifm_d3_15(6) ] ;
N_ill_1_ndam_ifmd3_02=[n_damage_ifm_d3_2(7) n_damage_ifm_d3_5(7) n_damage_ifm_d3_10(7) n_damage_ifm_d3_15(7) ] ;

N_ill_50_perr_cld3_02=[p_error_cl_d3_2(2) p_error_cl_d3_5(2) p_error_cl_d3_10(2) p_error_cl_d3_15(2) ] ;
N_ill_5_perr_cld3_02=[p_error_cl_d3_2(5) p_error_cl_d3_5(5) p_error_cl_d3_10(5) p_error_cl_d3_15(5) ] ;
N_ill_2_perr_cld3_02=[p_error_cl_d3_2(6) p_error_cl_d3_5(6) p_error_cl_d3_10(6) p_error_cl_d3_15(6) ] ;
N_ill_1_perr_cld3_02=[p_error_cl_d3_2(7) p_error_cl_d3_5(7) p_error_cl_d3_10(7) p_error_cl_d3_15(7) ] ;

N_ill_50_ndam_cld3_02=[n_damage_cl_d3_2(2) n_damage_cl_d3_5(2) n_damage_cl_d3_10(2) n_damage_cl_d3_15(2) ] ;
N_ill_5_ndam_cld3_02=[n_damage_cl_d3_2(5) n_damage_cl_d3_5(5) n_damage_cl_d3_10(5) n_damage_cl_d3_15(5) ] ;
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N_ill_2_ndam_cld3_02=[n_damage_cl_d3_2(6) n_damage_cl_d3_5(6) n_damage_cl_d3_10(6) n_damage_cl_d3_15(6) ] ;
N_ill_1_ndam_cld3_02=[n_damage_cl_d3_2(7) n_damage_cl_d3_5(7) n_damage_cl_d3_10(7) n_damage_cl_d3_15(7) ] ;

%%Read eta=0.25
load( 'reill_data_0.25.mat' ) ;
N_ill_100_perr_ifmnod3_025=[p_error_ifm_nod3_2(1) p_error_ifm_nod3_5(1) p_error_ifm_nod3_10(1) p_error_ifm_nod3_15(1) ] ;
N_ill_50_perr_ifmnod3_025=[p_error_ifm_nod3_2(2) p_error_ifm_nod3_5(2) p_error_ifm_nod3_10(2) p_error_ifm_nod3_15(2) ] ;
N_ill_25_perr_ifmnod3_025=[p_error_ifm_nod3_2(3) p_error_ifm_nod3_5(3) p_error_ifm_nod3_10(3) p_error_ifm_nod3_15(3) ] ;
N_ill_10_perr_ifmnod3_025=[p_error_ifm_nod3_2(4) p_error_ifm_nod3_5(4) p_error_ifm_nod3_10(4) p_error_ifm_nod3_15(4) ] ;
N_ill_5_perr_ifmnod3_025=[p_error_ifm_nod3_2(5) p_error_ifm_nod3_5(5) p_error_ifm_nod3_10(5) p_error_ifm_nod3_15(5) ] ;
N_ill_2_perr_ifmnod3_025=[p_error_ifm_nod3_2(6) p_error_ifm_nod3_5(6) p_error_ifm_nod3_10(6) p_error_ifm_nod3_15(6) ] ;
N_ill_1_perr_ifmnod3_025=[p_error_ifm_nod3_2(7) p_error_ifm_nod3_5(7) p_error_ifm_nod3_10(7) p_error_ifm_nod3_15(7) ] ;

N_ill_100_ndam_ifmnod3_025=[n_damage_ifm_nod3_2(1) n_damage_ifm_nod3_5(1) n_damage_ifm_nod3_10(1) n_damage_ifm_nod3_15
(1) ] ;

N_ill_50_ndam_ifmnod3_025=[n_damage_ifm_nod3_2(2) n_damage_ifm_nod3_5(2) n_damage_ifm_nod3_10(2) n_damage_ifm_nod3_15(2)
] ;

N_ill_25_ndam_ifmnod3_025=[n_damage_ifm_nod3_2(3) n_damage_ifm_nod3_5(3) n_damage_ifm_nod3_10(3) n_damage_ifm_nod3_15(3)
] ;

N_ill_10_ndam_ifmnod3_025=[n_damage_ifm_nod3_2(4) n_damage_ifm_nod3_5(4) n_damage_ifm_nod3_10(4) n_damage_ifm_nod3_15(4)
] ;

N_ill_5_ndam_ifmnod3_025=[n_damage_ifm_nod3_2(5) n_damage_ifm_nod3_5(5) n_damage_ifm_nod3_10(5) n_damage_ifm_nod3_15(5)
] ;

N_ill_2_ndam_ifmnod3_025=[n_damage_ifm_nod3_2(6) n_damage_ifm_nod3_5(6) n_damage_ifm_nod3_10(6) n_damage_ifm_nod3_15(6)
] ;

N_ill_1_ndam_ifmnod3_025=[n_damage_ifm_nod3_2(7) n_damage_ifm_nod3_5(7) n_damage_ifm_nod3_10(7) n_damage_ifm_nod3_15(7)
] ;

N_ill_50_perr_ifmd3_025=[p_error_ifm_d3_2(2) p_error_ifm_d3_5(2) p_error_ifm_d3_10(2) p_error_ifm_d3_15(2) ] ;
N_ill_5_perr_ifmd3_025=[p_error_ifm_d3_2(5) p_error_ifm_d3_5(5) p_error_ifm_d3_10(5) p_error_ifm_d3_15(5) ] ;
N_ill_2_perr_ifmd3_025=[p_error_ifm_d3_2(6) p_error_ifm_d3_5(6) p_error_ifm_d3_10(6) p_error_ifm_d3_15(6) ] ;
N_ill_1_perr_ifmd3_025=[p_error_ifm_d3_2(7) p_error_ifm_d3_5(7) p_error_ifm_d3_10(7) p_error_ifm_d3_15(7) ] ;

N_ill_50_ndam_ifmd3_025=[n_damage_ifm_d3_2(2) n_damage_ifm_d3_5(2) n_damage_ifm_d3_10(2) n_damage_ifm_d3_15(2) ] ;
N_ill_5_ndam_ifmd3_025=[n_damage_ifm_d3_2(5) n_damage_ifm_d3_5(5) n_damage_ifm_d3_10(5) n_damage_ifm_d3_15(5) ] ;
N_ill_2_ndam_ifmd3_025=[n_damage_ifm_d3_2(6) n_damage_ifm_d3_5(6) n_damage_ifm_d3_10(6) n_damage_ifm_d3_15(6) ] ;
N_ill_1_ndam_ifmd3_025=[n_damage_ifm_d3_2(7) n_damage_ifm_d3_5(7) n_damage_ifm_d3_10(7) n_damage_ifm_d3_15(7) ] ;

N_ill_50_perr_cld3_025=[p_error_cl_d3_2(2) p_error_cl_d3_5(2) p_error_cl_d3_10(2) p_error_cl_d3_15(2) ] ;
N_ill_5_perr_cld3_025=[p_error_cl_d3_2(5) p_error_cl_d3_5(5) p_error_cl_d3_10(5) p_error_cl_d3_15(5) ] ;
N_ill_2_perr_cld3_025=[p_error_cl_d3_2(6) p_error_cl_d3_5(6) p_error_cl_d3_10(6) p_error_cl_d3_15(6) ] ;
N_ill_1_perr_cld3_025=[p_error_cl_d3_2(7) p_error_cl_d3_5(7) p_error_cl_d3_10(7) p_error_cl_d3_15(7) ] ;

N_ill_50_ndam_cld3_025=[n_damage_cl_d3_2(2) n_damage_cl_d3_5(2) n_damage_cl_d3_10(2) n_damage_cl_d3_15(2) ] ;
N_ill_5_ndam_cld3_025=[n_damage_cl_d3_2(5) n_damage_cl_d3_5(5) n_damage_cl_d3_10(5) n_damage_cl_d3_15(5) ] ;
N_ill_2_ndam_cld3_025=[n_damage_cl_d3_2(6) n_damage_cl_d3_5(6) n_damage_cl_d3_10(6) n_damage_cl_d3_15(6) ] ;
N_ill_1_ndam_cld3_025=[n_damage_cl_d3_2(7) n_damage_cl_d3_5(7) n_damage_cl_d3_10(7) n_damage_cl_d3_15(7) ] ;

%%Read eta=0.3
load( 'reill_data_0 .3.mat' ) ;
N_ill_50_perr_ifmnod3_03=[p_error_ifm_nod3_2(2) p_error_ifm_nod3_5(2) p_error_ifm_nod3_10(2) p_error_ifm_nod3_15(2) ] ;
N_ill_5_perr_ifmnod3_03=[p_error_ifm_nod3_2(5) p_error_ifm_nod3_5(5) p_error_ifm_nod3_10(5) p_error_ifm_nod3_15(5) ] ;
N_ill_2_perr_ifmnod3_03=[p_error_ifm_nod3_2(6) p_error_ifm_nod3_5(6) p_error_ifm_nod3_10(6) p_error_ifm_nod3_15(6) ] ;
N_ill_1_perr_ifmnod3_03=[p_error_ifm_nod3_2(7) p_error_ifm_nod3_5(7) p_error_ifm_nod3_10(7) p_error_ifm_nod3_15(7) ] ;

N_ill_50_ndam_ifmnod3_03=[n_damage_ifm_nod3_2(2) n_damage_ifm_nod3_5(2) n_damage_ifm_nod3_10(2) n_damage_ifm_nod3_15(2)
] ;

N_ill_5_ndam_ifmnod3_03=[n_damage_ifm_nod3_2(5) n_damage_ifm_nod3_5(5) n_damage_ifm_nod3_10(5) n_damage_ifm_nod3_15(5) ] ;
N_ill_2_ndam_ifmnod3_03=[n_damage_ifm_nod3_2(6) n_damage_ifm_nod3_5(6) n_damage_ifm_nod3_10(6) n_damage_ifm_nod3_15(6) ] ;
N_ill_1_ndam_ifmnod3_03=[n_damage_ifm_nod3_2(7) n_damage_ifm_nod3_5(7) n_damage_ifm_nod3_10(7) n_damage_ifm_nod3_15(7) ] ;

N_ill_50_perr_ifmd3_03=[p_error_ifm_d3_2(2) p_error_ifm_d3_5(2) p_error_ifm_d3_10(2) p_error_ifm_d3_15(2) ] ;
N_ill_5_perr_ifmd3_03=[p_error_ifm_d3_2(5) p_error_ifm_d3_5(5) p_error_ifm_d3_10(5) p_error_ifm_d3_15(5) ] ;
N_ill_2_perr_ifmd3_03=[p_error_ifm_d3_2(6) p_error_ifm_d3_5(6) p_error_ifm_d3_10(6) p_error_ifm_d3_15(6) ] ;
N_ill_1_perr_ifmd3_03=[p_error_ifm_d3_2(7) p_error_ifm_d3_5(7) p_error_ifm_d3_10(7) p_error_ifm_d3_15(7) ] ;

N_ill_50_ndam_ifmd3_03=[n_damage_ifm_d3_2(2) n_damage_ifm_d3_5(2) n_damage_ifm_d3_10(2) n_damage_ifm_d3_15(2) ] ;
N_ill_5_ndam_ifmd3_03=[n_damage_ifm_d3_2(5) n_damage_ifm_d3_5(5) n_damage_ifm_d3_10(5) n_damage_ifm_d3_15(5) ] ;
N_ill_2_ndam_ifmd3_03=[n_damage_ifm_d3_2(6) n_damage_ifm_d3_5(6) n_damage_ifm_d3_10(6) n_damage_ifm_d3_15(6) ] ;
N_ill_1_ndam_ifmd3_03=[n_damage_ifm_d3_2(7) n_damage_ifm_d3_5(7) n_damage_ifm_d3_10(7) n_damage_ifm_d3_15(7) ] ;

N_ill_50_perr_cld3_03=[p_error_cl_d3_2(2) p_error_cl_d3_5(2) p_error_cl_d3_10(2) p_error_cl_d3_15(2) ] ;
N_ill_5_perr_cld3_03=[p_error_cl_d3_2(5) p_error_cl_d3_5(5) p_error_cl_d3_10(5) p_error_cl_d3_15(5) ] ;
N_ill_2_perr_cld3_03=[p_error_cl_d3_2(6) p_error_cl_d3_5(6) p_error_cl_d3_10(6) p_error_cl_d3_15(6) ] ;
N_ill_1_perr_cld3_03=[p_error_cl_d3_2(7) p_error_cl_d3_5(7) p_error_cl_d3_10(7) p_error_cl_d3_15(7) ] ;

N_ill_50_ndam_cld3_03=[n_damage_cl_d3_2(2) n_damage_cl_d3_5(2) n_damage_cl_d3_10(2) n_damage_cl_d3_15(2) ] ;
N_ill_5_ndam_cld3_03=[n_damage_cl_d3_2(5) n_damage_cl_d3_5(5) n_damage_cl_d3_10(5) n_damage_cl_d3_15(5) ] ;
N_ill_2_ndam_cld3_03=[n_damage_cl_d3_2(6) n_damage_cl_d3_5(6) n_damage_cl_d3_10(6) n_damage_cl_d3_15(6) ] ;
N_ill_1_ndam_cld3_03=[n_damage_cl_d3_2(7) n_damage_cl_d3_5(7) n_damage_cl_d3_10(7) n_damage_cl_d3_15(7) ] ;

%%Read eta=0.49
load( 'reill_data_0.49.mat' ) ;
N_ill_50_perr_ifmnod3_049=p_error_ifm_nod3_5(2) ;
N_ill_5_perr_ifmnod3_049=p_error_ifm_nod3_5(5) ;
N_ill_2_perr_ifmnod3_049=p_error_ifm_nod3_5(6) ;
N_ill_1_perr_ifmnod3_049=p_error_ifm_nod3_5(7) ;

N_ill_50_ndam_ifmnod3_049=n_damage_ifm_nod3_5(2) ;
N_ill_5_ndam_ifmnod3_049=n_damage_ifm_nod3_5(5) ;
N_ill_2_ndam_ifmnod3_049=n_damage_ifm_nod3_5(6) ;
N_ill_1_ndam_ifmnod3_049=n_damage_ifm_nod3_5(7) ;
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N_ill_50_perr_ifmd3_049=p_error_ifm_d3_5(2) ;
N_ill_5_perr_ifmd3_049=p_error_ifm_d3_5(5) ;
N_ill_2_perr_ifmd3_049=p_error_ifm_d3_5(6) ;
N_ill_1_perr_ifmd3_049=p_error_ifm_d3_5(7) ;

N_ill_50_ndam_ifmd3_049=n_damage_ifm_d3_5(2) ;
N_ill_5_ndam_ifmd3_049=n_damage_ifm_d3_5(5) ;
N_ill_2_ndam_ifmd3_049=n_damage_ifm_d3_5(6) ;
N_ill_1_ndam_ifmd3_049=n_damage_ifm_d3_5(7) ;

N_ill_50_perr_cld3_049=p_error_cl_d3_5(2) ;
N_ill_5_perr_cld3_049=p_error_cl_d3_5(5) ;
N_ill_2_perr_cld3_049=p_error_cl_d3_5(6) ;
N_ill_1_perr_cld3_049=p_error_cl_d3_5(7) ;

N_ill_50_ndam_cld3_049=n_damage_cl_d3_5(2) ;
N_ill_5_ndam_cld3_049=n_damage_cl_d3_5(5) ;
N_ill_2_ndam_cld3_049=n_damage_cl_d3_5(6) ;
N_ill_1_ndam_cld3_049=n_damage_cl_d3_5(7) ;

%%
semilogy(N_ill_1_ndam_cld3_005,N_ill_1_perr_cld3_005, '−x ' , 'MarkerSize ' ,10, 'LineWidth' ,2 , 'Color ' , [0.4940 0.1840

