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Abstract

Information processing with very low power consumption and innovative com-
puting paradigms are required for the development of modern technologies in which
real-time elaboration of data is needed. Natural spiking neural networks are being
explored for their speed and energy-efficiency. In these systems, spikes generated by
neurons take the information, and synapses act as local memories and connections
between neurons, allowing networks to learn and adapt to external stimuli.

Superconducting electronics for its intrinsic low energy dissipation is the perfect
candidate for building bio-inspired neuronal systems. It has already been proposed
a structure that mimics the spiking behavior of the neuron and can be based
on two different superconducting devices, which are able to generate low-power
pulses: (1) Josephson junctions [1]; and (2) NbN nanowires [2]. The former are
widely used for their high operation speed and low power consumption. The latter
are typically exploited for single-photon detectors (SNSPDs), but recently are
emerging as a platform for new electronics, thanks to their ability to interface with
high-impedance environments.

This work mainly focuses on the design, optimization, and characterization of the
nanowire-based elements necessary for the realization of a spiking neural network.
The spiking behavior of nanowire neurons has been demonstrated experimentally,
but further work is needed to improve the controllability of their properties. An
artificial synapse has not yet been fabricated and tested, but it has been designed,
exploiting the presence of kinetic inductance, a particular effect of NbN nanowires
(inductive synapse). It is able to reproduce some characteristics of its biological
counterpart, like the variable connection strength, but still presents some lacks
for the creation of large and versatile networks. A new structure developed
to improves the performances of the inductive synapse is here proposed (nTron
synapse), introducing the nano-cryotrons (nTron [3] and hTron [4]): nanowire-based
comparators with tunable gain, that use the formation of a localized Joule-heated
hotspot to modulate the current flow in a superconducting channel.

SPICE models of all the exploited superconducting devices were created, start-
ing from experimental data and the existing model of SNSPDs, to facilitate a
correct design of the nTron synapse and find limitations of the network. Moreover,
fundamental elements of the neurons and nTron synapses like (1) large kinetic
inductors, (2) shunted nanowires, and (3) nTrons, were fabricated and tested.

Electrical simulations were also performed to study in depth a possible integration
of nanowire neurons with Josephson junction neurons. Merging the two technologies
could be useful to increase the overall performances of the network, but it generates
also some problems, that are here analyzed.
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Chapter 1

Introduction

The human brain has long been studied for its capability to perform complex
operations with robustness to errors and very low power consumption (10 times
lower than a normal computer). Even if it executes less than 1000 operations/sec.
[5] with a precision of 1 in 100, it is able to adapt to external stimuli and make
decisions in real time, with low latency, thanks to a massively parallel computation
paradigm. Traditional computers based on von Neumann architectures with a
serial computation paradigm can perform about 10 billion operations/sec. with
a precision of 1 in 4.2 billion (32-bit) [5], but struggle with tasks that require
real-time elaboration of data and decision-making. The structure of the brain and
its ability of learning has already inspired the creation of software-based artificial
neural networks, that nowadays are intensively used for applications like patterns
recognition, autonomous vehicles, and Internet of Things. They are very powerful
and adaptable, but they are not energy-efficient, because implemented in standard
hardware structures. The latter have intensively been improved over the years, but
now are reaching their limits in terms of operation frequency, because of physical
limitations and the bottleneck introduced by the access time of memories. Therefore
it is necessary to drastically revolutionize the computing paradigm in order to
reach the same performances of the brain. An alternative architecture that can
allow the realization of power-efficient neural systems, is based on the concept of
neuromorphic computing.

1.1 Neuromorphic computing
Neuromorphic computing is an innovative concept first proposed by Carver Mead
in the 1980s, that revolutionizes the structure of standard hardware architectures,
removing the net distinction between processing elements and memory. Recently,
the interest in neuromorphic hardware has been renewed by the artificial intelligence
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industry, for the growing demand of efficient neural networks and deep learning.
Multiple types of neuromorphic systems that mimic different aspects of the brain,

were proposed. Among these systems, the artificial spiking neural networks (SNNs)
follow the most bio-realistic approach, trying to replicate the spiking behavior of
the neurons. In the following section the fundamental elements and concepts of
biological networks, necessary to realize an artificial SNN, are introduced. Different
technologies have already been explored to create SNNs, but the most promising
in terms of energy-efficiency is based on superconducting electronics. Therefore
in section 1.2 the advantages and standard devices of superconducting electronics
are introduced. Superconducting SNNs have recently been designed, but their
characteristics still need to be improved. Section 1.3 explains how they work and
what are their pros and cons.

1.1.1 Biological spiking neural network

The biological spiking neural networks that form the brain are complex systems,
composed by neurons connected to each other through synapses, that exploit trains
of voltage spikes as carriers of information. The neuron is the central element of
these systems and is formed by different parts: dendrites, soma and axon (see figure
1.1). The dendrites collect the input signal from other neurons and transmit it to
the soma, that elaborates the signal generating voltage pulses (action potentials).
These pulses propagate through the axon, which introduces a certain time delay,
and reach the downstream neurons through the synapses [6].

Figure 1.1: Structure of the neuron.

The spatial distribution of neurons, their connections and their behavior in the
time domain define together the characteristic operation of a network [7]. The
delay introduced by the axon is important to preserve time domain information. A
too fast propagation could result in a lost of information [8].
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Modeling of biological neurons

The critical part of the neuron is the soma, because it elaborates the signals.
Indeed from the dendrites it receives the action potentials, that interacts with
the ionic liquid enclosed in the cell membrane of the soma, and in turn generates
others. In order to create a system that mimics a biological network is important
to understand how the soma can be modeled.
The simplest phenomenological model for the soma is the ’Leaky integrate-and-
fire’ model. To a first and rough approximation the soma performs an operation
of summation (integraton) of the input signals coming from the dendrites, and
generates action potentials when a certain critical voltage is reached (firing). The
information is not encoded in the shape of potentials, but in the presence or
absence of them [6]. In the Leaky integrate-and-fire model, the cell membrane
that surrounds the neuron is modeled by a characteristic capacitance and leaky
resistance in parallel (RC-circuit). The incoming current generated by an action
potentials charges the membrane with a time constant τ = RmCm. If its voltage
reaches the threshold, the membrane is reset to the resting potential urest generating
a spike. If the input current is still present the dynamic is repeated, and the neuron
continuously fires. Figure 1.2A shows the structure of the cell membrane and the
circuit schematic of the model, while the 1.2B shows the cell membrane reaction to
a step current.
The leaky integrate-and-fire model is useful to understand the passive integration
behavior of the cell membrane and the general characteristics of the neuron, but it
is highly simplified and can not describe many dynamics [6].

Figure 1.2: Passive membrane. (A) Cell membrane of the neuron, with a
positive input current I(t) which increases the electrical charge inside the cell. The
membrane can be modeled as a capacitor with a parallel resistor in sseries a a
battery with voltage urest (resting potential). (B) If a step current charges the
membrane (top) a smooth voltage trace (bottom) is generated. Figure from [6].
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In a more complete description the action potential of biological neurons is
generated by two voltage-gated ionic currents that flow between the intracellular
and extracellular medium of the soma. The inward Na+ current accumulates ions
into the neuron, rising the membrane potential, while the outward K+ current
removes ions, restoring the membrane to its resting potential (see 1.3A). If the
neuron if continuously electrically stimulated, the combined action of these ionic
currents generates repeatedly voltage spikes. This behavior is described by the
Hodgkin-Huxley model, in which the membrane still has a characteristic capacitance
and ions channels are modeled by voltage-controlled resistances as shown in figure
1.3B.