0.5560]) ;
hold on;
semilogy(N_ill_1_ndam_ifmd3_005,N_ill_1_perr_ifmd3_005, '−x ' , 'MarkerSize ' ,10, 'LineWidth' ,2 , 'Color ' , [0.9290 0.6940

0.1250]) ;
semilogy(N_ill_10_ndam_cld3_005,N_ill_10_perr_cld3_005, '−−o ' , 'MarkerSize ' ,10, 'LineWidth' ,2 , 'Color ' , [0.4940 0.1840

0.5560]) ;
semilogy(N_ill_10_ndam_ifmd3_005,N_ill_10_perr_ifmd3_005, '−−o ' , 'MarkerSize ' ,10, 'LineWidth' ,2 , 'Color ' , [0.9290 0.6940

0.1250]) ;
%ylim([1e−5 1]) ;
xlim([0 10]) ;
%set(gca, 'YTick' ,0:0.05:0.2 , 'Fontsize ' ,18) ;
set(gca, 'XTick' ,0:1:10 , 'Fontsize ' ,18) ;
ylabel( 'P_{err} ' , 'Fontsize ' ,18) ;
xlabel( 'n_{damage} ' , 'Fontsize ' ,18) ;
lgd=legend( ' Classical , D3, single illumination ' , 'IFM, D3, single illumination ' , ' Classical , D3, conditional re−

illumination ' , 'IFM, D3, conditional re−illumination ' , 'Location ' , 'northeast ' ) ;
lgd .Box=' off ' ;
%saveas(gcf , strcat ( 'Cond_reill_fig8 ' , ' .png') ) ;
%%
x1= [N_ill_1_ndam_cld3_0(1) N_ill_2_ndam_cld3_0(1) N_ill_5_ndam_cld3_0(1) N_ill_50_ndam_cld3_0(1) ] ;
x2=[N_ill_1_ndam_ifmnod3_0(1) N_ill_2_ndam_ifmnod3_0(1) N_ill_5_ndam_ifmnod3_0(1) N_ill_50_ndam_ifmnod3_0(1) ] ;
x3=[N_ill_1_ndam_ifmd3_0(1) N_ill_2_ndam_ifmd3_0(1) N_ill_5_ndam_ifmd3_0(1) N_ill_50_ndam_ifmd3_0(1) ] ;
y1=[N_ill_1_perr_cld3_0(1) N_ill_2_perr_cld3_0(1) N_ill_5_perr_cld3_0(1) N_ill_50_perr_cld3_0(1) ] ;
y2=[N_ill_1_perr_ifmnod3_0(1) N_ill_2_perr_ifmnod3_0(1) N_ill_5_perr_ifmnod3_0(1) N_ill_50_perr_ifmnod3_0(1) ] ;
y3=[N_ill_1_perr_ifmd3_0(1) N_ill_2_perr_ifmd3_0(1) N_ill_5_perr_ifmd3_0(1) N_ill_50_perr_ifmd3_0(1) ] ;
erry1=(y1.∗(1−y1)/100000).^0.5;
erry2=(y2.∗(1−y2)/100000).^0.5;
erry3=(y3.∗(1−y3)/100000).^0.5;
errorbar(x1,y1, erry1 , '−o ' , 'MarkerSize ' ,10, 'CapSize ' ,15, 'LineWidth' ,2 , 'Color ' , [0.4940 0.1840 0.5560]) ;
hold on;
errorbar(x2,y2, erry2 , '−o ' , 'MarkerSize ' ,10, 'CapSize ' ,15, 'LineWidth' ,2 , 'Color ' , [0.8500, 0.3250, 0.0980]) ;
errorbar(x3,y3, erry3 , '−o ' , 'MarkerSize ' ,10, 'CapSize ' ,15, 'LineWidth' ,2 , 'Color ' , [0.4660, 0.6740, 0.1880]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlim([0.5 2]) ;
ylim([0 0.2]) ;
set(ax, 'YTick' ,0:0.05:0.2 , 'Fontsize ' ,18) ;
set(ax, 'XTick' ,0.5:0.25:2 , 'Fontsize ' ,18) ;
ylabel( '$P_{\textrm{err}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
xlabel( '$\bar{n}_{\textrm{damage}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
lgd=legend( ' Classical , D3' , 'IFM, no D3' , 'IFM, D3' , 'Location ' , 'northeast ' ) ;
lgd .Box=' off ' ;
lgd .FontSize=18;
%gca.LineWidth = 100;
%saveas(gcf , strcat ( 'Cond_reill_fig1_draft2 ' , ' .png') ) ;
%%
% %semilogy(ndamarr,perr_ifm_mat,n_damage_ifm_nod3_2,p_error_ifm_nod3_2, 'x−−',n_damage_ifm_nod3_5,p_error_ifm_nod3_5, 'x

−−',n_damage_ifm_nod3_8,p_error_ifm_nod3_8, 'o−−',n_damage_ifm_nod3_10,p_error_ifm_nod3_10, 'd−−','Linewidth' ,2 , '
MarkerSize' ,10) ;

% %semilogy(ndamarr,perr_ifm_mat,ndamarr,perr_ifm_d3_mat,ndamarr,perr_ifm_mat,n_damage_ifm_nod3_10,p_error_ifm_nod3_10, '
x−−',n_damage_ifm_nod3_15,p_error_ifm_nod3_15, 'd−−',n_damage_ifm_nod3_20,p_error_ifm_nod3_20, 'o−−',
n_damage_ifm_d3_10,p_error_ifm_d3_10, 'x−−',n_damage_ifm_d3_15,p_error_ifm_d3_15, 'd−−',n_damage_ifm_d3_20,
p_error_ifm_d3_20, 'o−−','Linewidth' ,2 , 'MarkerSize' ,10) ;

% plot(ndamarr,perr_cl_d3_mat, 'Linewidth' ,2) ;
% xlim([0 5]) ;
% hold on;
% plot(ndamarr,perr_ifm_d3_mat, 'Linewidth' ,2) ;
% plot(ndamarr,perr_ifm_mat, 'Linewidth' ,2 , 'Color' ,[0.4660 0.6740 0.1880] ) ;
% %plot(ndamarr,100000000000./(ndamarr) .^15 , 'Linewidth' ,2) ;
% % %xlim([0 10.1]) ;
% % %ylim([4e−6 1]) ;
% ylim([0 0.5]) ;
% set(gca, 'XTick' ,0:1:5 , ' Fontsize ' ,14) ;
% xlabel ( 'n_{damage} ' , 'Fontsize ' ,14) ;
% ylabel ( 'P_{err } ' , 'Fontsize ' ,14) ;
% %lgd=legend( 'IFM, D3, single i l l . , theory ' , 'IFM, no D3, single i l l . , theory ' , 'IFM, no D3, cond. r e i l l . , MC, dose

=2','IFM, no D3, cond. r e i l l . , MC, dose=5','IFM, no D3, cond. r e i l l . , MC, dose=10','IFM, no D3, cond. r e i l l . , MC,
dose=50','IFM, no D3, cond. r e i l l . , MC, dose=100','Location ' , ' southwest ') ;
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% %lgd=legend( ' Classical , no D3, single i l l . , theory ' , ' Classical , no D3, cond. r e i l l . , MC, dose=2', ' Classical , no D3,
cond. r e i l l . , MC, dose=5','Classical , no D3, cond. r e i l l . , MC, dose=8','Classical , no D3, cond. r e i l l . , MC, dose
=10','Location ' , ' northeast ') ;

% %lgd=legend( ' Classical , D3, single i l l . , theory ' , 'IFM, D3, single i l l . , theory ' , 'IFM, no D3, single i l l . , theory ' , 'IFM
, no D3,cond. r e i l l . , MC, dose=10', 'IFM, D3, cond. r e i l l . , MC, dose=15','IFM, no D3, cond. r e i l l . , MC, dose=20','
IFM, D3, cond. r e i l l . , MC, dose=10','IFM, D3, cond. r e i l l . , MC, dose=15','IFM, D3, cond. r e i l l . , MC, dose=20','
Location ' , ' southwest ') ;

% lgd=legend( ' Classical , D3, single i l l . , theory ' , 'IFM, D3, single i l l . , theory ' , 'IFM, no D3, single i l l . , theory ') ;
% lgd .Box='off ' ;
% saveas(gcf , strcat ( 'Cond_reill_theory ' , ' .png') ) ;
%%
figure () ; plot(eta , [N_ill_50_ndam_cld3_0(end−1) N_ill_50_ndam_cld3_005(end−1) N_ill_50_ndam_cld3_01(end−1)

N_ill_50_ndam_cld3_015(end−1) N_ill_50_ndam_cld3_02(end−1) N_ill_50_ndam_cld3_025(end−1) N_ill_50_ndam_cld3_03(end
−1) N_ill_50_ndam_cld3_049] , 'o−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

hold on;
plot(eta , [N_ill_50_ndam_ifmnod3_0(end−1) N_ill_50_ndam_ifmnod3_005(end−1) N_ill_50_ndam_ifmnod3_01(end−1)

N_ill_50_ndam_ifmnod3_015(end−1) N_ill_50_ndam_ifmnod3_02(end−1) N_ill_50_ndam_ifmnod3_025(end−1)
N_ill_50_ndam_ifmnod3_03(end−1) N_ill_50_ndam_ifmnod3_049] , 'x−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

plot(eta , [N_ill_50_ndam_ifmd3_0(end−1) N_ill_50_ndam_ifmd3_005(end−1) N_ill_50_ndam_ifmd3_01(end−1)
N_ill_50_ndam_ifmd3_015(end−1) N_ill_50_ndam_ifmd3_02(end−1) N_ill_50_ndam_ifmd3_025(end−1) N_ill_50_ndam_ifmd3_03
(end−1) N_ill_50_ndam_ifmd3_049] , 'd−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

hold off ;
xlim([0 0.5]) ;
ylim([0 2])
set(gca, 'XTick' ,0:0.05:0.5 , 'Fontsize ' ,14) ;
xlabel( '\epsilon (error threshold) ' , 'Fontsize ' ,14) ;
ylabel( 'n_{damage} ' , 'Fontsize ' ,14) ;
lgd=legend( ' Classical , D3' , 'IFM, no D3' , 'IFM, D3' , 'Location ' , 'northeast ' ) ;
lgd .Box=' off ' ;
%saveas(gcf , strcat ( 'Cond_reill_epsilon_damage' , ' .png') ) ;

figure () ; plot(eta , [N_ill_50_perr_cld3_0(end−1) N_ill_50_perr_cld3_005(end−1) N_ill_50_perr_cld3_01(end−1)
N_ill_50_perr_cld3_015(end−1) N_ill_50_perr_cld3_02(end−1) N_ill_50_perr_cld3_025(end−1) N_ill_50_perr_cld3_03(end
−1) N_ill_50_perr_cld3_049] , 'o−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

hold on;
plot(eta , [N_ill_50_perr_ifmnod3_0(end−1) N_ill_50_perr_ifmnod3_005(end−1) N_ill_50_perr_ifmnod3_01(end−1)

N_ill_50_perr_ifmnod3_015(end−1) N_ill_50_perr_ifmnod3_02(end−1) N_ill_50_perr_ifmnod3_025(end−1)
N_ill_50_perr_ifmnod3_03(end−1) N_ill_50_perr_ifmnod3_049] , 'x−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

plot(eta , [N_ill_50_perr_ifmd3_0(end−1) N_ill_50_perr_ifmd3_005(end−1) N_ill_50_perr_ifmd3_01(end−1)
N_ill_50_perr_ifmd3_015(end−1) N_ill_50_perr_ifmd3_02(end−1) N_ill_50_perr_ifmd3_025(end−1) N_ill_50_perr_ifmd3_03
(end−1) N_ill_50_perr_ifmd3_049] , 'd−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

hold off ;
xlim([0 0.5]) ;
ylim([0 0.5]) ;
set(gca, 'XTick' ,0:0.05:0.5 , 'Fontsize ' ,14) ;
xlabel( '\epsilon (error threshold) ' , 'Fontsize ' ,14) ;
ylabel( 'P_{err} ' , 'Fontsize ' ,14) ;
lgd=legend( ' Classical , D3' , 'IFM, no D3' , 'IFM, D3' , 'Location ' , 'northeast ' ) ;
lgd .Box=' off ' ;
%saveas(gcf , strcat ( 'Cond_reill_epsilon_error ' , ' .png') ) ;
%%
figure () ; semilogx ([N_ill_50_perr_cld3_0(end−1) N_ill_50_perr_cld3_005(end−1) N_ill_50_perr_cld3_01(end−1)

N_ill_50_perr_cld3_015(end−1) N_ill_50_perr_cld3_02(end−1) N_ill_50_perr_cld3_025(end−1) N_ill_50_perr_cld3_03(end
−1) N_ill_50_perr_cld3_049] , [N_ill_50_ndam_cld3_0(end−1) N_ill_50_ndam_cld3_005(end−1) N_ill_50_ndam_cld3_01(end
−1) N_ill_50_ndam_cld3_015(end−1) N_ill_50_ndam_cld3_02(end−1) N_ill_50_ndam_cld3_025(end−1) N_ill_50_ndam_cld3_03
(end−1) N_ill_50_ndam_cld3_049] , 'o−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

hold on;
semilogx ([N_ill_50_perr_ifmnod3_0(end−1) N_ill_50_perr_ifmnod3_005(end−1) N_ill_50_perr_ifmnod3_01(end−1)

N_ill_50_perr_ifmnod3_015(end−1) N_ill_50_perr_ifmnod3_02(end−1) N_ill_50_perr_ifmnod3_025(end−1)
N_ill_50_perr_ifmnod3_03(end−1) N_ill_50_perr_ifmnod3_049] , [N_ill_50_ndam_ifmnod3_0(end−1)
N_ill_50_ndam_ifmnod3_005(end−1) N_ill_50_ndam_ifmnod3_01(end−1) N_ill_50_ndam_ifmnod3_015(end−1)
N_ill_50_ndam_ifmnod3_02(end−1) N_ill_50_ndam_ifmnod3_025(end−1) N_ill_50_ndam_ifmnod3_03(end−1)
N_ill_50_ndam_ifmnod3_049] , 'x−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

semilogx ([N_ill_50_perr_ifmd3_0(end−1) N_ill_50_perr_ifmd3_005(end−1) N_ill_50_perr_ifmd3_01(end−1)
N_ill_50_perr_ifmd3_015(end−1) N_ill_50_perr_ifmd3_02(end−1) N_ill_50_perr_ifmd3_025(end−1) N_ill_50_perr_ifmd3_03
(end−1) N_ill_50_perr_ifmd3_049] , [N_ill_50_ndam_ifmd3_0(end−1) N_ill_50_ndam_ifmd3_005(end−1)
N_ill_50_ndam_ifmd3_01(end−1) N_ill_50_ndam_ifmd3_015(end−1) N_ill_50_ndam_ifmd3_02(end−1) N_ill_50_ndam_ifmd3_025
(end−1) N_ill_50_ndam_ifmd3_03(end−1) N_ill_50_ndam_ifmd3_049] , 'd−−' , 'Linewidth ' ,2 , 'MarkerSize ' ,10) ;

xlim([1e−5 0.5]) ;
ylim([0 2])
%set(gca, 'XTick' ,1e−5:0.01:0.5 , 'Fontsize ' ,14) ;
ylabel( 'n_{damage} ' , 'Fontsize ' ,14) ;
xlabel( 'P_{err} ' , 'Fontsize ' ,14) ;
lgd=legend( ' Classical , D3' , 'IFM, no D3' , 'IFM, D3' , 'Location ' , 'northeast ' ) ;
lgd .Box=' off ' ;
%saveas(gcf , strcat ( 'Cond_reill_epsilon_error_damage' , ' .png') ) ;
%%
n_ill=[1 2 5 10 25 50 100];
plot(n_ill , [N_ill_1_ndam_ifmnod3_005(3) ,N_ill_2_ndam_ifmnod3_005(3) ,N_ill_5_ndam_ifmnod3_005(3) ,

N_ill_10_ndam_ifmnod3_005(3) ,N_ill_25_ndam_ifmnod3_005(3) ,N_ill_50_ndam_ifmnod3_005(3) ,N_ill_100_ndam_ifmnod3_005
(3) ] , '−−o ' ,n_ill , [N_ill_1_ndam_ifmnod3_025(3) ,N_ill_2_ndam_ifmnod3_025(3) ,N_ill_5_ndam_ifmnod3_025(3) ,
N_ill_10_ndam_ifmnod3_025(3) ,N_ill_25_ndam_ifmnod3_025(3) ,N_ill_50_ndam_ifmnod3_025(3) ,N_ill_100_ndam_ifmnod3_025
(3) ] , '−−o ' , 'LineWidth' ,2 , 'MarkerSize ' ,10) ;

xlim([0 100]) ;
ylim([0 5]) ;
ylabel( '$\bar{n}_{\textrm{damage}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
xlabel( 'Maximum number of illuminations($NI_{\textrm{max}}$) ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
%lgd=legend('\epsilon=0.05','\epsilon=0.25') ;
%lgd .Box='off ' ;
%lgd .FontSize=18;
ax=gca;
ax.TickLength=[0.01, 0.01];
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ax.LineWidth = 2;
set(ax, 'XTick' ,0:10:100 , 'Fontsize ' ,18) ;
saveas(gcf , strcat( 'Cond_reill_nill_damage ' , ' .png' )) ;
figure () ; plot(n_ill , [N_ill_1_perr_ifmnod3_005(3) ,N_ill_2_perr_ifmnod3_005(3) ,N_ill_5_perr_ifmnod3_005(3) ,

N_ill_10_perr_ifmnod3_005(3) ,N_ill_25_perr_ifmnod3_005(3) ,N_ill_50_perr_ifmnod3_005(3) ,N_ill_100_perr_ifmnod3_005
(3) ] , '−−o ' ,n_ill , [N_ill_1_perr_ifmnod3_025(3) ,N_ill_2_perr_ifmnod3_025(3) ,N_ill_5_perr_ifmnod3_025(3) ,
N_ill_10_perr_ifmnod3_025(3) ,N_ill_25_perr_ifmnod3_025(3) ,N_ill_50_perr_ifmnod3_025(3) ,N_ill_100_perr_ifmnod3_025
(3) ] , '−−o ' , 'LineWidth' ,2 , 'MarkerSize ' ,10) ;

xlim([0 100]) ;
ylim([0 0.2]) ;
ylabel( '$P_{\textrm{err}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
xlabel( 'Maximum number of illuminations($NI_{\textrm{max}}$) ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
lgd=legend( '\epsilon=0.05 ' , '\epsilon=0.25 ' ) ;
lgd .Box=' off ' ;
lgd .FontSize=18;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,0:10:100 , 'Fontsize ' ,18) ;
%saveas(gcf , strcat ( 'Cond_reill_nill_error ' , ' .png') ) ;
%%
semilogy(N_ill_1_ndam_cld3_005,N_ill_1_perr_cld3_005, '−x ' , 'LineWidth' ,2 , 'MarkerSize ' ,10, 'Color ' ,[0.4940 0.1840

0.5560]) ;
hold on;
semilogy(N_ill_1_ndam_ifmd3_005,N_ill_1_perr_ifmd3_005, '−x ' , 'LineWidth' ,2 , 'MarkerSize ' ,10, 'Color ' ,[0.4660 , 0.6740,

0.1880]) ;
semilogy(N_ill_10_ndam_cld3_005, [N_ill_10_perr_cld3_005(1:2) 1e−5 0] , '−−o ' , 'LineWidth' ,2 , 'MarkerSize ' ,10, 'Color ' ,[0.4940

0.1840 0.5560]) ;
semilogy(N_ill_10_ndam_ifmd3_005,N_ill_10_perr_ifmd3_005, '−−o ' , 'LineWidth' ,2 , 'MarkerSize ' ,10, 'Color ' ,[0.4660 , 0.6740,

0.1880]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,0:1:10 , 'Fontsize ' ,18) ;
xlabel( '$\bar{n}_{\textrm{damage}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
ylabel( '$P_{\textrm{err}}$ ' , 'Fontsize ' ,18, ' Interpreter ' , 'Latex ' ) ;
lgd=legend( ' Classical , $D_3$, single i l l . ' , 'IFM, $D_3$, single i l l . ' , ' Classical , $D_3$, conditional re−i l l . ' , 'IFM, $D_3

$, conditional re−i l l . ' ) ;
lgd .Box=' off ' ;
lgd .FontSize=18;
lgd . Interpreter='Latex ' ;
%saveas(gcf , strcat ( 'Cond_reill_damage_error_comp' , ' .png') ) ;
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D.2 MATLAB code for chapter 3

The function meanabsrelerr.m was used by the script image_contrast _mean-
error.m to generate the noisy images and calculate MARE in Figure 3-2. The same
script was also used to calculate contrast in Figure 3-1. The script Image_autocorr
_noise.m was used to caluculate SNR from image autocorrelation in Figure 3-3.

%%−−−−−−−−−−−−meanabrelserr.m−−−−−−−−−%%
% This function generates a n_rep noisy images using the pixel values of a given
%image (im) as the ground truth . The final noisy image is the average of al l
%n_rep images. The function outputs the mean absolute relative error (mae)
function [mae,im_poisson]=meanabserr(im,n_rep)
im=im/100;
im=im(1:600 ,:) ;
im_poisson=zeros(600,1024) ;
tic ;
parfor i=1:600

for j=1:1024
prv=poissrnd(im( i , j ) , [n_rep 1]) ;
im_poisson( i , j )=mean(prv) ;

end
end
mae=mean(mean(abs((im_poisson−im))))/mean(mean(im)) ;
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%%−−−−−−−−−−−−image_contrast_meanerror.m−−−−−−−−−%%
%This code calculates the contrast and MARE. To calculate
%contrast this code scales a given image by a scale value . To
%calculate MARE this code calls the function meanabsrelerr .m.
clear ; clc ;

%% Contrast
im=double(imread( 'img01. t i f ' )) ;
scale_vals=1:0.1:2;
[~ , sz]=size (scale_vals) ;
im=im(1:600 ,:) ;
cts=zeros(1,256) ;
[ r , c,~]=find(im>=84);
[n_high,~]=size (r) ;

K=zeros(1 ,sz) ;
for k=1:sz

im_mod=im;
sum_high=0;

for i=1:n_high
im_mod(r( i ) ,c( i ))=im(r( i ) ,c( i ))/scale_vals(k) ;
sum_high=sum_high+im_mod(r( i ) ,c( i )) ;

end
sum_low=sum(sum(im_mod))−sum_high;
n_low=600∗1024−n_high;
mean_low=sum_low/n_low;
mean_high=sum_high/n_high;
K(k)=(mean_high−mean_low)/(mean_high+mean_low) ;
end
plot(scale_vals ,K, 'LineWidth' ,2 , 'Color ' , 'black ' ) ;
xlim([1 4]) ;
ylim([0 0.7]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( ' scale factor ' , 'FontSize ' ,18) ;
ylabel( 'contrast (K) ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,1:0.5:4 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.1:0.7 , 'FontSize ' ,18) ;
hold on

%% Plotting sample images for contrast figure in chapter 2
imagesc(im_mod) ;
colormap gray
caxis ([0 255]) ;
axis off

%% Absolute error
im=double(imread( 'img02. t i f ' )) ;
n_max=5;
mae=zeros(1 ,n_max) ;
for i=1:n_max

[mae( i ) ,im_poisson]=meanabserr(im, i ) ;
i

end
%% abserr plot for chapter 2
plot(1:100,mae, 'LineWidth' ,2 , 'Color ' , 'black ' ) ;
xlim([1 100]) ;
ylim([0 0.9]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'number of trials ' , 'FontSize ' ,18) ;
ylabel( 'mean absolute error ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:20:100 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.2:0.8 , 'FontSize ' ,18) ;
hold on

%% images for abserr in chapter 2
imagesc(double(im(1:600 ,:) )/100) ;
%imagesc(im_poisson)
colormap gray
caxis ([0 2.5]) ;
axis off
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%%−−−−−−−−−−−−Image_autocorr_noise_image.m−−−−−−−−−%%
% This code calculates the autocorrelation of a given image and uses the
% sharp peak at zero offset to find the SNR as described in chapter 3. It
% also finds a least−squares f i t line for the SNR values at different pixel
% dwell times
im_sz=768;
sz_files=7;
start_file_no=8;
SNR=zeros(1 , sz_files ) ;
a=zeros(1 , sz_files ) ;
lambda_autocorr=zeros(1 , sz_files ) ;
lambda_hist=zeros(1 , sz_files ) ;
lambda_diff=zeros(1 , sz_files ) ;
sz_fit=3;
tic ;
ctr=1;
%scan_times=[28/3.6 15/3.6 7.5/3.6 1 1.8/3.6 1/3.6];
%scan_times=[1/3.6 1.8/3.6 1 7.5/3.6 15/3.6 28/3.6];
scan_times=1∗ones(1 , sz_files ) ;
for i=start_file_no : start_file_no+sz_files−1

i
nf_im=double(imread(strcat( 'img' ,num2str( i , '%02d' ) , ' . t i f ' ))) ;
test_im=nf_im(1:im_sz,1:im_sz) ;
test_im_mean=mean(mean(test_im)) ;
test_im=test_im−test_im_mean;
noise_corr=xcorr2(test_im,test_im)/im_sz/im_sz;
%noise_corr=noise_corr+test_im_mean^2;
[~ ,corr_sz]=size (noise_corr) ;

%plot(noise_corr(im_sz−im_sz/2:im_sz+im_sz/2,im_sz)) ;
%hold on;
fit_pts=noise_corr(im_sz−sz_fit :im_sz−1,im_sz) ;
x_fit=im_sz−sz_fit :im_sz−1;
fit_interp=polyfit (x_fit ' , fit_pts ,1) ;
x_interp=im_sz−sz_fit :im_sz;
nf_fit=fit_interp(1)∗x_interp+fit_interp(2) ;
phi_nf=nf_fit(end) ;
phi=noise_corr(im_sz,im_sz) ;
phi_noise=phi−phi_nf;
SNR(ctr)=phi_nf/phi_noise ;
v1=noise_corr(im_sz,im_sz)−noise_corr(im_sz,im_sz−1);
v2=noise_corr(im_sz,im_sz−1);
lambda_autocorr(ctr)=v2/v1;
a(ctr)=(v1/lambda_autocorr(ctr)) ^0.5;
lambda_hist(ctr)=hist_mean(nf_im) ;
lambda_hist(ctr)=lambda_hist(ctr)∗scan_times(ctr) ;
lambda_diff(ctr)=(lambda_autocorr(ctr)−lambda_hist(ctr))/lambda_hist(ctr) ;
ctr=ctr+1;

end
toc ;

%% Error fitting
%[~ ,~ ,lambda_hist]=find(lambda_hist) ;
%[~ ,~ ,lambda_diff]=find(lambda_diff) ;
%SNR_p=SNR(1:4) ;
scan_t=[0.44 1 1.8 3.6 7.5 15 28]; %0.28 0.52
SNR_fitp=polyfit (scan_t,SNR,1) ;
SNR_fit=SNR_fitp(1)∗scan_t+SNR_fitp(2) ;
%lambda_diff_fc=polyfit (lambda_hist, lambda_diff,1) ;
%lambda_diff_fit=lambda_diff_fc(1)∗lambda_hist+lambda_diff_fc(2) ;
plt=plot(scan_t, SNR, 'o ' ,scan_t,SNR_fit, 'LineWidth' ,2 , 'Markersize ' ,8 , 'Color ' , 'black ' ) ;
%plt=plot(lambda_hist, lambda_diff , 'o' ,lambda_hist, lambda_diff_fit , 'LineWidth' ,2 , 'Markersize ' ,8 , 'Color ' , ' black ') ;
%xlim([0.8 3.3]) ;
%ylim([0 0.4]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( ' pixel dwell time (\mus) ' , 'FontSize ' ,18) ;
ylabel( 'SNR' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:5:30 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.5:1.5 , 'FontSize ' ,18) ;
hold on;
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D.3 MATLAB code for chapter 4

The script SE_image_histograms.m was used to generate the image histograms
in Figure 4-1, 4-2, 4-3, 4-4, 4-5, and 4-7 and calculate the associated histogram
mean brightnesses. The script SEM_histogram_DQE.m was used to calculate
and plot mean SE counts and extract DQE in figures 4-4 and 4-5. The script
SEM_oscilloscope _imaging_peak_stats.m was used for plotting the SE de-
tector signal pulses, and pulse height and width histograms in Figure 4-6. The oscil-
loscope histograms in Figure 4-7 were generated on the oscilloscope directly.

%%−−−−−−−−−−−−SE_image_histograms.m−−−−−−−−−%%
% This code calculates and plots the histogram of 8−bit SEM images and also
% calculates the mean SE count for the histogram.

clear ; clc ;
no_peaks=3;
%peak0=64; %in−lens
%peak_means=[75 87]; %in−lens
peak0=44; %SE2
peak_means=[58 73 88]; %SE2 % Positions of 1, 2 and 3 SE peaks
%pw1=5;
%peak_widths=[pw1 2∗pw1 4∗pw1] ;
peak_gap=peak_means(2)−peak_means(1) ;
img=(imread( 'img05. t i f ' )) ;
%img=ct_image_avg;
grid=0:255;
cts=zeros(1,256) ;
for i=1:600

for j=1:1024
cts(img( i , j )+1)=cts(img( i , j )+1)+1;

end
end
cts=cts/sum(cts) ;
%cts=cts/cts(45) ;
grid2=grid/peak_gap;
mean_cts_pdf=(sum(grid2.∗ cts)−peak0/peak_gap) ;
%
plot(grid , cts , '−. ' , 'LineWidth' ,2) ;
hold on;
xlim([0 150]) ;
ylim([0 0.085]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'brightness ' , 'FontSize ' ,18) ;
ylabel( 'counts(normalized) ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:30:250 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.02:0.08 , 'FontSize ' ,18) ;
%%
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%%−−−−−−−−−−−−SEM_histogram_DQE.m−−−−−−−−−%%
% This code finds the mean SE counts for image histograms at different beam
% currents and extracts DQE from the slope of the mean SE number vs beam
% current plot . The fitting can be performed over a subset of al l the
% available beam currents (in the chapter we fitted for beam currents below
% 5.5 pA)
clear ; clc ;
filenos=30:−2:2;

%filenos=[111 113 116 118 120 122 124 126 128];
%filenos=filenos+1;
%filenos=1;
[~ , sz]=size ( filenos ) ;
mean_ct=zeros(sz ,1) ;
%peaks=[44 58 73];
peaks=[64 75 87];
for i=1:sz

filename=strcat( 'img' ,num2str( filenos ( i ) , '%02d' ) , ' . t i f ' ) ;
img=imread(filename) ;
mean_ct( i )=mean_hist_counts(peaks(1) ,peaks(2) ,peaks(3) ,img) ;

end
dqe=mean_ct/6.25/3.6/2.35/0.2;