A B

Figure 1.3: (A) Action potential of a biological neuron. The Na+ ion channel
influx of the cell membrane controls the rising edge (a), while the K+ ion channel
outflux controls the falling edge, restoring the membrane potential to its resting
potential, so that the neuron can fire again. Figure from [9]. (B) Circuit schematic
of the Hodgkin-Huxley model. C is the capacitor of the membrane and R is the
leak resistor; RK and RNa are the voltage-controlled resistors that model the ion
currents of the membrane; EK , ENa and EL are battery voltages associated with
the ion concentration differences between the inside and outside of the cell. u is
the potential across the membrane, and I(t) is the current injected into the neuron.
Figure from [6].

Synapses

The synapses in a biological neuronal networks, can be direct electrical or chemical.
The former permits current to flow passively through intercellular channels of a gap
junction [10]. The latter is more complex: the action potential generated by the
presynaptic neuron, activates the slow release of neurotransmitter molecules, which
diffuse across the synaptic cleft and induce output current, binding to receptors
of the postsynaptic membrane [1], as shown in figure 1.4. The chemical synapse
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is able to amplify the input signal, while the electrical one can not. Moreover
the chemical synapse can have an excitatory behavior if an input voltage pulse
generates a positive action potential on the output, and an inhibitory behavior if it
generates a negative one.

Figure 1.4: Illustration of a biological synaptic connection. When a pre-synaptic
action potential arrives, the neurotransmitter is released into the synaptic cleft and
captured by the post-synaptic receptors. Figure from [6].

The synapses, in addition to simply connect neurons, also have a key role in
the capability of the network to learn and adapt to the external stimuli. Indeed
the strength of the synaptic connection is influenced by the stimulation history.
Incoming actions potentials can modify the number of presynaptic sites releasing
neurotransmitter, changing the characteristic conductance of the synapse. This
dynamic is called ’plasticity’, and can be at short and long-term. In the short-term
case (order of milliseconds) if there are two incoming spikes, the response to the
second spike is larger or smaller than that to the first spike [6]. The long-term
plasticity modifies the strength of the synapse for longer times, so it is related to
the memory capability of the network.

Network structure

In a biological neural network external stimuli are elaborated in parallel by multiple
neurons that are extremely interconnected. Indeed a single neuron can communicate
with thousands of others. These characteristics are reproduced in artificial SNNs
introducing a simplified network structure in which the neurons are grouped in
different layers. The first layer receives the external signals, while the last one
generate the output response. Each neuron in the intermediate layers collects
signals from a certain number of neurons of the previous layer (fan-in), and can
drive another number of neurons of the subsequent one (fan-out) through synapses
that have different strengths (or weights). Figure 1.5a shows the typical structure of
a neural network in which every connection between two layers is present (complete
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network). A real network can have a more complex structure with only some
connections active and eventually feedback signals. Figure 1.5b shows schematically
the concepts of fan-in and fan-out.

(FI) (FO)

Figure 1.5: (a) Simplified schematic of a SNN. The neurons are indicated as ovals
and the connecting lines can be associated with the synapses. The neurons can be
divided into two parts like in the integrate-and -fire model: the input half, which
sums the inputs (integration), and the output half, which generates a spike if the
threshold is exceeded (firing). Both the input and output signals of the network are
patterns of spikes in time. (b) The fan-in (FI) is the number of signals summed
at the input of the neuron, and the fan-out (FO) is number of output lines that
are driven by the neuron. The input signals can have different weight, and can
be positive or negative, while the output signals have all the same amplitude and
shape. Modified figure from [11].

In order to realize an efficient artificial SNN with the same level of parallelism
of the brain, it is critical to maximise the levels of fan-in and fan-out.

1.1.2 Codification of information
In biological spiking neural networks the information is encoded in the action
potentials. This is the main aspect that implemented in artificial SNNs, could
allow to revolutionize the computing paradigm and drastically decrease the power
consumption. In standard computers the information is encoded in bits, and
processors continuously need a active clock signal to work properly, while in SNNs
the computation is event-driven, so the network does not consume much power
when inactive. The main problem of using spikes is that the learning algorithm to
train the network are much more complex, and still need to be improved.

It has been observed that biological systems can use different type of codification,
according to the tasks they have to perform. Here the most relevant typology of
encoding that could be result useful in artificial SNNs are listed:
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• Rate coding: This is the simplest kind of codification in which the informa-
tion of a stimulus is encoded in the spiking frequency of the neurons. It ignores
every data possibly encoded in the temporal pattern, and only considers the
average firing rate, resulting to be very robust to noise. This technique is
mainly used by neurons connected to sensory systems, and can be easily
implemented in artificial SNNs but has high latency.

• Temporal coding: Most of the neural code is identified as a temporal code, in
which the information stays in the precise spiking time of the action potentials,
and the relative time intervals between subsequent spikes. The intensity of a
stimulus is translated in the firing time of the neuron: higher is the signal,
earlier the neuron fires. This technique is less robust to noise, so it is difficult o
implement it in hardware, but its latency is much lower and more information,
that would be lost with rate coding, are encoded. It was demonstrated by
simulations in [12] that a network can be trained for image recognition on
the MNIST dataset encoded in time, reproducing the results of conventional
software-based networks.

• Population coding: With this method the stimuli are represented by the
joint activities of certain number of neurons. Each neuron has a specific
response to a set of inputs and the combination of all the responses defines the
values associated with the inputs. The population coding is mainly in sensor
and motor areas of the brain [13], and can be well described mathematically.

• Sparse coding: In this method an item is encoded in the strong activation of a
certain area of the brain. Sparse code algorithms are used to find representative
patterns in a set of input patterns. The language can be encoded with this
method.

1.2 Superconducting electronics
Superconductivity is a physical phenomena observed is certain materials, for which
electrical resistance vanishes and magnetic fields are expelled from the material,
when the temperature is below a characteristic critical value Tc [14].

In a superconductor electrons can be attracted to each other due to the electron-
phonon interaction, generating the Cooper pairs. The Cooper pairs act as charge
carriers and can be considered as bosons that are described by the collective
wavefunction Ψ = Ψ0e

iφ(r,t), where φ is the spatially and temporally dependent
phase.

Superconductors are used in digital and analog electronics for their very low
power consumption and their unique non-linear behavior. The most prominent
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device is the Josephson junction, which is the building block of rapid single flux
quantum electronics (RSFQ) [15].

1.2.1 Josephson junction
The Josephson junction is composed by two superconducting layers separated from
each other by a normal or insulating layer. In 1962, B.D Josephson predicted that
the Cooper pairs of the two superconducting layers could tunnel through the central
barrier without generating voltage drop on the junction, if the current is below
its critical value Ic (zero-voltage state). When the current exceed Ic, a voltage is
developed and the current starts oscillating with a voltage-dependent frequency
(voltage-state)[16]. The voltage-dependence of the frequency allowed to exploit
the JJs as voltage standard [17]. Figure 1.6 shows the structure of the Josepshon
junction, and its characteristic I-V curve.