%% fitting and plotting
beam_I=[0.5 1.05 2.25 3.3 3.88 4.25 4.55 4.88 5.2 5.55 5.95 6.35 6.8 7.25 7.75];
beam_I_fit=[0.5 1.05 2.25 3.3 3.88 4.25 4.55 4.88];
mean_ct_fit=mean_ct(1:8) ;
%WD=[34 32 28 24 20 18 16 14 13];
SE_fit=polyfit (beam_I_fit' ,mean_ct_fit,1) ;
SE_fit_line=SE_fit(1)∗beam_I+SE_fit(2) ;
plot(beam_I,mean_ct, 'o ' ,beam_I,SE_fit_line , 'Color ' , 'black ' , 'MarkerSize ' ,8 , 'LineWidth' ,2) ;
%plot(WD,dqe, 'o' , 'Color ' , ' black ' , 'MarkerSize' ,8 , 'LineWidth' ,2) ;
xlim([0 8]) ;
ylim([0 6]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'beam current {\it I} (pA) ' , 'FontSize ' ,18) ;
%xlabel ( 'working distance (mm) ' , 'FontSize' ,18) ;
ylabel( 'mean SE number' , 'FontSize ' ,18) ;
%ylabel ( 'DQE' , 'FontSize' ,18) ;
set(ax, 'XTick' ,0:1:8 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:1:6 , 'FontSize ' ,18) ;
hold on;
DQE=SE_fit(1)/6.25/3.6/0.2;
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%%−−−−−−−−−−−−SEM_oscilloscope_imaging_peak_stats.m−−−−−−−−−%%
% This code reads the SE detector and scan signals and calculates the
% width and height histograms of the detector pulses . It plots the SE
% detector waveform and the width and height histograms .
clear ; clc ;
scan=load( 'C3exp00011.dat ' ) ;
pulses=load( 'C1exp00011.dat ' ) ;
filenos=0:0;
[~ , sz_fi]=size ( filenos ) ;
no_ppl=48;
no_lines=47;
start_first=−30.2761e−6;
end_first=−3.5361e−6;
gap=70.40e−6;
%img=imread( 'img12. tif ') ;
ct_image_avg=zeros(no_ppl, no_lines) ;
int_image_avg=zeros(no_ppl, no_lines) ;
pulse_counting_threshold=2;

%h = fspecial ( 'average ' , [1 5]) ;
%%
ctr=0;
for f i=1:sz_fi

%scan_filename=strcat ( 'C4pulses1_000' ,num2str( filenos ( f i ),'%02d') , ' .dat ') ;
%pulses_filename=strcat ( 'C1pulses1_000' ,num2str( filenos ( f i ),'%02d') , ' .dat ') ;
%scan=load(scan_filename) ;
%pulses=load(pulses_filename) ;
sz_scan=size (scan,1) ;
pklocs=zeros(1 ,sz_scan) ;

% scan_dur=zeros(1 ,sz_scan) ;
% true_pulses=zeros(1 ,sz_scan) ;
% pulse_edges=zeros(1 ,sz_scan) ;
% pixel_edges=zeros(1 ,sz_scan) ;
% int_image=zeros(no_ppl, no_lines) ;
% ct_image=zeros(no_ppl, no_lines) ;
% for i=1:no_lines
% t_s=find(scan(: ,1)>=start_first+(i−1)∗gap,1) ;
% t_e=find(scan(: ,1)>=end_first+(i−1)∗gap,1) ;
% scan_dur_pixels( i )=t_e−t_s;
% pixel_dwell_pixels( i )=floor (scan_dur_pixels( i )/no_ppl) ;
% pixel_dwell_last_pixels( i )=scan_dur_pixels( i )−pixel_dwell_pixels( i )∗(no_ppl−1);
% scan_dur(t_s:t_e)=1;
% true_pulses(t_s:t_e)=pulses(t_s:t_e,2) ;
% for k=t_s:t_e
% i f (pulses(k,2)>pulse_counting_threshold && pulses(k−1,2)<pulse_counting_threshold && pulses(k+1,2)>

pulse_counting_threshold)
% pulse_edges(k)=1;
% end
% end
% for j=1:no_ppl−1
% start_index=t_s+(j−1)∗(pixel_dwell_pixels( i )) ;
% end_index=t_s+j∗pixel_dwell_pixels( i )−1;
% pixel_edges(start_index :end_index)=mod(j ,2) ;
% int_image(j , i )=sum(pulses(start_index :end_index,2) ) ;
% ct_image(j , i )=sum(pulse_edges(start_index :end_index)) ;
% %for k=t_s+(j−1)∗pixel_dwell_pixels+3:t_s+j∗pixel_dwell_pixels−3
% %i f (pulses(k,2)>3 && pulses(k−1,2)<3 && pulses(k+1,2)>3)
% %pulse_edges(k)=5;
% %ct_image(j , i )=ct_image(j , i )+1;
% %end
% %end
% end
% int_image(no_ppl, i )=sum(pulses(end_index+1:t_e,2) ) ;
% ct_image(no_ppl, i )=sum(pulse_edges(end_index+1:t_e)) ;
% end
% ct_image_avg=ct_image_avg+ct_image;
% int_image_avg=int_image_avg+int_image;

%figure () ;
%fig=imagesc(ct_image_avg) ;
%colormap gray;
%saveas( fig , strcat ( 'image' ,num2str( fi ,'%01d') , ' .png') ) ;
%pause(1) ;
%int_image_gray=mat2gray(int_image) ;
%int_image=mean(mean(ct_image))/mean(mean(int_image))∗int_image;
f i

%filt_true_pulses=fi lter2 (h, true_pulses) ;
[pks, locs ,widths]=findpeaks(pulses (: ,2) , 'MinPeakHeight' ,1 , 'MinPeakProminence' ,1 , 'WidthReference ' , ' halfheight ' ) ;
[npeaks,~]=size (pks) ;
widths=widths∗10e−9;
pks_all(ctr+1:ctr+npeaks)=pks;
widths_all(ctr+1:ctr+npeaks)=widths;
ctr=ctr+npeaks;
pklocs( locs)=5;
npeaks

end
%%
[width_hist , edges]=histcounts(widths_all , 'BinWidth' ,10e−9);
width_pts=10e−9:10e−9:760e−9;
%f=f i t (width_pts. ' ,width_hist . ' , 'gauss1 ') ;
%width_fit=feval( f ,width_pts) ;
plot(width_pts/1e−9,width_hist , '−' , 'LineWidth' ,2) ;
%%
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[ height_hist , edges]=histcounts(pks, 'BinWidth' ,0.1) ;
height_pts=1.05:0.1:5.95;
%f=f i t (width_pts. ' ,width_hist . ' , 'gauss1 ') ;
%width_fit=feval( f ,width_pts) ;
plot(height_pts , height_hist/max(height_hist) , '−' , 'LineWidth' ,2 , 'Color ' , 'black ' ) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'pulse height (V) ' , 'FontSize ' ,18) ;
ylabel( 'counts(normalized) ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:1:6 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.2:1 , 'FontSize ' ,18) ;
%%

%ct_image_avg=ct_image_avg;
%int_image_avg=mean(mean(ct_image_avg))/mean(mean(int_image_avg))∗int_image_avg;
%%
%plot(scan(: ,1)/1e−6,true_pulses (:) ,scan(: ,1)/1e−6,pulse_edges(:) ,scan(: ,1)/1e−6,pixel_edges (:) ) ;
%plot(scan(: ,1)/1e−6,scan(: ,2) ,scan(: ,1)/1e−6,scan_dur) ;
plot(scan(: ,1)/1e−6,pulses (: ,2) , 'LineWidth' ,1) ;
xlim([250 300]) ;
ylim([−1 6]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'time (\mus) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,250:10:300, 'FontSize ' ,18) ;
set(ax, 'YTick' ,−1:1:6, 'FontSize ' ,18) ;
%%
%figure () ; fig=imagesc(img) ;
% colormap gray
%saveas( fig , ' imageorg.png') ;
% figure () ; imagesc(int_image_avg') ;
% colormap gray
% figure () ; imagesc(ct_image_avg') ;

%colormap gray
%hold on;
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D.4 MATLAB code for chapter 5

The script SEM_scan_plots.m was used to generate plots of the SEM scan wave-
forms in Figure 5-1. The script SEM_oscilloscope_imaging_averagingv2.m
was used to generate the SEM scan and SE detector waveform images in Figure 5-
3 and the in-chamber SE count and conventional images in Figure 5-4. Script
SEM_oscilloscope_imaging_averaging_two_det.m was used to generate the
SE count images in Figure 5-5. This script used the functions scanalign2.m, scan-
gap.m, and scanpixels.m. The scripts mean_variance_total.m and mean
_variance_partial.m were used to generate the count and conventional image
histograms, contrast and SNR plots in Figure 5-5 as well as the SE probability dis-
tribution plots in Figure 5-6. The script cond_reill_SEM.m was used to generate
the conditional re-illumination SE count images in Figure 5-7 and the MARE and
SNR plots comparing the two re-illumination schemes in Figure 5-8.

%%−−−−−−−−−−−−SE_scan_plots.m−−−−−−−−−%%
% This code plots the SEM scan waveforms
clear ; clc ;
scan1=load( 'C3exp00012.dat ' ) ;
pulses1=load( 'C1exp00012.dat ' ) ;
%scan1=load( 'C1 red300005.dat ') ;
%scan2=load( 'C1 red300007.dat ') ;
%% Subplot of horizontal and vertical scan (300006 and 300007 from 10/3)
subplot(2 ,1 ,1) ;
plot(scan1(: ,1)+0.33565,scan1(: ,2) , 'Color ' , 'black ' ) ; %−0.33565 −0.15428
xlim([−0.1 0.65])
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,−0.1:0.1:0.7 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0.5:0.5:1.5 , 'FontSize ' ,18) ;
%xlabel ( 'time (ms) ' , 'FontSize' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;
subplot(2 ,1 ,2) ;
plot(scan2(: ,1)+0.15428,scan2(: ,2) , 'Color ' , 'black ' ) ; %−0.33565 −0.15428
xlim([−0.1 0.65])
ylim([0 0.5]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,−0.1:0.1:0.7 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.2:0.4 , 'FontSize ' ,18) ;
xlabel( 'time (s) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;
%hold on;
%% For plotting first few lines from 30005
plot((scan1(: ,1)+0.081)∗1e3 ,scan1(: ,2) , 'Color ' , 'black ' , 'LineWidth' ,1) ; %
xlim([0 20]) ;
ylim([0.4 1.8]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,0:5:20 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0.5:0.5:1.5 , 'FontSize ' ,18) ;
xlabel( 'time (ms) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;

%% For plotting one line showing pixels from 30004
plot((scan1(: ,1)−0.0092767)∗1e3 ,scan1(: ,2) , 'Color ' , 'black ' , 'LineWidth' ,1) ; % 0.0092767
xlim([0 2.716]) ;
ylim([0.3 1.4]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,0:0.5:3 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0.3:0.3:1.5 , 'FontSize ' ,18) ;
xlabel( 'time (ms) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;

%% For plotting first few pixels from 30004
plot((scan1(: ,1)−0.0094084)∗1e6 ,scan1(: ,2) , 'Color ' , 'black ' , 'LineWidth' ,1) ; %
xlim([0 300]) ;
ylim([0.81 0.9]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,0:50:300 , 'FontSize ' ,18) ;
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set(ax, 'YTick' ,0.81:0.02:0.9 , 'FontSize ' ,18) ;
xlabel( 'time (\mus) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;

%% For plotting first part of scan 3 waveform from exp12, 10/16 data
plot((scan1(: ,1)+7.8e−6)∗1e6 ,scan1(: ,2) , 'Color ' , 'black ' , 'LineWidth' ,1) ;
xlim([0 60]) ;
ylim([0.45 0.9]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,0:10:60 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0.45:0.1:0.9 , 'FontSize ' ,18) ;
xlabel( 'time (\mus) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;

%% For plotting a few scan 3 lines and signal for figure 2 of chapter 4 from exp12
subplot(2 ,1 ,1) ;
plot((scan1(: ,1) )∗1e6 ,scan1(: ,2) , 'Color ' , 'black ' ) ;
xlim([0 300]) ;
ylim([0.2 1.4]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,−100:1000:3000, 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:3:5 , 'FontSize ' ,18) ;
%xlabel ( 'time (\mus) ' , 'FontSize' ,18) ;
%ylabel ( 'voltage (V) ' , 'FontSize' ,18) ;
subplot(2 ,1 ,2) ;
plot((scan1(: ,1) )∗1e6 , pulses1 (: ,2) , 'Color ' , 'black ' ) ;
xlim([0 300]) ;
ylim([0 6]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,−100:1000:3000, 'FontSize ' ,18) ;
set(ax, 'YTick' ,10:30:60 , 'FontSize ' ,18) ;
%xlabel ( 'time (\mus) ' , 'FontSize' ,18) ;
%ylabel ( 'voltage (V) ' , 'FontSize' ,18) ;
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%%−−−−−−−−−−−−SEM_oscilloscope_imaging_averagingv2.m−−−−−−−−−%%
% This code takes acquisition frames (consisting of signal from one detector
%and scan waveforms) and creates conventional and electron count images from
% these frames. It also plots the scan waveform lines and pulses with
% pixels in chapter 5 figure 3.
clear ; clc ;
scan1=load( 'C3exp100000.dat ' ) ;
pulses1=load( 'C4exp100000.dat ' ) ;
no_ppl=169;
%no_lines=122;
delt=10e−9;
start_first=−3866.4613e−6;
end_first=−3792.0913e−6;
[gap, no_lines]=scangap(scan1 , delt) ;

%img=imread( 'img06. tif ') ;
ct_image_avg=zeros(no_ppl, no_lines) ;
int_image_avg=zeros(no_ppl, no_lines) ;
pulse_counting_threshold=1; % tradeoff correct pixel and voltage level
ct_filename='ct_img. gif ' ;
%%
filenos=0:1;
[~ , sz_fi]=size ( filenos ) ;
for f i=1:sz_fi

scan_filename=strcat( 'C3exp1000' ,num2str( filenos ( f i ) , '%02d' ) , ' .dat ' ) ;
pulses_filename=strcat( 'C4exp1000' ,num2str( filenos ( f i ) , '%02d' ) , ' .dat ' ) ;
scan=load(scan_filename) ;
pulses=load(pulses_filename) ;
sz_scan=size (scan,1) ;
i f ( f i >1)

%plot(pulses (: ,1) ,pulses (: ,2) ) ;
%hold on;
[ misalign , pulses (: ,2) ,scan(: ,2)]=scanalign(scan1 ,scan ,sz_scan, pulses) ;

%plot(pulses (: ,1) ,pulses (: ,2) ) ;
end
scan_dur=zeros(1 ,sz_scan) ;
true_pulses=zeros(1 ,sz_scan) ;
pulse_edges=zeros(1 ,sz_scan) ;
pixel_edges=zeros(1 ,sz_scan) ;
int_image=zeros(no_ppl, no_lines) ;
ct_image=zeros(no_ppl, no_lines) ;
for i=1:no_lines

t_s=find(scan(: ,1)>=start_first+(i−1)∗gap,1) ;
t_e=find(scan(: ,1)>=end_first+(i−1)∗gap,1) ;
scan_dur_pixels( i )=t_e−t_s;
pixel_dwell_pixels( i )=floor (scan_dur_pixels( i )/no_ppl) ;
pixel_dwell_last_pixels( i )=scan_dur_pixels( i )−pixel_dwell_pixels( i )∗(no_ppl−1);
scan_dur(t_s:t_e)=1;
true_pulses(t_s:t_e)=pulses(t_s:t_e,2) ;
for k=t_s:t_e

i f (pulses(k,2)>pulse_counting_threshold && pulses(k−1,2)<pulse_counting_threshold && pulses(k+1,2)>
pulse_counting_threshold)

pulse_edges(k)=1;
end

end
for j=1:no_ppl−1

start_index=t_s+(j−1)∗(pixel_dwell_pixels( i )) ;
end_index=t_s+j∗pixel_dwell_pixels( i )−1;
pixel_edges(start_index :end_index)=mod(j ,2) ;
int_image(j , i )=sum(pulses(start_index :end_index,2) ) ;
ct_image(j , i )=sum(pulse_edges(start_index :end_index)) ;

%for k=t_s+(j−1)∗pixel_dwell_pixels+3:t_s+j∗pixel_dwell_pixels−3
%i f (pulses(k,2)>3 && pulses(k−1,2)<3 && pulses(k+1,2)>3)

%pulse_edges(k)=5;
%ct_image(j , i )=ct_image(j , i )+1;

%end
%end
end
int_image(no_ppl, i )=sum(pulses(end_index+1:t_e,2) ) ;
ct_image(no_ppl, i )=sum(pulse_edges(end_index+1:t_e)) ;

end
ct_image_avg=ct_image_avg+ct_image;
int_image_avg=int_image_avg+int_image;
%figure () ;
%fig=figure ;
%imagesc(ct_image_avg') ;
%caxis ([0 56]) ;
%colormap gray;
%saveas( fig , strcat ( 'image' ,num2str( fi ,'%01d') , ' .png') ) ;
%pause(1) ;
%int_image_gray=mat2gray(int_image) ;
%int_image=mean(mean(ct_image))/mean(mean(int_image))∗int_image;
%plot(scan(: ,1)/1e−6,scan(: ,2) ) ;
%hold on;
%frame = getframe( fig ) ;
%im = frame2im(frame) ;
%[A,map] = rgb2ind(im,256) ;
i f f i == 1

% imwrite(A,map, ct_filename , ' gif ' , 'LoopCount' , Inf , 'DelayTime' ,0.5) ;
else
% imwrite(A,map, ct_filename , ' gif ' , 'WriteMode' , 'append' , 'DelayTime' ,0.5) ;

end
f i
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end
%%

%ct_image_avg=ct_image_avg;
int_image_avg=mean(mean(ct_image_avg))/mean(mean(int_image_avg))∗int_image_avg;
%%
%plot(scan(: ,1)/1e−6,true_pulses (:) ,scan(: ,1)/1e−6,pulse_edges(:) ,scan(: ,1)/1e−6,pixel_edges (:) ) ;
%plot(scan(: ,1)/1e−6,scan(: ,2) ,scan(: ,1)/1e−6,6∗scan_dur) ;
%hold on;
%plot(scan(: ,1)/1e−6,pulses (: ,2) ) ;
%%
%figure () ; fig=imagesc(img) ;
% colormap gray
%saveas( fig , ' imageorg.png') ;
% figure () ; imagesc(int_image_avg') ;
% colormap gray
%ct_image_avg=ct_image_avg(1:191 ,:) ;
% figure () ; imagesc(ct_image_avg') ;
% colormap gray
% save( 'cto .mat' , 'ct_image_avg') ;
% saveas( fig , ' imagect . tif ') ;
%hold on;
%% Plotting two scan lines and signal for Chap 4 figure 3 from 1/16 data. Used exp0000 and exp0002
scanorg=load( 'C3exp100002.dat ' ) ;
pulsesorg=load( 'C4exp100002.dat ' ) ;

%%Ctd..
plot((scan1(: ,1)+4.1e−3)∗1e3 ,scan1(: ,2) ,(scanorg(: ,1)+4.1e−3)∗1e3 , scanorg(: ,2)+1.15);
xlim([0 1])
ylim([−0.16 2.15]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,0:0.2:1 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:1:2 , 'FontSize ' ,18) ;
xlabel( 'time (ms) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;

%% Plotting scan lines and signal for Chap 4 fig 3 (c) using 1/16 data exp0002
plot(scan(: ,1)/1e−3+3.9,5∗scan(: ,2) ,scan(: ,1)/1e−3+3.9,true_pulses , scan(: ,1)/1e−3+3.9, pulses (: ,2)+6);
xlim([0 0.47]) ;
ylim([−0.3 12]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,0:0.1:0.5 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:2:12 , 'FontSize ' ,18) ;
xlabel( 'time (ms) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;

%% Plotting pulses with pixels for Chap 4 fig 3 (c) using 1/16 data exp00002
plot(scan(: ,1)/1e−6+3900,true_pulses , scan(: ,1)/1e−6+3900,5∗pixel_edges (:) , ' : ' , 'LineWidth' ,2 , 'Color ' , 'black ' ) ;
xlim([38.572 43.322]) ;
ylim([−0.3 6]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
set(ax, 'XTick' ,38:1:43 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:2:6 , 'FontSize ' ,18) ;
xlabel( 'time (\mus) ' , 'FontSize ' ,18) ;
ylabel( 'voltage (V) ' , 'FontSize ' ,18) ;
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%%−−−−−−−−−−−−scanalign2.m−−−−−−−−−%%
% This function finds the autocorrelation between two SEM scan waveforms
% and calculates the misalignment between them.
function [ misalign , pulse2align , pulse3align , scan2align ,scan2time]=scanalign2(scan1 ,scan2 ,sz_scan, pulse2 , pulse3)
%plot(scan1(: ,1)/1e−6,scan1(: ,2) ,scan2(: ,1)/1e−6,scan2(: ,2) ) ;
scanwf1=scan1(: ,2)−mean(mean(scan1(: ,2) )) ;
scanwf2=scan2(: ,2)−mean(mean(scan2(: ,2) )) ;
scancorr=xcorr(scanwf1,scanwf2) ;
%plot(scancorr) ;
[~ ,maxind]=max(scancorr) ;
misalign=sz_scan−maxind;
scan2time=scan1(: ,1) ;
%%
i f misalign>0

pulse2align=[pulse2(misalign+1:end,2) ' zeros(misalign ,1) ' ] ' ;
pulse3align=[pulse3(misalign+1:end,2) ' zeros(misalign ,1) ' ] ' ;
scan2align=[scan2(misalign+1:end,2) ' zeros(misalign ,1) ' ] ' ;

else
pulse3align=[zeros(−misalign ,1) ' pulse3(1:end−(−misalign) ,2) ' ] ' ;
pulse2align=[zeros(−misalign ,1) ' pulse2(1:end−(−misalign) ,2) ' ] ' ;
scan2align=[zeros(−misalign ,1) ' scan2(1:end−(−misalign) ,2) ' ] ' ;

end
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%%−−−−−−−−−−−−scangap.m−−−−−−−−−%%
% This function finds the autocorrelation between two SEM scan waveforms
% and calculates the period of the waveform from the gap between the
% autocorrelation peaks
function [gap, no_lines]=scangap(scan1 , delt)
scanwf1=scan1(: ,2)−mean(mean(scan1(: ,2) )) ;
%scanwf2=scan2(: ,2)−mean(mean(scan2(: ,2) )) ;
scancorr=xcorr(scanwf1,scanwf1) ;
[maxval,~]=max(scancorr) ;
[~ , locs]=findpeaks(scancorr , 'MinPeakHeight' ,0 , 'MinPeakProminence' ,maxval/1.5) ;

%findpeaks(scancorr , 'MinPeakHeight' ,0 , 'MinPeakProminence' ,maxval/1.5 , 'Annotate' , 'peaks') ;
locs_diff=diff ( locs) ;
diff_mean=mean(locs_diff) ;
gap=diff_mean∗delt ;
maxscan=max(scan1(: ,2) ) ;
[~ , scanpklocs]=findpeaks(scan1(: ,2) , 'MinPeakHeight' ,0.5 , 'MinPeakProminence' ,0.2 , 'MinPeakDistance ' ,diff_mean−300, '

Annotate ' , 'peaks ' ) ;
[ no_lines,~]=size (scanpklocs) ;
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%%−−−−−−−−−−−−scanpixels.m−−−−−−−−−%%
% This code finds the number of pixels in each linescan .
clear ; clc ;
scan1=load( 'C3scan00000.dat ' ) ;
img=imread( 'img01. t i f ' ) ;
%scanline=1−scan1(8711:121680,2) ;
scanline=scan1(: ,2) ;
[~ , scanreslocs]=findpeaks(scan1(: ,2) , 'MinPeakProminence' ,0.2 , 'Annotate ' , 'peaks ' ) ;

%%
plateau=70e−6; %for scan 9
delt=40e−9;
%scanline=1−scan1(8711:121680,2) ;
scanline=1−scan1(scanreslocs(1)+plateau/delt : scanreslocs(2) ,2) ;
%plot(scanline) ;
[~ , scanpklocs]=findpeaks(scanline , 'MinPeakProminence' ,0.005 , 'MinPeakDistance ' ,500, 'Annotate ' , 'peaks ' ) ;

%findpeaks(scanline , 'MinPeakProminence' ,0.005 , 'MinPeakDistance' ,500 , 'Annotate' , 'peaks') ;
%figure () ;
%imagesc(img) ;
[no_pixels,~]=size (scanpklocs) ;
no_pixels=no_pixels−1;
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%%−−−−−−−−−−−−SEM_oscilloscope_imaging_averaging_two_det.m−−−−−−−−−%%
% This code takes acquisition frames (consisting of signal from both detectors
% and scan waveforms) and creates conventional and electron count images from
% these frames.
clear ; clc ;
scan1=load( 'C1scan00000.dat ' ) ;
scan1=scan1(3:end−2,:) ;
pulses1il=load( 'C3scan00000.dat ' ) ;
pulses1il=pulses1il (3:end−2,:) ;
pulses1ic=load( 'C4scan00000.dat ' ) ;
%%
img=imread( 'img07. t i f ' ) ;
%%
no_ppl=262;
%no_lines=122;
delt=10e−9;
start_first=−50092.29e−6;
end_first=−49979.63e−6;
[gap, no_lines]=scangap(scan1 , delt) ;

%img=imread( 'img06. tif ') ;
ct_image_avgil=zeros(no_ppl, no_lines) ;
ct_image_avgic=zeros(no_ppl, no_lines) ;
int_image_avgil=zeros(no_ppl, no_lines) ;
int_image_avgic=zeros(no_ppl, no_lines) ;
pulse_counting_threshold=1; % tradeoff correct pixel and voltage level
ct_image_stack_il=zeros(no_ppl, no_lines,32) ;
ct_image_stack_ic=zeros(no_ppl, no_lines,32) ;
int_image_stack_il=zeros(no_ppl, no_lines,32) ;
int_image_stack_ic=zeros(no_ppl, no_lines,32) ;
ct_filename='ct_img. gif ' ;
%%
filenos=0:31;
[~ , sz_fi]=size ( filenos ) ;
for f i=1:sz_fi

scan_filename=strcat( 'C1scan000 ' ,num2str( filenos ( f i ) , '%02d' ) , ' .dat ' ) ;
pulsesil_filename=strcat( 'C3scan000 ' ,num2str( filenos ( f i ) , '%02d' ) , ' .dat ' ) ;
pulsesic_filename=strcat( 'C4scan000 ' ,num2str( filenos ( f i ) , '%02d' ) , ' .dat ' ) ;
scan=load(scan_filename) ;
scan=scan(3:end−2,:) ;
pulsesil=load(pulsesil_filename) ;
pulsesil=pulsesil (3:end−2,:) ;
pulsesic=load(pulsesic_filename) ;
sz_scan=size (scan,1) ;
i f ( f i >1)

%plot(pulses (: ,1) ,pulses (: ,2) ) ;
%hold on;
[ misalign , pulsesil (: ,2) , pulsesic (: ,2) ,scan(: ,2) ,scan(: ,1)]=scanalign2(scan1 ,scan ,sz_scan, pulsesil , pulsesic) ;

%plot(pulses (: ,1) ,pulses (: ,2) ) ;
end
scan_dur=zeros(1 ,sz_scan) ;
true_pulsesil=zeros(1 ,sz_scan) ;
true_pulsesic=zeros(1 ,sz_scan) ;
pulseil_edges=zeros(1 ,sz_scan) ;
pulseic_edges=zeros(1 ,sz_scan) ;
pixel_edges=zeros(1 ,sz_scan) ;
int_imageic=zeros(no_ppl, no_lines) ;
int_imageil=zeros(no_ppl, no_lines) ;
ct_imageic=zeros(no_ppl, no_lines) ;
ct_imageil=zeros(no_ppl, no_lines) ;
for i=1:no_lines

t_s=find(scan(: ,1)>=start_first+(i−1)∗gap,1) ;
t_e=find(scan(: ,1)>=end_first+(i−1)∗gap,1) ;
scan_dur_pixels( i )=t_e−t_s;
pixel_dwell_pixels( i )=floor (scan_dur_pixels( i )/no_ppl) ;
pixel_dwell_last_pixels( i )=scan_dur_pixels( i )−pixel_dwell_pixels( i )∗(no_ppl−1);
scan_dur(t_s:t_e)=1;
true_pulsesil(t_s:t_e)=pulsesil (t_s:t_e,2) ;
true_pulsesic(t_s:t_e)=pulsesic(t_s:t_e,2) ;
for k=t_s:t_e

i f ( pulsesil (k,2)>pulse_counting_threshold && pulsesil (k−1,2)<pulse_counting_threshold && pulsesil (k+1,2)>
pulse_counting_threshold)

pulseil_edges(k)=1;
end
i f (pulsesic(k,2)>pulse_counting_threshold && pulsesic(k−1,2)<pulse_counting_threshold && pulsesic(k+1,2)>

pulse_counting_threshold)
pulseic_edges(k)=1;

end
end
for j=1:no_ppl−1

start_index=t_s+(j−1)∗(pixel_dwell_pixels( i )) ;
end_index=t_s+j∗pixel_dwell_pixels( i )−1;
pixel_edges(start_index :end_index)=mod(j ,2) ;
int_imageic( j , i )=sum(pulsesic(start_index :end_index,2) ) ;
int_imageil( j , i )=sum( pulsesil (start_index :end_index,2) ) ;
ct_imageic(j , i )=sum(pulseic_edges(start_index :end_index)) ;
ct_imageil( j , i )=sum(pulseil_edges(start_index :end_index)) ;

%for k=t_s+(j−1)∗pixel_dwell_pixels+3:t_s+j∗pixel_dwell_pixels−3
%i f (pulses(k,2)>3 && pulses(k−1,2)<3 && pulses(k+1,2)>3)

%pulse_edges(k)=5;
%ct_image(j , i )=ct_image(j , i )+1;

%end
%end
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end
int_imageic(no_ppl, i )=sum(pulsesic(end_index+1:t_e,2) ) ;
int_imageil(no_ppl, i )=sum( pulsesil (end_index+1:t_e,2) ) ;
ct_imageic(no_ppl, i )=sum(pulseic_edges(end_index+1:t_e)) ;
ct_imageil(no_ppl, i )=sum(pulseil_edges(end_index+1:t_e)) ;

end
ct_image_stack_il( : , : , f i )=ct_imageil ;
ct_image_stack_ic( : , : , f i )=ct_imageic ;
int_image_stack_ic( : , : , f i )=int_imageic ;
int_image_stack_il( : , : , f i )=int_imageil ;
ct_image_avgic=ct_image_avgic+ct_imageic;
ct_image_avgil=ct_image_avgil+ct_imageil ;
int_image_avgic=int_image_avgic+int_imageic ;
int_image_avgil=int_image_avgil+int_imageil ;
%figure () ;
%fig=figure ;
%imagesc(ct_image_avg') ;
%caxis ([0 56]) ;
%colormap gray;
%saveas( fig , strcat ( 'image' ,num2str( fi ,'%01d') , ' .png') ) ;
%pause(1) ;
%int_image_gray=mat2gray(int_image) ;
%int_image=mean(mean(ct_image))/mean(mean(int_image))∗int_image;
%plot(scan(: ,1)/1e−6,scan(: ,2) ) ;
%hold on;
%frame = getframe( fig ) ;
%im = frame2im(frame) ;
%[A,map] = rgb2ind(im,256) ;
i f f i == 1