Figure 1.6: (a) Simplified schema of a Josepshon junction. The tunneling of a
Cooper pair through the insulator is shown. ΦR and ΦL are the superconducting
phases. (b) Typical I-V curve of a Josephson junction. Figure from [18].

Due to the presence of the barrier, a phase difference (ϕ = ΦL−ΦR) is maintained
between the left and right superconducting layers, if a bias is applied to the junction.
The two basic equations that determine the behavior of the superconducting current
Is in the junction are:

Is = Ic sinϕ (1.1)
and

dϕ

dt
= 2πV

Φ0
(1.2)

where V is the voltage across the junction and Φ0 = h/2e is the magnetic flux
quantum.

In the voltage-state, a normal current In is generated due to the creation of
quasiparticles. This current is a resistive current: In = V/R(V ). When |V | is lower
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than the characteristic voltage gap Vg of the material the current is generated due
to thermal excitation of quasiparticles, and R(V ) is equal to the sub-gap resistance
Rsg. If the voltage exceeds Vg, the quasiparticles are able to pass through the
junction and R becomes the normal resistance RN . When dV/dt is non-zero, also
the displacement current Id = CdV/dt has to be considered, where C is the junction
capacitance. Introducing In and Id, it is possible to define the "Resistivity and
Capacity Shunted Junction" model (RCSJ), whose current is described by the
following equation [19]:

I = Ic sinϕ+ V

R
+ C

dV

dt
(1.3)

that can be rewritten as:

i = sinϕ+ Γdϕ
dτ

+ d2ϕ

dτ 2 (1.4)

where i = I/Ic, and τ = t
√

Φ0C/2πIc are respectively the normalized current and
time. Γ =

√
Φ0/2πIcR2C is the normalized damping factor of the junction [1]. If

Γ� 1, the junction is overdamped, this means that when I > Ic and the current
is decreased until I < Ic, the zero-voltage state is reached almost instantly. If
Γ� 1, the junction is underdamped, so the voltage oscillates before reaching the
zero-voltage state after a very long time.

1.2.2 Superconducting nanowire
The Josephson junction is a powerful technology, which is widely used in supercon-
ducting circuits, but its fabrication process generally is not simple. Moreover it is
difficult to integrate Josephson junctions with standard electronics. These problems
can be overcame by using superconducting nanowires, monolithically patterned
as strip on thin films (usually in NbN), which do not exploit the tunneling of
Cooper pairs like Josephson junctions. In a nanowire the supercoductivity can be
broken down when the temperature, magnetic field or current exceed their critical
values. The breakdown of superconductivity is not a coherent phenomenon as it
would be in a Josephson junction, so the nanowire can not be used for quantum
applications. During the breakdown a Joule heated region of hot quasiparticles,
named hotspot [20], is generated in the nanowire. The boundary between normal
and superconducting state of the hotspot can expand through the entire length of
the nanowire, causing it to become normal and latch. Considering that the normal
impedance of the nanowires is usually in the order of ∼ 1− 10 kΩ, they are ideal
for amplification and fan-out.

If the nanowire is current biased slightly below its critical current, The hotspot
can be created by a photon impinging on the nanowire, that generates a locally
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increase of temperature, and consequently a decrease of the critical current. Exploit-
ing this phenomenon, superconducting nanowires with planar meandered structures
(see figure 1.7a) can be used as single photon detectors (SNSPD), as demonstrated
in 2001 by Gol’tsman et al [21].

Figure 1.7: Examples of superconducting nanowire devices. (a) (top) Schematic
of an SNSPD, formed by a meandered nanowire on which a phonon impinges
generating a local increase of temperature (hotspot). (bottom) SEM image of a
fabricated SNSPD. (b) (top) Schematic of the nano-cryotron (nTron). Injecting
current into the gate choke the vertical nanowire (channel) can be made switch for
Joule heating (explained in section 2.1). (bottom) SEM image of the nTron with
small inset showing the gaet choke. Figure from [18].

The nanowires can be also used in superconducting electronics to perform logic
operations, through Nanowire-based cryotrons like the Nano cryotron [3] and the
Heater nano cryotron [4] (explained in section 2). They exploit and manipulate
the hotspot formation in order to act as switches or amplifiers for superconducting
digital circuits (see figure 1.7b).

Kinetic inductance

A particular characteristic of nanowire devices, is the contribution of the kinetic
inductance to the total impedance. The phenomenon of the kinetic inductance
does not depends on magnetic phenomenona, but derives from the intrinsic inertia
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of electrons in the material. It is present in every conductors, and can be described
by the Drude model, that defines a complex conductivity, in which the imaginary
part contains the inductive contribute:

σ = ne2τ

m(1 + iωτ) = ne2τ

m(1 + ω2τ 2) − i
ne2ωτ 2

m(1 + ω2τ 2) (1.5)

where n is the carrier number density, m is the mass of the charge carrier,
and τ is the main collision time of charge carries. In normal metals the collision
time is very low, so ωτ is much lower than 1. As consequence the imaginary part
is negligible. In superconducting materials, τ → ∞ so the term of the kinetic
inductance becomes dominant. The easiest way to compute the kinetic inductance
in a superconductor is to relate the kinetic energy of Cooper pairs to the inductive
energy:

1
2(2mev

2)(nslA) = 1
2LKI

2 (1.6)

where 2me is the mass of a Cooper pair, ns is the density of Cooper pairs,
l i the length of the superconductor and A is the area of the cross section of
the superconductor. Considering that I = (2e)nsvA it is possible to obtain the
expression of the kinetic inductance:

LK =
(
me

2nse2

)(
l

A

)
(1.7)

In general, the kinetic inductance is two orders of magnitude larger than the
magnetic counterpart. This allows to realize scaled down inductive loops in
superconducting electronics. It allows also to control the electrothermal feedback
when large loads are connected to the nanowires, because the time constant of the
feedback Lk/R depends on the inductance.

It was demonstrated that the kinetic inductance depends on the bias current of
the nanowire, because the density of Copper pairs in the nanowire depends on the
current passing through it [22]. Experimentally the inductance can be almost 20%
higher than the zero-bias inductance, when the current approaches the switching
current Isw. The relation between the kinetic inductance and the current iD is [23]:

Lk(iD) = L0

2 cos (2 arccos (0.6iD/Isw)/3)− 1 (1.8)

Simplified physical model

A simplified model, that does not introduce a physical description of the hotspot
formation, can be introduced to understand the behavior of the nanowire [23].
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Figure 1.8 displays a schematic I-V curve of the nanowire, in which three different
states can be defined: (1) the superconducting state; (2) the hot-spot state; (3) the
normal state.

Figure 1.8: Schematic I–V curve of a superconducting nanowire The characteristic
operation regions are shown: (1) superconducting state; (2) hotspot state; and (3)
normal state. Figure from [23]

When the bias current is lower than the switching current the superconducting
state occours, so the entire nanowire is superconductive, and the voltage drop is
zero. In this state the nanowire electrically behaves like a kinetic inductor.