% imwrite(A,map, ct_filename , ' gif ' , 'LoopCount' , Inf , 'DelayTime' ,0.5) ;
else
% imwrite(A,map, ct_filename , ' gif ' , 'WriteMode' , 'append' , 'DelayTime' ,0.5) ;

end
f i

end
%%

%ct_image_avg=ct_image_avg;
%int_image_avg=mean(mean(ct_image_avg))/mean(mean(int_image_avg))∗int_image_avg;
%%
%plot(scan(: ,1)/1e−6,true_pulses (:) ,scan(: ,1)/1e−6,pulse_edges(:) ,scan(: ,1)/1e−6,pixel_edges (:) ) ;
%plot(scan(: ,1)/1e−6,scan(: ,2) ,scan(: ,1)/1e−6,6∗scan_dur) ;
%hold on;
%plot(scan(: ,1)/1e−6,pulses (: ,2) ) ;
%%
%figure () ; fig=imagesc(img) ;
% colormap gray
%saveas( fig , ' imageorg.png') ;
% figure () ; imagesc(int_image_avg') ;
% colormap gray
%ct_image_avg=ct_image_avg(1:191 ,:) ;
% figure () ; imagesc(ct_image_avg') ;
% colormap gray
% save( 'cto .mat' , 'ct_image_avg') ;
% saveas( fig , ' imagect . tif ') ;
%hold on;
%%
%save( 'ct_both.mat' , 'ct_image_avgic' , 'ct_image_avgil') ;
%save( 'int_both.mat' , ' int_image_avgic' , ' int_image_avgil ') ;
%save( 'ct_stack.mat' , 'ct_image_stack_il' , 'ct_image_stack_ic') ;
%save( 'int_stack .mat' , ' int_image_stack_il ' , ' int_image_stack_ic') ;
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%%−−−−−−−−−−−−mean_variance_total.m−−−−−−−−−%%
% This code calculates the histograms for the counting and conventional SEM
% images and finds the contrast between the sample and background pixels in the final images.
% It also f i ts the probability distribution of the sample and background
% pixels to Poisson and Neyman type A distributions
clear ; clc ;
ct_vars=load( 'ct_both.mat' ) ;
int_vars=load( 'int_both.mat' ) ;
im=double(imread( 'img06. t i f ' )) ;
mean_im=mean(mean(im)) ;
int_im_ic_sc=int_vars .int_image_avgic∗mean(mean(ct_vars.ct_image_avgic))/mean(mean(int_vars .int_image_avgic)) ;
ct_im_mixed=ct_vars.ct_image_avgic+ct_vars.ct_image_avgil;
mean_ct_mixed=mean(mean(ct_im_mixed)) ;
int_im_mixed=int_vars .int_image_avgic+int_vars . int_image_avgil ;
mean_int_im=mean(mean(int_im_mixed)) ;
%im_sc=im∗mean_ct_mixed/mean_im;
int_im_sc=int_im_mixed∗mean_ct_mixed/mean_int_im;

%% Plotting images − figures 4 and 5 in chapter 4
figure () ;
ctim=imagesc(ct_im_mixed') ;
colormap gray
axis off
pbaspect([1 188/262 1])
c = colorbar ;
c .Ticks=[0 10 20 30 40];
figure () ;
intim=imagesc(int_im_sc') ;
pbaspect([1 188/262 1])
colormap gray
axis off
c = colorbar ;
c .Ticks=[0 10 20 30 40];
%saveas(ctim, 'ct_im_mixed.png') ;
%saveas(intim , 'int_im_mixed.png') ;
%%Histogramming − figure 5 in chapter 4

histedges=−0.45:1:60.55;
ct_hist=histcounts(ct_im_mixed, histedges) ;
int_hist=histcounts(int_im_sc, histedges) ;
p=plot(0:60 ,ct_hist/sum(ct_hist) , '−' ,0:60 , int_hist/sum(int_hist) , '−−' , 'Color ' , 'black ' , 'LineWidth' ,2) ;
xlim([0 40]) ;
ylim([0 0.5]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( ' intensity/number of SEs' , 'FontSize ' ,18) ;
ylabel( 'counts(normalized) ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:4:40 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.1:0.5 , 'FontSize ' ,18) ;
%saveas(p, 'hist_osc_1.png') ;
%% Calculating contrast of sample to background and variance
[ ctrows , ctcols ,~]=find(ct_im_mixed>7);
[ sz,~]=size (ctrows) ;
sample_ct_vals=zeros(1 ,sz) ;
sample_int_vals=zeros(1 ,sz) ;
dist_sample=zeros(1,40) ;
for i=1:sz

sample_ct_vals( i )=ct_im_mixed(ctrows( i ) , ctcols ( i )) ;
sample_int_vals( i )=int_im_sc(ctrows( i ) , ctcols ( i )) ;
dist_sample(sample_ct_vals( i )−7)=dist_sample(sample_ct_vals( i )−7)+1;

end
sample_ct_vals_act=sample_ct_vals; %To find distribution of sample counts
mean_sample_cts_act=mean(sample_ct_vals_act) ;
var_sample_ct=var(sample_ct_vals_act) ;
sample_var_mean_rat=var_sample_ct/mean_sample_cts_act;
int_im_sc2=int_im_mixed∗mean(sample_ct_vals)/mean(sample_int_vals) ;
[ctrows , ctcols ,~]=find(ct_im_mixed<=7);
[ sz,~]=size (ctrows) ;
vac_ct_vals=zeros(1 ,sz) ;
vac_int_vals=zeros(1 ,sz) ;
dist_vac=zeros(1,8) ;
for i=1:sz

vac_ct_vals( i )=ct_im_mixed(ctrows( i ) , ctcols ( i )) ;
vac_int_vals( i )=int_im_sc(ctrows( i ) , ctcols ( i )) ;
dist_vac(vac_ct_vals( i )+1)=dist_vac(vac_ct_vals( i )+1)+1;

end
mean_vac_ct=mean(vac_ct_vals) ;
mean_vac_int=mean(vac_int_vals) ;
vac_ct_vals=vac_ct_vals; %To find distribution of vac counts
var_vac_ct=var(vac_ct_vals) ;
vac_var_mean_rat=var_vac_ct/(2∗mean_vac_ct) ;
rat=dist_vac(2)/dist_vac(1) ;

%% Plotting vacuum distribution − figure 6 in chapter 4

poisson_dist=zeros(1,8) ;
for i=1:8

poisson_dist( i )=exp(−mean_vac_ct)∗(mean_vac_ct)^( i−1)/(factorial ( i−1)) ;
end
dist_vac=dist_vac/sum(dist_vac) ;
p=plot(0:7 ,dist_vac , 'o ' ,0:7 ,poisson_dist , 'x ' , 'MarkerSize ' ,10, 'LineWidth' ,2) ;
xlim([0 7]) ;
ylim([1e−6 0.7]) ;
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ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'number of SEs' , 'FontSize ' ,18) ;
ylabel( ' probability ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:1:7 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.1:0.7 , 'FontSize ' ,18) ;
%saveas(p, 'vac_dist .png') ;
%% Plotting sample distribution − figure 6 in chapter 4

poisson_dist_sample=zeros(1,40) ;
for i=1:40

poisson_dist( i )=exp(−mean_sample_cts_act)∗(mean_sample_cts_act)^( i+7)/(factorial ( i+7)) ;
end
dist_sample=dist_sample/sum(dist_sample) ;
p=semilogy(8:47 ,dist_sample, 'o ' ,8:47 ,poisson_dist , 'x ' , 'MarkerSize ' ,10, 'LineWidth' ,2) ;
xlim([8 47]) ;
ylim([1e−6 0.1]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'number of SEs' , 'FontSize ' ,18) ;
ylabel( ' probability ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,8:6:47 , 'FontSize ' ,18) ;
%set(ax, 'YTick' ,0:0.02:0.1 , 'FontSize' ,18) ;
%saveas(p, 'vac_dist .png') ;
%% Fitting vacuum to Neyman type A
v=(var_vac_ct−mean_vac_ct)/mean_vac_ct;
l=mean_vac_ct/v;
neyman_dist=zeros(1,8) ;
for i=0:7

ps=0;
for j=0:100

ps=ps+(l∗exp(−v))^j/factorial ( j )∗j^ i ;
end
neyman_dist( i+1)=v^ i∗exp(−l )/factorial ( i )∗ps ;

end
p=plot(0:7 ,dist_vac , 'o ' ,0:7 ,poisson_dist , 'x ' ,0:7 ,neyman_dist, 'd' , 'MarkerSize ' ,10, 'LineWidth' ,2) ;
xlim([0 7]) ;
ylim([1e−6 0.7]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'number of SEs' , 'FontSize ' ,18) ;
ylabel( ' probability ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:1:7 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.1:0.7 , 'FontSize ' ,18) ;

%% Fitting sample to Neyman type A
v=(var_sample_ct−mean_sample_cts_act)/mean_sample_cts_act;
l=mean_sample_cts_act/v;
neyman_dist=zeros(1,40) ;
for i=1:40

ps=0;
for j=0:100

ps=ps+(l∗exp(−v))^j/factorial ( j )∗j ^( i+7);
end
neyman_dist( i )=v^( i+7)∗exp(−l )/factorial ( i+7)∗ps;

end
p=semilogy(8:47 ,dist_sample, 'o ' ,8:47 ,poisson_dist , 'x ' ,8:47 ,neyman_dist, 'd' , 'MarkerSize ' ,10, 'LineWidth' ,2) ;
xlim([8 47]) ;
ylim([1e−6 0.1]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'number of SEs' , 'FontSize ' ,18) ;
ylabel( ' probability ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,8:6:47 , 'FontSize ' ,18) ;
%set(ax, 'YTick' ,0:0.02:0.1 , 'FontSize' ,18) ;
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%%−−−−−−−−−−−−mean_variance_partial.m−−−−−−−−−%%
% This code finds the contrast between sample and background pixels and SNR
% for the SE counting and conventional SEM images as a function of the mean
% SE number (which varies linearly with the number of frames) .
clear ; clc ;
ct_stack=load( 'ct_stack.mat' ) ;
int_stack=load( 'int_stack .mat' ) ; %105,52
meanil=mean(ct_stack.ct_image_stack_ic,3) ;
meanil=meanil( :) ;
varil=var(ct_stack.ct_image_stack_ic, [ ] ,3) ;
varil=varil ( :) ;

% plot(meanil ,meanil ,meanil , varil , 'o' , 'MarkerSize' ,8 , 'LineWidth' ,2 , 'Color ' , ' black ') ;
% xlim([0 0.8]) ;
% ylim([0 0.8]) ;
% ax=gca;
% ax.TickLength=[0.01, 0.01];
% ax.LineWidth = 2;
% xlabel ( 'mean' , 'FontSize' ,18) ;
% ylabel ( 'variance ' , 'FontSize' ,18) ;
% set(ax, 'XTick' ,0:0.2:1 , 'FontSize' ,18) ;
% set(ax, 'YTick' ,0:0.2:1 , 'FontSize' ,18) ;
%% Plot for chapter 4 figure 6
sum_im=sum(ct_stack.ct_image_stack_ic+ct_stack.ct_image_stack_il,3) ;
[ rs , cs,~]=find(sum_im>7);
[ szs ,~]=size (rs) ;
par_cts=zeros(32,szs) ;
for i=1:32

par_sum_im=sum(ct_stack.ct_image_stack_ic( : , : ,1 : i )+ct_stack.ct_image_stack_il( : , : ,1 : i ) ,3) ;
for j=1:szs

par_cts( i , j )=par_sum_im(rs( j ) ,cs( j )) ;
end

end
m1=mean(par_cts,2) ;
v1=var(par_cts , [ ] ,2) ;
B=v1./m1−1;
% figure () ;
% plot(m1,B, 'o' , 'MarkerSize' ,8 , 'LineWidth' ,2 , 'Color ' , ' black ') ;
% xlim([0 22]) ;
% ylim([−0.5 0.5]) ;
% ax=gca;
% ax.TickLength=[0.01, 0.01];
% ax.LineWidth = 2;
% xlabel ( 'mean' , 'FontSize' ,18) ;
% ylabel ( 'B−factor ' , 'FontSize' ,18) ;
% set(ax, 'XTick' ,6:2:22 , 'FontSize' ,18) ;
% set(ax, 'YTick' ,0:0.1:0.5 , 'FontSize' ,18) ;
% hold on;
%% Buildup of contrast with frames
sum_im=sum(ct_stack.ct_image_stack_ic+ct_stack.ct_image_stack_il,3) ;
[ rs , cs,~]=find(sum_im>7);
[ szs ,~]=size (rs) ;
par_ct=zeros(32,szs) ;
par_int=zeros(32,szs) ;
for i=1:32

par_sum_im_ct=sum(ct_stack.ct_image_stack_ic( : , : ,1 : i )+ct_stack.ct_image_stack_il( : , : ,1 : i ) ,3) ;
par_sum_im_int=sum(int_stack .int_image_stack_ic( : , : ,1 : i )+int_stack .int_image_stack_il( : , : ,1 : i ) ,3) ;
for j=1:szs

par_ct( i , j )=par_sum_im_ct(rs( j ) ,cs( j )) ;
par_int( i , j )=par_sum_im_int(rs( j ) ,cs( j )) ;

end
end
mean_sample_ct=mean(par_ct,2) ;
mean_sample_int=mean(par_int,2) ;
[ rv ,cv,~]=find(sum_im<=7);
[ szv,~]=size (rv) ;
par_ct=zeros(32,szv) ;
part_int=zeros(32,szv) ;
mean_ct=zeros(1,32) ;
for i=1:32

par_sum_im_ct=sum(ct_stack.ct_image_stack_ic( : , : ,1 : i )+ct_stack.ct_image_stack_il( : , : ,1 : i ) ,3) ;
mean_ct( i )=mean(mean(par_sum_im_ct)) ;
par_sum_im_int=sum(int_stack .int_image_stack_ic( : , : ,1 : i )+int_stack .int_image_stack_il( : , : ,1 : i ) ,3) ;
for j=1:szv

par_int( i , j )=par_sum_im_int(rv( j ) ,cv( j )) ;
par_ct( i , j )=par_sum_im_ct(rv( j ) ,cv( j )) ;

end
end
mean_vac_ct=mean(par_ct,2) ;
mean_vac_int=mean(par_int,2) ;
K_ct=(mean_sample_ct−mean_vac_ct) ./(mean_sample_ct+mean_vac_ct) ;
K_int=(mean_sample_int−mean_vac_int) ./(mean_sample_int+mean_vac_int) ;
plot(mean_ct,K_ct, 'o ' ,mean_ct,K_int, 'x ' , 'MarkerSize ' ,10, 'LineWidth' ,2 , 'Color ' , 'black ' ) ;
xlim([0 8.2]) ;
ylim([0 1]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'mean SE count ' , 'FontSize ' ,18) ;
ylabel( 'contrast (K) ' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:2:8 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.2:1 , 'FontSize ' ,18) ;