The nanowire enters the hotspot state, when an extended and sustained region
becomes normal. After the formation of the hotspot the voltage drop on the
nanowire is not more zero and the normal/supercondcucting boundary expands
through the entire nanowire, if additional voltage continues to be applied. In
this state the current remains almost constant, due to the balance between Joule
heating and cooling through the substrate at the boundary.

When the entire nanowire is normal it enters the normal state, behaving like
a resistor. The expansion of the hotspot along the length of the nanowire can be
described by a phenomenological model developed by Kerman et al [24], that defines
a current-dependent velocity of the superconducting/normal-phase boundary.

Usually the width of the nanowire is in the order of magnitute of the diffusion
length of the superconductor (∼ 100 nm). This means that the hotspot instantly
expands along the width of the nanowire, so only the expansion in time along the
length is considered. When i > Isw the length of the hotspot l varies with the
following velocity:

vhs = dl

dt
= 2v0

Ψi2/I2
sw − 2√

Ψi2/I2
sw − 1

(1.9)
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where v0 is a characteristic velocity that depends on the thermal parameters
and the thickness of the film, and Ψ is the Stekly parameter. Ψ characterizes
the ratio between the heat generated through Joule effect by the hotspot and the
heat dissipated through the substrate. The factor 2 is introduced to consider that
the hotspot propagates in both the directions if the nanowire is symmetric. This
equation shows that the hotspot can also stay in a steady state in which vhs is
zero, and the nanowire remains in the hotspot or normal state. This phenomena
happens for a certain value of current named Iss, for which the local power density
becomes equal to a fixed value. If it is greater the hotspot grows, if it is lower it
contracts [24].

Shunting and relaxation oscillations

It is relatively easy to fabricate superconducting nanowires, and their operation
is very simple, but they are limited by Joule heating. After the formation of the
hotspot, for a correct operation usually it is required that the nanowire returns
quickly to the superconducting state, with a certain reset time [18]. When the
nanowire becomes normal, if the bias current is maintained constant, the Joule
heating tends to keep the nanowire in the normal state if the heat dissipation is
not strong enough. As consequence a slow and thermally dependent reset time is
introduced. The heating also generates an hysteretic behavior, in fact after the
formation of the hotspot, the current must be reduced below the retrapping current
Ir instead of Isw, in order to counteract the heating and reset the superconducting
state. These problems can be solved shunting the nanowire with a resistor, which
allows the bias current to divert from the hotspot, drastically decreasing the Joule
heating. In this case the reset time depends on the discharging of the inductance
between the nanowire and the shunt resistance, according to the formula L/Rs,
where L is mainly composed by the kinetic inductance and Rs (or Rsh) is the shunt
resistor.

Due to electrothermal feedback [24], the shunted nanowire can act in different
ways after the switching event: (1) if Rs is too high, the timescale τe = L/Rs

to restore the current in the nanowire after it is diverted to the shunt resistor
becomes shorter than the timescale of the cooling down of the device. Therefore
enough current (Iss) flows into the nanowire to generate Joule heating before it is
completely cooled down reaching the steady state, so that the nanowire latches;
(2) if L/Rs is on the order of ∼ 100 ps a single contolled pulse is generated. (3) If
L is sufficiently large and the nanowire is biased with a current higher than Isw,
relaxation oscillations are obtained [2], as shown in figure 1.9 .
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Figure 1.9: Relaxation oscillations in shunted superconducting nanowires. (A)
Simplified model of a spike generated during relaxation oscillations. When the
nanowire switches into the normal state (Rhs > 0), the bias current is diverted
to the shunt resistor, so the rising edge occurs. When the nanowire return to
be superconductive (Rhs = 0), the bias current flows back into it, so the falling
edge takes place. (B) SEM image of a meandered nanowire designed to have
high kinetic inductance. (C) Experimental relaxation oscillations in a meandered
superconducting nanowire shunted by 50 Ω .Figure from [2]

In the relaxation oscillations, the rising time of each spike is much lower than the
falling time, because just after the hotspot formation the total series resistance of
L is Rhs +Rs, where Rhs is the hotspot resistance of the nanowire. As consequence
the time constant of the rising edge is equal to τ1 = L/(Rhs +Rs). After the rising
edge, the current in the nanowire falls below the retrapping current, so that the
nanowire can becomes superconductive again. The time constant of the falling
edge is τ2 = L/Rs because the hotspot is not longer present.

The total period of this kind of oscillations can be approximated as:

T = −τ1 ln
(
Ir
Isw

)
− τ2 ln

(
Ibias − Isw
Ibias − Ir

)
(1.10)

In section 3 it is explained how a shunted nanowire can be modeled in LTspice,
and the similarities with shunted Josephson junctions are shown. With well defined
Isw and L, the level of damping is determined by the shunt resistance. As for
Josephson junctions, a lower resistance leads to an higher damping, so a lower
spiking frequency.
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1.3 Superconducting spiking neural network
Many hardware approaches for the spiking neural networks have been explored,
including CMOS technology, magnetic materials and memristors. The CMOS
circuits are the best option for large-scale integration, but their power consumption
is much higher than the one of the human brain. Magnetic materials are not
well integrated in a complete system with synapses and memristors have to be
paired with CMOS technology [2]. Considering that low power dissipation both in
the dynamic firing state and static state are strongly required, superconducting
spiking neural networks, with their energy efficiency, have been introduced. The
non-linear characteristics of superconducting devices allow to mimic the behavior of
biological neurons with very few components. Superconducting neurons composed
by Josephson junctions or shunted nanowires have been proposed. Both the devices
are able to reproduce the behavior of the Hodgkin-Huxley model of biological
neurons [6].

1.3.1 JJ Neuron
A structure for the soma based on Josephson junctions was proposed in 2010 by
[1]. As shown in figure 1.10, it is composed by two Josephson junctions that are
connected in a loop, and have a similar behavior of ion channels in biological
neurons.

Ls,JJ

Lp,JJ

Iin

Ib,JJ

φp

φc

Figure 1.10: Circuit schematic of a JJ neuron

This structure derives from the superconducting logic circuit called "dc-to-SFQ
converter" [25], and can mimic some neuronal behaviors like: action potential, firing
threshold and refractory period [1]. A Josephson junction on its own can generate
spikes similar to action potentials, but the voltage accumulates an offset if the bias
current is increased. Considering that in a biological neuron the resting potential
remains constant, the structure of the "dc-to-SFQ" turns out to be more suitable
because it allows to keep an almost zero resting potential.
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The junction on the right branch of the loop is named pulse junction (p), while
the one on the left branch is the control junction (c). The inductances Ls,JJ
and Lp,JJ are equal in order to perfectly split the bias current between the two
junctions. Applying the current conservation and fluxoid quantization to the loop,
it is possible to obtain the two equations that describe the behavior of the two
junctions:

sinϕp + Γdϕp
dτ

+ d2ϕp
dτ 2 = −λ(ϕp + ϕc) + iin

2 + ib
2 (1.11)

sinϕc + Γdϕc
dτ

+ d2ϕc
dτ 2 = −λ(ϕp + ϕc) + iin

2 −
ib
2 (1.12)

where λ = Φ0/2π(Ls,JJ + Lp,JJ)Ic is the parameter of the coupling between the
phases of the two junctions, iin and ib are respectively the normalized input and
bias currents. The loop is in equilibrium when iin = 0, and the bias current equally
splits between the two junctions biasing them just below their critical current.
When iin reaches the threshold, the control oscillator does not fire since the input
current opposes the direction of the bias, while the current through the pulse
junction exceeds Ic, generating a voltage pulse across it, that creates a magnetic
flux in the loop. The flux induces current into the control junction, which starts
whirling and make the pulse junction stop whirling. At this point, the system is
ready to fire again, and this process can repeat continuously, if the input current
is held above the threshold. The setting of Ls and Lp is important to define the
coupling parameter. Lower is the total inductance of the loop, more coupled are
the two junctions, so more current is generated in the other junction when one of
them whirls. A too high coupling parameter could results in an unstable firing of
the neuron.

The flux of the JJ neuron can be associated with the membrane potential of a
biological neuron, and the voltages across the junctions corresponds to the ionic
currents. Figure 1.11 shows the time profile of the flux in the JJ neurons, compared
to the time profile of the action potential in the Hodgkin-Huxley model of biological
neurons. The flux (defined as the time integral of the voltage) generated by the
pulse junction for each spike is always equal to Φ0.
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Figure 1.11: (a) Time-domain profile of action potentials in the JJ Neuron
(simulation). The damping factor is Γ = 1.5. The input DC current is iin = 0.21.
(b) Time-domain profile of action potentials in the Hodgkin-Huxley model. The
flux (black solid) in the JJ Neuron is associated to the membrane potential (black
solid) of the Hodgkin-Huxley model. The voltages vp (red dashed) and −vc (blue
dot-dashed) in the JJ Neuron model are associated to the ion currents IK (blue
dot-dashed) −INa (red dashed). Figure from [1]

In biological systems there exist two types of neurons that differ in their response
to varying signal strength: Class I neurons have a spiking frequency that increases
with increasing input current, while Class II neurons keep a constant firing rate
[26]. In JJ neurons both these behaviors can be reproduced setting the value of the
normalized dumping factor Γ: If Γ > 1 the JJ neuron is Class I, while for Γ < 1 it
is Class II.

In order to completely reproduce the behavior of a neuron, it is required
to introduce also the axon. For JJ neurons it is reproduced by a Josephson
Transmission Line (JTL), that isolates the soma from the synapses and introduces
a time delay [27].

1.3.2 NW Neuron
JJ neurons are fast and energy-efficient but have low fan-in/fan-out performances,
so in large networks amplification components are needed. The action potential
of JJ neurons is also difficult to be measured directly with standard electronics.
For these reasons, the same structure of JJ neurons was implemented exploiting
relaxation oscillators made by shunted nanowires instead of Josephson junctions
[2]. The schematic is shown in figure 1.12. It is possible to use the same structure ,
because the shunted nanowires have I-V curves and dynamic behavior very similar
to the ones of the junctions, as demonstrated by simulations in section 3. Even
if the electrical behaviors are very similar, the two devices are based on different
working principles as explained in previous sections.
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Figure 1.12: Circuit schematic of the NW neuron with results of simulations
showing its time-domain behavior. (A) Input current pulse, Iin = 4 µA. (B)
Current through the loop inductor. (C) Current through the control oscillator,
which reduces the amount of counterclockwise current in the loop, making the main
oscillator fire. (D) Current through the main oscillator. (E) Output voltage that
is sent to a synapse. Simulation parameters: Isw = 30 µA, Ibias = 58.6 µA. Figure
from [2].

In the NW neuron, as soon as the input current reaches the threshold, the main
oscillator switches generating a voltage pulse. The current through it is diverted to
the control oscillator in counterclockwise direction, summing with its bias current,
so that the control oscillator can switch and the main one can stop firing. At this
point the main oscillator is ready to fire again (see figure 1.12).

The NW neurons can reproduce the same characteristics of the biological neuron
of the JJ neuron: action potential, firing threshold and refractory period. The
shape of the action potential is slightly different from that of the JJ neurons, and
the maximum spiking frequency is more than two order of magnitude lower. The
spiking frequency is limited by the long reset time of shunted nanowires. It was
observed a dependence of the spiking frequency on the bias current of the neuron,
so the NW neuron is a Class I neuron [2].

The relaxations oscillators do not exploit a coherent phenomenon as in the
case of Josephson junctions, so the flux released for each voltage spike depends
on the switching current of the nanowires and the bias current of the loop. With
Isw = 30 µA the neuron generates a flux of ∼ 70Φ0 per spike.

For NW neurons the behavior of the axon is reproduced by a long NbN nanowire,
that is designed to act like a transmission line, thanks to its high kinetic inductance.
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1.3.3 Inductive synapse
The inductive synapse (shown in figure 1.13A ) introduced for the NW neurons,
reproduces the slow release of neurotransmitters of a chemical synapse explained
in section 1.1.1, with the slow charging of a large inductor [2].

Figure 1.13: NW neuron with an inductive synapse. (A) Circuit schematic.
The output current of the neuron charges the large synaptic inductor Lsyn, that
discharges providing current to the input of the target neuron, eventually making
it fire. Rseries is in placed to reduce the back-propagation of signal from the
target to the main neuron (B) Excitatory control. Parameters: Ibias,main = 59 µA,
Rseries = 14 Ω, Rsyn,1 = 40 Ω, Lsyn = 265 nH, Rsyn,2 = 40 Ω, Ibias,target = 57.17 µA,
Iin = 4.6 µA. (C) Inhibitory control. Parameters: Ibias,main = −58.6 µA, Rseries =
24 Ω, Rsyn,1 = 40 Ω, Lsyn = 230 nH, Rsyn,2 = 40 Ω, Ibias,target = 57.68 µA,
Iin = 4.6 µA. For both cases: Panel (i) displays the output voltage of the main
neuron and the red dashed lines indicate the rising and falling edge of the input
current signal; Panel (ii) displays the current through Lsyn; Panel (iii) displays
the output voltage of the target neuron. Figure from [2].
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The large inductor can be obtained by a long NbN nanowire with high kinetic
inductance. The inductor is charged by the spike generated by the upstream neuron
and slowly discharged, providing a broaden pulse of current to the downstream
neuron. If the presynaptic neuron is firing multiple times, and the time constant of
the inductor is larger than the spiking period, the pulses can add up generating
an higher output current. This kind of dynamic, shown in figure 1.13B, reproduce
the integrating behavior of the integrating-and-fire model introduced in section
1.1.1. In a biological neuron the action potentials add up charging the membrane
capacitance, while in NW neurons the spikes charge the synaptic inductors, and the
output pulses of all the synapses electrically add up on the input of the downstream
soma.

In biological systems the chemical synapse can have an excitatory or inhibitory
control on the downstream neuron. Since the control depends only on the synapse,
the spikes generated by the same neuron can contemporary control more target
neurons with inhibitory and excitatory behavior. This characteristic is not repro-
ducible by the inductive synapse. In order to achieve the inhibition, the main
neuron needs to be biased with a negative current, so the control depends on the
soma, instead of the synapse. Figure 1.13 shows the dynamic of two coupled NW
neurons. The inductive synapse can be used also with JJ neurons, but the value of
the inductance has to be reduced, since the Josephson junctions generates only one
fluxon per spike, so a too small output current would be released.