%%Image autocorr for full and partial images − figure 5 of chapter 4
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% sum_im_ct=sum(ct_stack.ct_image_stack_ic+ct_stack.ct_image_stack_il,3) ;
% sum_im_int=sum(int_stack .int_image_stack_ic+int_stack . int_image_stack_il,3) ;
% sum_im_int=sum_im_int∗mean(mean(sum_im_ct))/mean(mean(sum_im_int)) ;
% sum_im_ct=sum_im_ct−mean(mean(sum_im_ct)) ;
% sum_im_int=sum_im_int−mean(mean(sum_im_int)) ;
% ct_corr=xcorr2(sum_im_ct,sum_im_ct) ;
% int_corr=xcorr2(sum_im_int,sum_im_int) ;
% [ corr_sz,~]=size (ct_corr) ;
% %plot (1:corr_sz , ct_corr(: ,188) ,1:corr_sz , int_corr(: ,188)) ;
sz_fit=3;
% fit_pts=ct_corr(262,188−sz_fit:188−1);
x_fit=188−sz_fit:188−1;
% fit_interp=polyfit (x_fit , fit_pts ,1) ;
x_interp=188−sz_fit :188;
% nf_fit=fit_interp(1)∗x_interp+fit_interp(2) ;
% phi_nf=nf_fit(end) ;
% phi=ct_corr(262,188) ;
% phi_noise=phi−phi_nf;
% SNR=phi_nf/phi_noise ;
SNR_ct=zeros(1,32) ;
SNR_int=zeros(1,32) ;
mean_ct=zeros(1,32) ;
for i=1:32

par_im_ct=sum(ct_stack.ct_image_stack_ic( : , : ,1 : i )+ct_stack.ct_image_stack_il( : , : ,1 : i ) ,3) ;
mean_ct( i )=mean(mean(par_im_ct)) ;
par_im_int=sum(int_stack .int_image_stack_ic( : , : ,1 : i )+int_stack . int_image_stack_il( : , : ,1 : i ) ,3) ;
par_im_int=par_im_int∗mean(mean(par_im_ct))/mean(mean(par_im_int)) ;
par_im_ct=par_im_ct−mean(mean(par_im_ct)) ;
par_im_int=par_im_int−mean(mean(par_im_int)) ;
ct_corr=xcorr2(par_im_ct,par_im_ct) ;
int_corr=xcorr2(par_im_int,par_im_int) ;
%SNR ct image
fit_pts_ct=ct_corr(262,188−sz_fit:188−1);
fit_interp=polyfit (x_fit , fit_pts_ct ,1) ;
nf_fit=fit_interp(1)∗x_interp+fit_interp(2) ;
phi_nf=nf_fit(end) ;
phi=ct_corr(262,188) ;
phi_noise=phi−phi_nf;
SNR_ct( i )=phi_nf/phi_noise ;
%SNR int image
fit_pts_int=int_corr(262,188−sz_fit:188−1);
fit_interp=polyfit (x_fit , fit_pts_int ,1) ;
nf_fit=fit_interp(1)∗x_interp+fit_interp(2) ;
phi_nf=nf_fit(end) ;
phi=int_corr(262,188) ;
phi_noise=phi−phi_nf;
SNR_int( i )=phi_nf/phi_noise ;

end
figure () ;
plot(mean_ct/max(mean_ct) ,SNR_ct, 'o ' ,mean_ct/max(mean_ct) ,SNR_int, 'x ' , 'MarkerSize ' ,10, 'LineWidth' ,2 , 'Color ' , 'black ' ) ;
xlim([0 1]) ;
ylim([0 12]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( 'mean SE count ' , 'FontSize ' ,18) ;
ylabel( 'SNR' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:2:8 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:2:12 , 'FontSize ' ,18) ;
hold on
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%%−−−−−−−−−−−−cond_reill_SEM.m−−−−−−−−−%%
% This code implements both conditional re−illumination schemes outlined in
% chapter 5 and generates count images, MARE and SNR plots
clear ; clc ;
ct_stack=load( 'ct_stack.mat' ) ;
int_stack=load( 'int_stack .mat' ) ;
im_ct_corr=zeros(262,188) ;
im_int_corr=zeros(262,188) ;
se_thresh=8;
[~ , sz]=size (se_thresh) ;
abs_err=zeros(1 ,sz) ;
frac_dose=zeros(1 ,sz) ;
SNR_ctreill=zeros(1 ,sz) ;
sz_fit=3;
x_fit=188−sz_fit:188−1;
x_interp=188−sz_fit :188;
for i=1:32

im_ct_corr=sum(ct_stack.ct_image_stack_ic( : , : ,1 : i )+ct_stack.ct_image_stack_il( : , : ,1 : i ) ,3) ;
im_int_corr=sum(int_stack .int_image_stack_ic( : , : ,1 : i )+int_stack . int_image_stack_il( : , : ,1 : i ) ,3) ;

end
for k=1:sz
k
im_no=32∗ones(262,188) ;
par_im_ct=zeros(262,188) ;
ct_pxs=zeros(262,188) ;
for i=1:32

for r=1:262
for c=1:188

i f (par_im_ct(r , c)<se_thresh(k))
par_im_ct(r , c)=par_im_ct(r , c)+ct_stack.ct_image_stack_ic(r , c , i )+ct_stack.ct_image_stack_il(r , c , i ) ;

else
i f (ct_pxs(r , c)==0)

im_no(r , c)=i ;
ct_pxs(r , c)=1;

end
end

end
end

end
par_im_ct=par_im_ct∗32./im_no;
par_im_ct_fin=par_im_ct;
par_im_ct=par_im_ct−mean(mean(par_im_ct)) ;
ct_corr=xcorr2(par_im_ct,par_im_ct) ;
fit_pts_ct=ct_corr(262,188−sz_fit:188−1);
fit_interp=polyfit (x_fit , fit_pts_ct ,1) ;
nf_fit=fit_interp(1)∗x_interp+fit_interp(2) ;
phi_nf=nf_fit(end) ;
phi=ct_corr(262,188) ;
phi_noise=phi−phi_nf;
SNR_ctreill(k)=phi_nf/phi_noise ;
% imagesc(im_ct_corr') ;
% figure () ;
% imagesc(par_im_ct') ;
abs_err(k)=mean(mean(abs(im_ct_corr−par_im_ct_fin)))/mean(mean(im_ct_corr)) ;
frac_dose(k)=sum(sum(im_no))/(262∗188∗32);
[ rs , cs,~]=find(im_ct_corr>7);
[ szs ,~]=size (rs) ;
sum_ill_sample=0;
for is=1:szs

sum_ill_sample=sum_ill_sample+im_no(rs( is ) ,cs( is )) ;
end
frac_dose_sample(k)=sum_ill_sample/szs/32;
end

%% Plotting image at threshold of 8 SEs − SNR= 5.68, frac dose = 0.79
ctim=imagesc(im_int_corr'/mean(mean(im_int_corr))∗mean(mean(im_ct_corr))) ;
colormap gray
caxis ([0 50])
axis off
pbaspect([1 188/262 1])
c = colorbar ;
c .Ticks=[0 10 20 30 40 50];

%%
SNR_ct=zeros(1,32) ;
SNR_int=zeros(1,32) ;
mean_ct=zeros(1,32) ;
abs_err_noreill=zeros(1,32) ;
for i=1:32

par_im_ct=32/i∗sum(ct_stack.ct_image_stack_ic( : , : ,1 : i )+ct_stack.ct_image_stack_il( : , : ,1 : i ) ,3) ;
mean_ct( i )=mean(mean(par_im_ct)) ;
par_im_ct_fin=par_im_ct;
abs_err_noreill( i )=mean(mean(abs(im_ct_corr−par_im_ct)))/mean(mean(im_ct_corr)) ;
par_im_int=32/i∗sum(int_stack .int_image_stack_ic( : , : ,1 : i )+int_stack . int_image_stack_il( : , : ,1 : i ) ,3) ;
par_im_int=par_im_int∗mean(mean(par_im_ct))/mean(mean(par_im_int)) ;
par_im_ct=par_im_ct−mean(mean(par_im_ct)) ;
par_im_int=par_im_int−mean(mean(par_im_int)) ;
ct_corr=xcorr2(par_im_ct,par_im_ct) ;
int_corr=xcorr2(par_im_int,par_im_int) ;
%SNR ct image
fit_pts_ct=ct_corr(262,188−sz_fit:188−1);
fit_interp=polyfit (x_fit , fit_pts_ct ,1) ;
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nf_fit=fit_interp(1)∗x_interp+fit_interp(2) ;
phi_nf=nf_fit(end) ;
phi=ct_corr(262,188) ;
phi_noise=phi−phi_nf;
SNR_ct( i )=phi_nf/phi_noise ;
%SNR int image
fit_pts_int=int_corr(262,188−sz_fit:188−1);
fit_interp=polyfit (x_fit , fit_pts_int ,1) ;
nf_fit=fit_interp(1)∗x_interp+fit_interp(2) ;
phi_nf=nf_fit(end) ;
phi=int_corr(262,188) ;
phi_noise=phi−phi_nf;
SNR_int( i )=phi_nf/phi_noise ;

end
%% Plotting image at 14 frames − SNR= 5.73, frac dose = 14/32 = 0.4375
ctim=imagesc(par_im_ct_fin') ;
colormap gray
caxis ([0 50]) ;
axis off
pbaspect([1 188/262 1])
c = colorbar ;
c .Ticks=[0 10 20 30 40 50];

%% Plotting absolute error − Chapter 4
figure () ;
plot((1:32)/32,abs_err_noreill , 'o ' ,frac_dose_sample,abs_err, 'd' , 'MarkerSize ' ,10, 'LineWidth' ,2 , 'Color ' , 'black ' ) ;
xlim([0 1]) ;
ylim([0 1]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( ' fractional electron dose ' , 'FontSize ' ,18) ;
ylabel( 'MARE' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:0.2:1 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:0.2:1 , 'FontSize ' ,18) ;
hold on

%% Plotting SNR− chapter 4
figure () ;
plot((1:32)/32,SNR_ct, 'o ' ,frac_dose_sample,SNR_ctreill , 'd' , 'MarkerSize ' ,10, 'LineWidth' ,2 , 'Color ' , 'black ' ) ;
xlim([0 1]) ;
ylim([0 12]) ;
ax=gca;
ax.TickLength=[0.01, 0.01];
ax.LineWidth = 2;
xlabel( ' fractional electron dose ' , 'FontSize ' ,18) ;
ylabel( 'SNR' , 'FontSize ' ,18) ;
set(ax, 'XTick' ,0:0.2:1 , 'FontSize ' ,18) ;
set(ax, 'YTick' ,0:2:12 , 'FontSize ' ,18) ;
hold on

%%
% [ rs , cs,~]=find(im_ct_corr>7);
% [ szs ,~]=size (rs) ;
% for i=1:szs
% sum_
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Appendix E

The First (and Second) Question1

I began T.440, “Teaching and Learning: The Having of Wonderful Ideas” at the

Harvard Graduate School of Education in September 2019 on the recommendation

of my favorite teacher at MIT. I was interested in eventually becoming a physics

teacher after completing my PhD at MIT and thought the class would be a good way

to expand my skillset. I was both amused and intrigued at the class title and felt

ready to jump in. Looking back, as I reflect on my development through the class,

several words come to mind: complexity, autonomy, dignity, noticing, moon. The

words that perhaps encompass all of the rest are ‘the first and second question’.

The idea of the first and second question was first put forth to me by Reuben

Henriques, a colleague from the class, during a conversation after a fieldwork we were

doing together. An important component of the class, fieldworks were sessions where

we worked with one or more learners to facilitate and follow their learning on a pre-

defined subject matter. I recorded the conversation in my class journal from that day

(Agarwal, Journal, November 24 2019):

Reuben summed this discussion up as follows: “The first question is always

what the teacher gives you initially. The second question has to be yours.”... I think

1The title of this essay is inspired by “The First Question” by Geerat Vermeij (Privileged Hands:
A Scientific Life, 1996)
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what Reuben meant was that the materials we present to our learners can be thought

of as the first question. Alternatively, the question “What do you notice?” can be the

first question. The second question, the one that the learner can use to anchor their

learning, has to come from the learner.

This theme of the first and second questions captures a lot of my thoughts

during the class, and I will use it to describe the development of my ideas about

teaching and learning.

The first question

What is the first question? Before I took T.440, I would have answered that the first

question was a simple, stripped-down demonstration or example of the main point the

teacher was trying to make in the class. Pick an activity or a reading that removes

all the complexity, all the distractions, that get in the way of your students quickly

seeing the ‘point’ of your class, and you’ve got a good first question. It is the starting

point for the teacher, in Paulo Freire’s words, “to ‘fill’ the students with the contents

of his narration” (Freire 2005).

Over the course of this class, each of these ideas I had about the first question

was challenged. I distinctly remember the disequilibrium in my mind when I read the

following extract during the second week of class (Mulvhill 2014):

The students’ willingness to speculate without inhibition is remarkable. In

my experience, this happens when teachers create an environment in which learners

routinely engage multiple possibilities – may postulations at once – before settling on

a best solution. In my classroom I see daily that our deepest thinking is nurtured by a

culture of temporary or provisional solutions that can be modified, refined or expanded

through further engagement and experience over time.

Multiple possibilities? Provisional solutions? Won’t that confuse my students?

Isn’t it easier to direct them towards the right answer? In the same week I read
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Duckworth question the very utility of ‘right answers’ (Duckworth 2006a):

It occurred to me, then, that of all the virtues related to intellectual functioning,

the most passive is the virtue of knowing the right answer. Knowing the right answer

requires no decisions, carries no risks, and makes no demands. It is automatic. It

is thoughtless. Moreover, and most to the point in this context, knowing the right

answer is overrated. It is a virtue—there is no debate about that—but in conventional

views of intelligence it tends to be given far too much weight.

Knowing the right answer is overrated?! What are we aiming for in our class-

rooms, then? I was concurrently doing the first fieldwork for the class, “Going to the

Movies”. In this activity, you give a learner four different objects, and ask them to

come up with all the different arrangements of the objects they can think of. That

seemed straightforward enough. I thought I would try out this idea of not settling for

right answers, even though I did not really buy it – there were right answers in math,

damn it! I did the fieldwork with S. Here’s the relevant section from my fieldwork

report (Agarwal, Fieldwork 1, September 8 2019):

At this point, S said “the answer is 4 factorial, isn’t it?” I was not sure how to

respond – should I tell her that this was the right answer, and risk ending the activity,

or should I stay vague and risk losing her interest? I replied with “Why do you think

that’s the answer? How would you convince yourself?”

Good job, I told myself. I didn’t just say “Yes” to S’s question, but asked

S a follow up question instead! Look at me being reflective and open to multiple

possibilities. You can imagine my consternation, then, when I received the following

feedback from my Teaching Fellow:

In what ways is 4 factorial the “answer” or even “the right answer” and in

what ways is it not?

Well, it is the right answer! There are exactly 24 ways to arrange 4 objects,

and 4 factorial equals 24. I was pretty annoyed.
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Luckily, in the next week’s reading, Duckworth provided a glimpse of a reso-

lution (Duckworth 2006b):

I think a teacher’s job is to raise questions about even such a simple right

answer, to push it to its limits, to see where it holds up and where it does not hold up.

One right answer unconnected to other answers, unexplored, not pushed to its limits,

necessarily means a less adequate grasp of our experience. Every time we push an

idea to its limits, we find out how it relates to areas that might have seemed to have

nothing to do with it.

By restricting my goal in “Going to the Movies” to getting S to ‘the answer’ of

24, I had not explored what was really interesting about the whole activity – how was

S thinking about the arrangements? How was S laying them out? Could S show me

all the different arrangements she could think of? How did S know when there was

a repeat, and how did S know when she was done? By trying to follow S’s thinking

about 4 factorial more closely, I could have seen “where it holds up and where it does

not hold up”.

So, right answers in and of themselves were too simplistic and confining. So

far so good. By following my learner’s thinking closely, I could see how they were

constructing an approach to the Going to the Movies activity, and that’s what was

really interesting. However, they were ultimately still building towards the right

set of ideas for the activity, correct? What was the point of “multiple possibilities,

provisional solutions”? Here too, Duckworth came to the rescue (Duckworth 2006b):

Teachers are often, and understandably, impatient for their students to develop

clear and adequate ideas. But putting ideas in relation to each other is not a simple

job. It is confusing, and that confusion does take time. All of us need time for

our confusion if we are to build the breadth and depth that give significance to our

knowledge.

I realized that I, too, was being impatient for S to get to the ‘right answer’. I
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did not want to give S time with her confusion, because I understood this confusion

as my failure to explain the activity properly to S. What Duckworth was saying

here was that giving students space to hold on to her confusion, shape it, and really

understand it was worthwhile. S was not just arranging 4 objects. S was using her

previous knowledge and experiences with arrangements, with each of the four objects,

and with counting to perform this activity. Putting all those ideas on relation to each

other would take time, and that was good!

So, the aim of my first question to the learner should be to try to get at their

thinking, the ideas that they had as they approached the question. Allowing them

time to be confused about the question and formulate their ideas was good. As a

teacher, my role was to accept my students’ confusions and encourage them to keep

thinking about them as they related ideas they previously had with the new ideas

that would emerge from my first question. For this to happen authentically, I realized,

my students must feel unafraid to voice their confusions, as noted in the following

journal entry (Agarwal, Journal, September 15 2019):

I really feel that fear has no place in a place of learning. As a student, I was in

constant fear of being physically or emotionally punished by my teachers for stepping

out of line - not knowing an answer I was supposed to, not completing homework,

or saying something that a teacher didn’t like. This fear prevented me from being

openly curious or genuinely interested in some of my classes - I was too focused on

not messing up and avoiding a beating. I would never want students to be afraid in

my classroom.

But surely that first question, that first example, had to be a simplified version

of what you would find in the real world? Wouldn’t the complexities of the real

world introduce too many complications and distractions in the minds of my learners?