Variable strength synapse

The ability to modulate the control by tuning the synaptic strength is a fundamental
property in artificial neural networks. It allows to implement algorithms for
unsupervised learning with long or short-term plasticity if the strength is internally
controlled by action potentials, or just adapt the network to different tasks if it
is externally controlled (supervised learning) [28]. The strength of the inductive
synapse can be varied by changing the value of the kinetic inductance. As explained
in section 1.2.2, the kinetic inductance can have an enhancement of almost 20%, if
the current through the inductor is increased. This can be done posing an ideal
current source in parallel with the synapse inductor as shown in figure 1.14. Ideally
the value of the current source might be stored in integrated programmable memory
cells based on superconducting loops [2].
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Figure 1.14: Variable synaptic strength. (A) Circuit schematic of the complete
inductive synapse. A high-inductance nanowire and ideal current source are placed
in parallel. L1, L2 � Lnanowire, Lsyn. Rseries,out has been added to limit back-
propagation from the target neuron. (B) Time-domain profile (simulation) of the
current through Rseries,out in a synapse with inhibitory control as a function of
the modulation current Lmod. The spikes are generated by the backaction from
the firing target neuron. (Inset) Enlarged view of the boxed area. Increasing Imod
the overall synaptic inductance rises, so the current sent to the target decreases.
Since with Imod = ±5 µA the effect is nearly the same, the modulation is not
polarity-dependent. Parameters: Rseries,in = 25 Ω, Rsyn,1 = 39 Ω, Rsyn,2 = 40 Ω,
Rseries,out = 0.1 Ω, Lsyn = 450 nH, L1 = L2 = 50 pH, Ibias,target = 57.65 µA,
Ibias,main = −59.5 µA. Figure from [2].

Thanks to the high and controllable number of fluxons generated by the NW
neurons and the tunability of the inductive synapses, it has been demonstrated by
simulations that a NW neuron could contemporary control four different target
neurons through inductive synapses with different synaptic strengths. The maxi-
mum fan-out (number of neurons controllable by a single one) is a fundamental
figure of merit for the realization of a complete spiking neural network as will be
explained in section 4.2.2, and NW neurons are more suitable for reaching high
fan-out, respect to JJ neurons [2].

The energy dissipation of the neuron based on nanowires is about 50 aJ per
action potential, of which the synapse contributes less than 5 aJ. However it is
important to notice that in large systems if there are O(N) neurons, there will be
O(N2) synapses, so the power dissipation will be dominated by them.

It was recently demonstrated by simulations that using NW neurons and induc-
tive synapses (with inductive coupling to introduce inhibitory control, as will be
explained in section 4.1) it is possible to realize a neural network that recognizes
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simple patterns on 9-pixel images [29] (as already done with JJ neurons [30]). In
this kind of network the information is encoded in a deterministic way: if the pixel
is black the associated input signal has a spike. If it is white no spike is generated.
However biological neurons also present a stochastic behavior that is normally
exploited in the brain: the activation of a neuron is not deterministic but has
a certain probability to happens, that depends on the strength of the incoming
action potential. This characteristic was observed experimentally also in NW
neurons, indeed it was also designed and simulated a network made of NW neurons
and inductive synapse [29], that applies the winner-takes-all (WTA) theory [31].
According to WTA the brain develops selectivity through competition between
excitatory neurons, with firing probabilities, which share inhibitory connections.
This functionality has been used also in artificial networks for image recognition,
filtering and decision making.
The stochastic behavior of the NW neuron comes from the noise injected into the
system by thermal and quantum fluctuations. In this work for sake of simplicity
the noise effect is not taken into account, so the neurons and synapses are handled
by a deterministic point of view.

1.3.4 Synapse alternatives
The inductive synapse has a structure that has been designed for NW neurons and
allows to reproduces the basic behavior of a biological synapse, but it has a low
tunability, and it is externally controlled. Alternative types of synapses have been
proposed for JJ neurons. Studying the working principle of the following alternative
synapses is useful as inspiration for a possible performances improvement of the
inductive synapse.

Capacitive synapse

The first synapse architecture for JJ neurons was introduced by [1]. It reproduces
the broadening of the action potential and the integrating behavior, exploiting a
RLC resonant circuit.

The spikes generated by the upstream neuron charge the capacitor, that slowly
releases current to the downstream neuron. As for the inductive synapse, the
inhibitory control can be obtained only reversing the bias current of the upstream
neuron. The strength of the synaptic connection can not be modified, once the
synapse has been fabricated, so this architecture is not appropriate to create a
complex adaptable network. The capacitive synapse can be used also with NW
neurons, but the inductive version is easier to fabricate and integrate with nanowires
electronics. The parameters of the inductive synapse were derived setting the time
constant equal to the one of the capacitive synapse [9].
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SQUID synapse

An improvement of the capacitive synapse for JJ neurons was proposed by [27]. It
exploits a superconducting interference device (SQUID) to change the amplitude
and the delay of the action potential before it starts charging the capacitor of the
aforementioned capacitive synapse. The SQUID is a superconducting loop formed
by two Josephson junctions, which is coupled to a magnet in this configuration.
The amplitude of the output current of the SQUID, and the delay of the signal
depend on the bias current of the loop, and the magnetic field applied to it. The
magnet that generates the field is controlled by an on-chip current. The SQUID
allows to introduce the variability of the connection strength, that can be externally
controlled setting two current sources, into the capacitive synapse.

Magnetic JJ synapse

An interesting alternative that simplifies the structure of the synapse for JJ neurons
is the magnetic JJ synapse, presented by [32]. Essentially the synapse is composed
by a Josephson junction with magnetic nanoclusters of spins in the barrier. When
there is an incoming action potential, the critical current is exceeded and the
junction generates a spike, whose strength depends on the value of Ic. The critical
current is strongly dependent on the nanoclusters configuration. In presence of
an external magnetic field, the input action potentials can increase order of the
nanoclusters, decreasing Ic. Without field, the order is decreased and Ic increased.
This means that the weight of the synapse can be controlled internally by spikes,
ideally making possible the implementation of unsupervised learning. The limitation
of this structure is the need to have an external applied field that makes a real
system not really unsupervised, and more complex to be practically realized.

Optoelectronic synapse

[7] proposed an optoelectronic artificial neural network based on JJ neurons, in
which the signal is transferred through waveguides from a neuron to another, so
that it is possible to reach very high fan-out. The synapse is designed to sense
the optical incoming signal with an SNSPD. The spike generated by the sensor
activates a Josephson junction biased slightly below its critical current, that fires
and injects current in a superconducting loop in which it remains stored. The
loop is inductively coupled with the JJ neuron so that it can discharges activating
it. The number of fluxons generated by the firing JJ of the synapse depends on
its bias current, therefore the strength of the synapse can be tuned. The bias
current can be controlled by the incoming potentials through a dedicated additional
optoelectronic circuit. This means that both supervised and unsupervised learning
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can be implemented. The main problem is that this system is very complex and
needs integration of different technologies.

1.4 Thesis goal
Superconducting electronics for its intrinsic low energy dissipation is the perfect
candidate for building bio-inspired neuronal systems. The structure of supercon-
ducting neurons, introduced in section 1.3.1, mimics the spiking behavior of the
neuron, and can be realized with Josephson junctions (JJ neuron) or shunted
NbN nanowires (NW neuron). In this work the NW neuron is chosen as principal
device for the realization of superconducting spiking neural networks. NW neurons
have already been fabricated and tested [29], but further work is still necessary to
completely characterize and optimize them, considering also that shunted nanowires
are only recently being used for electronics. Here the first characterization results
of new fabricated shunted nanowires and somas are presented.

The synapses are key components of a spiking neural networks, so it is fundamen-
tal to optimize them. The inductive synapse is able to reproduce some behaviors
of the biological synapse, but present different problems that might be solved:
(1) it is a passive component, so the output current depends on the structure of
the network, and can be very low; (2) It is not possible to obtain an inhibitory
control regardless of the bias current of the main neuron. The only way would be
to introduce a transformer with negative coupling, as done for the synapse of [7].
Even with this modification it would not be possible to modify the type of control
after the fabrication of the system; (3) The 20% tunability of the synaptic strength
is low, if compared with the value obtained with alternatives synapses.

In this work a new structure that improves the performances, by solving the
aforementioned problems, of the inductive synapse is proposed and in part char-
acterized, in order to ideally make possible the realization of larger and more
flexible networks. This is done introducing the Nano-cryotron (nTron), device
explained in details in section 2.1, that acts as amplifier with tunable gain for
the spikes generated by neurons. A similar device named Heater Nano-cryotron
(hTron), in which the hotspot is generated through thermal coupling, is analyzed
as possible substitute of the nTron, for its lower leakage currents. The final aim
is to demonstrate that NW neurons with the improved synapse can be used as
building blocks for large superconducting spiking neural networks. Therefore their
electrical characteristics and limitations in terms of connectivity were studied and
solutions to some of the encountered problems are here proposed.

This thesis presents also a deep electrical analysis, based on SPICE simulations,
of a possible integration between the JJ-based and nanowire-based systems. The
goal is: (1) to demonstrate that merging the two technologies can be useful to
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increase the overall performances of the network, like the driving capability of
a single neuron, and also (2) to analyze the limits and the drawbacks of this
integration.

The thesis will be organized as follows:

Chapter 2 - Nanowire-based cryotrons: In this chapter the working prin-
ciple and the key parameters of two innovative nanowire-based devices taht could
be exploited for SNNs are described: the nano-cryotron (nTron) and the heater
nano-cryotron (hTron).

Chapter 3 - Modeling: In order to demonstrate the functionalities of the
new synapse and perform electrical simulations on more complex systems, SPICE
models of all the considered superconducting devices were created, starting from
experimental data and the existing model of the SNSPD [23]. In this chapter the
models of Josephson junctions, nanowires, nTron and hTron are presented and
explained in details.

Chapter 4 - Nanocryotron-based synapse: Design and electrical anal-
ysis: In this chapter the new synapse based on the nTron is introduced, showing
its behavior through simulations results. All the choices made during the design
are justified. Moreover electrical analysis are performed to show the fan-out/fan-in
limitation, and possible solutions to the problems are proposed.

Chapter 5 - Nanowire-based neurons and synapses: fabrication and char-
acterization Here the fabrication processes of all the devices necessary to create a
NW-based SNN, with relative encountered issues, are described. The characteriza-
tion techniques applied to shunted nanowires, NW neurons, nTrons and inductive
synapses are explained, and some results are shown.

Chapter 6 - Integration of JJ and NW neurons: electrical analysis: This
chapter shows the results of the SPICE simulations used to analyze pros and
cons of the integration between JJ and NW neurons. Firstly it is demonstrated
that the two different neurons can be coupled with different synapses. Then the
fan-in/fan-out limitations of an hybrid system are studied.

Chapter 7 - Conclusion and outlook In this chapter the main results
presented in this thesis are reviewed and possible future works are proposed.
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Chapter 2

Nanowire-based cryotrons

The cryotron is a four-terminals superconducting device invented more than 50
years ago by Dudley Buck [33]. It is composed of two intertwined superconducting
wires: The current passing through one of the two nanowire (the gate wire) induces
a magnetic field that suppresses the superconductivity in the other nanowire (the
channel), so that it is possible to control its resistance. Superconducting electronics
based on RSFQ pulses is very powerful for its speed and low power consumption,
but Josephson junctions are not able to drive large impedances, or generate digital
signals and can not operate in noisy magnetic environments [3]. A superconducting
electronics based on cryotron realized at the nanoscale could solve these problems.
Two different types of nano-cryotrons that exploits non-magnetic phenomena to
control the resistivity of the channel were proposed: the nTron and the hTron.

2.1 Nano-cryotron (nTron)

The nTron is a three-terminal thin-film NbN nanowire-based device formed by a
gate, a source and a drain terminal, all directly connected without junctions. As
shown in figure 2.1B, the gate nanowire perpendicularly intersects one side of the
channel (the channel connects the drain and source) through a narrow bottleneck
called choke. In the choke a localized, Joule-heated hotspot [20] can be formed if
the critical current density Jc of the film is locally exceeded. The hotspot modulates
the resistivity of the channel inducing a non-linear suppression of its critical current
Ic,ch, so that a sharp transition to the normal state occurs. The hotspot effect can
be produced in all superconductors [20], so the nTron could be realized also with
different materials.
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Figure 2.1: (A) Three-terminal circuit symbol of the nTron. The gate arrow is
positioned to define the location of the choke respect to the channel. (B) SEM
image of a nTron, the inset shows the choke, the region where the hotspot is
generated. Figure from [3].

The operation of the nTron depends on its gate current and bias current of
the channel. As shown in figure 2.2 the nTron can stay in three different states:
OFF state, when |Igate| < Ic,g the channel is entirely superconducting; Transition
state, when |Igate| ≥ Ic,g the hotspot is formed and the superconductivity is locally
suppressed; ON state, when the suppression is strong enough to lower Ic,ch below
the bias current of the channel, so that the hotspot expands along the channel and
the resistive state is reached.

The expansion of the normal region is mainly caused by the out-diffusion of hot
electrons from the hotspot to the surrounding material, that interact with the bath
breaking Cooper pairs. This phenomenon can be described by the two-temperatures
model [3], that uses two coupled heat equations to introduce the interaction between
electrons and phonons [34].

The behavior of the nTron is strongly dependent on its geometry: the critical
current of the gate is approximately Ic,g = wgdJc, for the channel it is Ic,ch = wchdJc,
where d is the thickness of the film, wg the width of the choke and wch the width of
the channel. The geometry shown in figure 2.1, designed by [3], has the channel that
becomes narrower in proximity of the choke to ensure an acceptable suppression
of the critical current. The hotspot tends to expand towards narrower regions in
which the density of current is higher, so the choke is located on the bottom of
the channel so that the hotspot can propagates to the drain and a good electrical
isolation between the drain and the gate is obtained in the ON state.
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Figure 2.2: Three states of operation of the nTron. The shown dynamic was
obtained with electrical simulations. OFF state: The device is fully superconducting,
and all the bias current flows from the drain to the ground. Transition state: After
the critical current of the gate is exceeded, a resistive hotspot that locally suppresses
the superconductivity is formed. (Inset, top) Resistivity distribution in the choke.
(Inset, bottom) Contour map of Jc suppression around the hotspot. From inner to
outer, the bands represent reductions in Jc by 0% (blue), 25% (light blue), 50%
(green), 75% (orange), and 99% (magenta). ON state: The critical current of the
channel is lowered and the bias current is high enough to create a hotspot in the
channel. Figure from [3].