Duckworth had anticipated this question too (Duckworth 2006c):

Notice the difference between what usually happens in formal education – pre-

senting the simplest, neatest explanation of “the law of moments,”, “the composition
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of the atmosphere,” “density,” “buoyancy,” or whatever – and my experience of being

enticed with the funny, frustrating, intriguing, unpredictable complexities of the world

around me. Instead of disassociating myself from my own interests in my struggle to

find out what whoever was supposed to “know” might have been understood by the word

“buoyancy”, my learning was based on my own connections, within the idiosyncrasies

of my own system of thoughts.

As had Lisa Schneier (Schneier 1990):

We organize subject matter into a neat series of steps which assumes a profound

uniformity among students. We sand away at the interesting edge of subject matter

until it is so free from its natural complexities, so neat, that there is not a crevice left

as an opening. All that is left is to hand it to them, scrubbed and smooth, so that they

can view it as outsiders.

I was exhilarated! The complexity of the real world was a gift because it

allowed my learners to bring their backgrounds and experiences into the classroom.

Approaching a new subject matter was challenging, and complexity allowed learners

to find a familiar point to start off. A complex first question would allow my learners

multiple interesting ways to access it, and together they could construct meaning

from that question that would be much more powerful and lasting than a stripped-

down question with a single ‘right’ answer. It was at this stage of my thinking that

I read Inventing Density (Duckworth 2001). Here was an example of a group of

adults constructing a complex scientific idea, starting off with some common objects

and a genuinely curious and observant teacher. Reading through Duckworth’s joy,

excitement, consternation, and reflection as her learners developed their ideas told

me how grappling with complexity, confusion, and bewilderment was a key part of

discovery, and if I took that process away from my students, I was denying their

humanity. I now fully believed that, in Duckworth’s words (Duckworth 2006c),

There is a parallel here between a poet and a teacher: the universe is complex;

science is complex; the poet’s thoughts and feelings are complex. “Forty-two” doesn’t
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do the trick. Neither does “buoyancy.” Not, in this case, does “I love you.”

I believe that first question is the first interaction with an aspect of the world

that a teacher gives to their learners. It could be a poem, a short story, a stroll

through a garden, a visit to a museum. It could be a chemical reaction, an optical

illusion, a political cartoon, a straw in water. The first question is the “the real stuff

of the world, primary sources” (Schneier 2001)). It creates conflict and instability. It

drives the class to action to resolve that instability, to “stand up abruptly and move

toward a resource, to turn to one another to compare notes, to forgo raising a hand

and blurt out an idea, to stand and stare in disbelief ” (Mulvhill 2014) In short, it

drives the class to learn.

The second question

I’m standing in a classroom. I’ve just presented a piece of the world in all its wonderful

complexity to my students, for their consideration. What is my aim? To put it

succinctly, my aim is to get to the second question. Or rather, the second questions.

The second question is a genuine, authentic wondering that my students have. It is

a student’s response to the teacher’s first question. It is not a question that I give

to my learners. It is not a problem that I find fascinating or interesting. As Ramsey

puts it (Ramsey 2007),

Teaching students to solve problems that students do not experience as prob-

lematic does not advance an understanding of the problems.

Unless my students see the problem as their problem, they won’t be motivated

to address it. They must come up with a problem that is interesting to them. I cannot

give them a problem and say “Wouldn’t it be neat if you solved it?” Maybe they’ll

learn to solve it. Maybe they will even get very good at solving it. But that problem

will exist in a vacuum, with no connections to their prior experiences. It will be

locked away in an isolated room outside the teeming garden of their own ideas. My
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goal as a teacher is to get them to “stand and stare in disbelief”, to “experience [the

problem] as problematic”. As noted by Duckworth (Duckworth 2006d),

Nothing happens until the interest has been touched. The reality of the subject

matter of the world, the reality of the learners’ minds……If the integrity of each is

preserved, they cannot but meet.

There are several aspects to this process of reaching the second question. One

of the most important is dignity. Students must feel that their ideas are welcome and

that they can use their ideas to approach “the real stuff of the world”. If the class

environment implicitly or explicitly suggests a hierarchy of ideas, there is a barrier

to students asking authentic questions about the subject matter. Such hierarchies

can exist because of the language used in class, the people called upon to share ideas

in class, and the sources, readings and assignments used in class. For example, the

school I attended from the age of 4 to 12 enforced a strict “English only” policy in

all classes (except classes on the Hindi language, which was the language I spoke at

home). Consequently (Agarwal, Journal, November 30 2019),

I thought of Hindi as the language I spoke ‘at home’ and English as the language

‘of school, of academia’. The scientific discourse was in English, and perhaps my

teachers’ intention in encouraging us to speak in English was to make it easier for us

to access it. However, in punishing the use of Hindi, the message I received was that

my home discourse was to be kept out of school. I loved thinking about science, and my

native language was not accorded a place of respect in that discourse. Consequently,

my own respect for it diminished... Perhaps because of this negation of my home

discourse I did not connect the scientific discourse with the things I saw around me at

home. I was never curious about the trees that grew in my home, about the birds that

nested there, about the flowers they produced, even though biology was my favorite

subject.

Looking back, I wonder how many amazing ideas were kept out of the class-

room because the students who had them could only express them in Hindi (a lan-
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guage that most of our teachers also spoke). The class environment took away their

dignity and prevented them from participating. Similarly, if the points-of-view of

some students, some sources, or of the teacher, are valued more than other students,

the deep, participatory learning that can occur in the classroom is stifled. Before we

expect students to give us their authentic selves, we must provide them the dignity

and legitimacy to do so. As Delpit writes (Delpit 1993),

First, teachers must acknowledge and validate students’ home language without

using it to limit students’ potential. Students’ home Discourses are vital to their

perception of self and the sense of community connectedness.

Further, if students experience a classroom without hierarchies, they become

more likely to notice and question hierarchies outside the classroom. Breaking down

those hierarchies then becomes part of their problem.

Another aspect of the process of finding the second question is ownership. As

Duckworth says (Duckworth 2006c),

It is, of course, exhilarating to find that your own ideas can lead you somewhere.

Few feelings are likely to be more effective in getting you to keep on thinking about

things on your own.

Too often, particularly in science classes, ideas are presented in their final,

reduced form. Some person three hundred years ago took a piece of the world and

reduced it to a set of neat ideas and equations that describe its behavior. We present

the final product but not the process; the conclusion but not the story. Reflecting

on discussions of this reductionism in the writings of Duckworth and Piaget, I wrote

(Agarwal, Journal, October 28 2019):

It occurs to me that some of ED [Eleanor Duckworth] and Piaget’s ideas are

a call against reductionism. Physics is taught in the reductionist way - you learn

about atoms, then molecules, then compounds, then solids. The physicist’s argument

would be to teach the basic components to the child which they will then put together.
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However, this reductionism was made by someone who had studied and understood

the larger system and convinced themselves through observation that the reduced com-

ponents could be studied individually. The child has not convinced themselves of this

yet - when they look at a rainbow, they don’t see it as sunlight interacting with drops

of water and teaching them individually about light and water and the interaction

between them will not be sufficient for them to understand rainbows. I think that

studying the reductionist way requires experience with physical objects and systems,

which children have not developed yet.

ED and Piaget’s alternative is to let kids see the whole system with all its

complexity (hence the analogy to biological systems). They can then start noticing

things in this complexity and may reduce it (or narrow it) to one question to think

and experiment about.

As a teacher, I have to show my students that their own ideas are the focus

of the classroom. My classes have to driven by and be a response to their ideas.

This does not mean that we re-invent the wheel every time, or that we ignore the

vast history of similar ideas that others have come up with and document. I use

these ideas and these writings when they will supplement my students’ thinking.

However, the focus remains my students’ thinking, and I arrange external materials,

experiments and writings to fit into the story that they are creating. One final aspect

that I realized was equally important is trust. I summed up my thoughts on trust in

the following journal entry (Agarwal, Journal, November 2 2019):

Trust has been a theme for me this week. During the first fieldwork, I was

struck at how R was captured not by the ‘fundamental’ process I placed before him

(the bending of light by water), but by the complexity of the shape of the bowl containing

water and its effect on what I was seeing. I learnt that I should trust the complexity

of my material to shine through and capture my learner’s attention. When I was

stating this in section on Friday, I said “I should trust the complexity of the material.

” Hilary added “and trust the learner”. This was an aspect I had not considered
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previously, but which I completely agree with. A passage from Chapter 2 of Pedagogy

of the Oppressed (page 75) reveals the same idea:

His [The teacher’s] efforts must be imbued with a profound trust in people and

their creative power.

Trusting people and their creative power, and the complexity of the material to

invite them to exercise their creative power. I saw this in action with R and his various

experiments to understand the effect of the curvature of the bowl on the bending of the

straw. Another aspect of this is trusting myself to be a valuable co-explorer with my

student as they embark on their personal journeys. At times during the fieldwork I felt

uncertain of where it was going, what I was going to do if we ended up in unfamiliar

territory. Although I haven’t shaken off this uncertainty and fear, I have to trust that

I can be a valuable co-explorer, and together we can create a deeper understanding of

light, glass and water for ourselves.

Trust your material, your learner, and yourself!

I want to present two examples of activities from class that let me observe

these ideas in action: our semester-long observation of the moon and the process of

designing and performing the final fieldwork of the class.

The moon

In the first meeting of the class, the instructors asked us to keep a diary with obser-

vations of the moon. Importantly, they did not specify what to look out for – where

in the sky it was, how high up it was, how much of it was lit, or anything else. They

gave us the primary source, the first question, and left it to us to notice something

about it, to form our second questions. My first reaction to this is recorded in my

class notes from that day (Agarwal, class notes September 3 2019):

Not sure what new things, if any, I’ll be seeing. Maybe correlate with tides.
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I did not know what the teaching staff expected me to see. However, over the

next few weeks, I made observations of the moon and recorded them in my journal. I

wasn’t very regular but I wanted to give it a try. A journal entry from mid-September

reads (Agarwal, Journal, September 14 2019):

When I started moon observations for the class, I was a little skeptical of what

I would learn. The moon was always there, and I thought I was familiar with its basic

properties (waxing and waning, moving across the sky). However, observing the moon

has already brought up a host of surprises and questions. Here are some:

1. What does the exact shape of the moon (the size and orientation of the shadow

on it) depend on? Why does this orientation seem to change over a few days?

2. Why does the moon appear to shine so bright on some nights, and so dim on

others?

3. Why do I sometimes see a band of colors around the moon (a ‘moonbow’)?

I look forward to making more observations and trying to resolve these questions!

I was interested but I wasn’t yet hooked. I would report my observations

in class, but I hadn’t really bought into the whole exercise. There were questions

forming in my mind, but I had not hit upon the question yet, the second question.

The questions in my mind were questions that I thought the teaching staff wanted

me to have. I found my question quite fortuitously. I was on a bus my way back to

Boston from a conference in eastern Massachusetts on October 4. I saw the moon

out the window and drew it in my journal. Later that same day, I went out to dinner

and saw the moon again. It was different! Here’s the relevant page from my moon

diary (Agarwal, Moon Diary, October 4 2019):
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The moon changed over the course of a couple hours! I was astonished. I

had not expected this at all. I confirmed my observations over the course of the

next few days, and each time the moon changed its orientation in a similar way.

Why was it doing that? This was my question, and it drove me to make further

and more detailed moon observations, sometimes several times a day. Looking back,

I realize how crucial it was that this was my question. None of the teaching staff

had suggested observing the moon many times every day. As we discussed our moon

observations in class, I realized that others had the same question too. I was hungry

for their observations and ideas. We would pick up Styrofoam balls provided by our

teaching staff and re-enact the moon’s journey around the earth and the sun, hoping

for insights into changes in its appearance. The teaching staff, for their part, gave

our ideas the chance to be expressed and considered seriously. They would ask people

to come to the center of the class and explain an observation or hypothesis and then

ask others for their thoughts. Each person, each idea was given respect and dignity. I

realized that we were building an understanding of the habits of the moon as a group.

Although I still have not figured out why the moon’s orientation changes over the

course of a few hours, I am going to continue making observations and hypotheses.
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Final fieldwork

The denouement of the course was the final fieldwork. We were tasked with engaging a

learner over the course of three sessions in an activity of our choice. Here was a chance

to test the ideas of teaching that we had been discussing in class. I chose the bending

of light as the focus of my fieldwork. This was a subject I had often encountered

in the course of my academic and research work, but I had never had the chance to

teach it before. Given its ubiquitous nature and the potential for surprise and awe,

I thought it would be a good subject to engage my learners’ attention for 3 sessions.

Another aim I had through the sessions was for my learner to experience what it

was like to be a physicist – to hypothesize, experiment and modify the hypothesis

continually.

Beyond the subject, though, I was very unsure about the fieldwork. How

should I present my first question? At what level of complexity should my learner

encounter the bending of light? I considered using a very ‘direct’ demonstration of

the effect by placing a glass slab on a piece of text, which would appear raised. In

the same journal entry where I wrote about reductionism, I wrote about my dilemma

in my journal (Agarwal, Journal, October 28 2019):

At what level of complexity should I introduce the idea of light bending? In my

own education I was first introduced to the idea in theory, then shown some demos

with glass slabs. Should I present a ‘simple’ (reductionist) demo that shows the basic

idea, but strips away the context in which the learner would find it in the world (you

don’t usually see glass slabs lying about with pieces of text conveniently below them),

or should I present it in a way that the learner may have already encountered before

(straw in a glass), with the associated risk of them missing it?

I decided to present my learner (R) with a display of three glasses with straws

in them. One glass was empty, one had water and one corn syrup. The straw at

the surface of the liquids appeared broken, which was another manifestation of the

bending of light. The following drawing from my fieldwork report illustrates the setup
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(Agarwal, Final Fieldwork session 1, November 3 2019):

What happened over the course of the 3 fieldwork sessions was transforma-

tional for me. Not only did R notice the breaking of the straw, but he devised, tested

and verified a hypothesis he had about the degree of bending in various containers.

My learner’s interest was initially sparked by something I had not even considered –

the curvature of the glasses. It turned out that the curved glasses made the straw

appear broken in very interesting ways, and it was this complexity that led my learner

to their second question. I wrote about this in a journal entry (Agarwal, Journal,

November 22 2019):

One of the most important lessons I will take away from my fieldwork with R is

the importance of complexity in subject material. I had been agonizing over whether

I should use square base containers or round glasses for my first session. I was

leaning towards square base containers because I felt that the round one had too many

effects intertwined. However, R’s interest was initially captured by the curvature of

the glass. At the end of the first session, he described how he had been going through

the motions before the changing offset of the straw in the curved bowl surprised and

intrigued him. If I had chosen a square base container, maybe his interest would

not have been captured the same way, or maybe not at all! At the end of the second

session, R had separated the effects he was seeing and decided that he wanted to use a

square base container to investigate further. Him reaching this conclusion was much
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more powerful than me introducing it in the first session. The complexity of the curved

glass gave him a point of entry into the phenomena I wanted to engage him in!

The complexities of the setup gave R a way of entering the activity. They gave

him something unexpected, and that unexpectedness motivated him to formulate his

question that he spent the rest of our time together answering. By the end, the

understanding he had developed of the bending of light was his own. Some of his

diagrams (attached at the end) were very similar to what one might find in a physics

textbook in a chapter on the refraction of light, and he arrived at them all by himself!

All because he owned the question and everything he did with it.

Conclusion

I have never experienced such anticipation and exhilaration as I did during T.440.

Looking back at all my experiences in the class, all the discussions, readings and

journaling seems like a giant first question. Here was an altogether different approach

to teaching than what I had experienced in school and college. My second question

in response to this was – could I do it? Could I teach this way? The final fieldwork

was my first attempt, and I will continue to hypothesize, test and modify.

When I began T.440 in September 2019, I knew I wanted to be a teacher. I

had known since I was in middle school and would picture myself standing in front

of a classroom, explaining the concept I was studying to my imaginary students. In

the course of doing the readings, fieldworks, and journals, I realized just how much I

wanted to be a physics teacher. There is nothing else I would rather be.
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