An external load connected to the drain of the nTron acts like a shunt resistor
for a nanowire, so in the ON state most of the bias current is diverted to it. Figure
2.2 shows the expansion of the normal region during the three states of the nTron,
when a load RL is present. It was demonstrated that the nTron can drive resistive
loads from few Ω to 100 kΩ. For resistances higher than about 50 Ω the channel
works in the latching regime due to the electrothermal feedback, as explained in
section 1.2.2, so the bias must be turned off and reset after each switching event,
allowing the nTron to switch again. In digital circuits this can be done with a clock
signal. If the circuit can not work in latching mode, it is possible to fabricate a
long meandered nanowire in series with the channel, placed between the drain and
the choke, so that the total inductance of the channel is increased and it is possible
to drive larger loads.

Figure 2.3 from [3] shows the output current as function of the gate and
channel currents, with a load of 10 kΩ. The tested device has Ic,g = 2.9 µA and
Ic,ch = 106 µA. When |Igate| < Ic,g the the nTron switches at about Ich = Ic,ch−Igate
because the gate current adds up to the channel one. When |Igate| > Ic,g the channel
critical current is modified by a factor that depends on |Igate| − Ic,g.
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Figure 2.3: Circuit schematic of a nTron in non-inverting configuration (latching
mode) and experimental graph showing the output current as a function of the
bias and gate currents. Igate was constant and Ibias was swept from 0 to 120 A.
Figure from [3].

It was demonstrated that the nTron can be used as building block for supercon-
ducting digital circuits [3]. The NOT and the AND/OR gates were designed, and
a possible structure for a half-adder was also proposed.
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2.2 Heater nano-cryotron (hTron)
The nTron works correctly as superconducting switch, and has the advantage
of a simple planar structure that can be easily fabricated on a single thin film.
However it presents leakage currents since the gate is not electrically isolated from
the channel, and it has poor fan-out performances [4]. It has been proposed a
different kind a nano-cryotron that solves the problem of leakages and increases the
fan-out capability, removing the electrical connection between gate and channel.
This device is named P-hTron (planar) [35], and it is composed by two adjacent
superconducting nanowires: the heater and the channel. When the critical current
of the heater is exceeded, it becomes normal and heats the channel thanks to Joule
effect. The increase of temperature lowers the critical current of the channel that
can eventually switch if correctly biased. The behavior is very similar to the one
of the nTron, but the physical phenomenon that modulate Ic,ch is different. It has
also been proposed an alternative structure that allows to drive higher impedance
loads, in which a meandered channel is covered by a normal metal heater, and the
two layers are isolated by a thin dielectric film [36]. With this device it is necessary
to heat a very large area of superconductor and it was demonstrated only at 1 K.
A different hTron that can solve the aforementioned problem is the multi-layer
hTron (M-hTron) [4]. Its channel is a straight superconducting nanowire, and the
heater is a normal metal nanowire that crosses the channel and it is placed over
it. The two nanowires are isolated with a thin oxide film. This device has better
performances than the P-hTron in terms of fan-out and thermal coupling. Figure
2.4 shows the typical structure of the M-hTron.

(a) (b)

Figure 2.4: (a) Cross section of the M-hTron (The Au film composes the marks
used for the lithography). (b) SEM image of the M-hTron. Figure from [4].

The superconducting channel was realized on a 20-nm thick NbN film, the
dielectric layer is a 25-nm thick SiO2 film and the nanowire of the heater is
fabricated in Ti with a thickness of 30 nm. In this work, only the M-hTron shown
in figure 2.4 is described and modeled.
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It has been demonstrated that the hTron can be used as preamplifier for SNSPDs,
and a memory cell formed by two coupled hTrons has been realized [4]. Moreover
it has been shown by simulations that it can be used as oscillator with tunable
frequency.

2.2.1 Heat transfer
All the following description was extracted by [4]. The heat transfer between
the metal and the superconductor can be described by a quasi-equilibrium two-
temperature model [4], like the hotspot formation in the nTron. Each material
involved in the transfer has its own phonon and electron distributions and temper-
atures (Tph and Te), that exchange heat. The heat transfer in the metal heater is
described by

Ce(Te)
∂Te
∂t

= −Σe−ph(T 5
e − T 5

ph) +∇κe(Te)∇Te +~j · ~E (2.1)

and

Cph(Tph)
∂Tph
∂t

= Σe−ph(T 5
e − T 5

ph) +∇κph(Tph)∇Tph (2.2)

where Ce and Cph are the electron and phonon heat capacities, Σe−ph is the
electron-phonon coupling factor, κe and κph are the thermal conductivities, and
~j · ~E describes the Joule heating effect (~j is the current density in the metal and ~E
the electric field). The heat fluxes exchanged with the other materials is included
in the equations by the term ∇κ(T )∇T . Two analogous equations can be used to
describe the superconducting channel, but in that case the Joule heating term is
present only when the nanowire is normal. The dielectric can be modeled with just
the phonon equation 2.3 with the electron-phonon interaction neglected. In all the
phonon equations the acoustic mismatch model (AMM) [37] was used for the heat
transfer between material 1 and 2, obtaining:

κph,1(Tph,1)∇⊥Tph,1 = −G12

4 (T 4
ph,1 − T 4

ph,2) (2.3)

where κph,1 is the local phonon thermal conductivity, ∇⊥ indicates the outward
gradient in the direction normal to the interface, and G12 is the boundary conduc-
tance. Considering the equation associated with the electron and phonon systems
of all the involved films, it is possible to define the complete 3D electrothermal
model that describes the heat transfer in the device. Figure 2.5 show the block
diagram of the model.
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Figure 2.5: Block diagram of the electrothermal model described by the equations
previously introduced. Figure from [4].

In this representation the heat can be modeled as a current (Pph−e,1 etc. in
figure), and the boundary conductances can be associated to thermal resistances
(GBd,1, GBd,2, etc. in the figure). When a current IH passes though the heater (H),
the electron temperature Te,H (Te,1 in the figure) is increased due to Joule effect
(Pjoule,1 in the figure), and the phonon system is heated thanks to the coupling.
The phonons of the metal transfer heat to the dielectric (D) that in turn heats the
phonons system of the superconducting channel (S), and the electron temperature
Te,S (Te,2 in the figure) increases. If Te,S exceeds the current-dependent Tc of the
current biased channel, it switches generating Joule heat (Pjoule,2 in the figure)
and the current is provided to the load, like for the nTron. The channel cools
down dissipating heat both to the dielectric and the substrate. If a meandered
nanowire is added in series with the channel, the reset time is dependent on its
kinetic inductance. It was observed experimentally that the hTron fabricated in
[4], has a critical current that follows the expression:

Ic = 126.6
[
1−

(
Te,S
Tc

)3]2.1

µA (2.4)

Using the described complete electrothermal model, the hTron ability to amplify
a current pulse was studied by [4], simulating the circuit shown in figure 2.6a with
a load of 50 Ω, 500-nm wide heater and 600-nm wide channel.
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Figure 2.6: (a) Schematic of the circuit simulated using the complete elctrother-
mal model. A 1ns-long pulse of IH = 40 µA is provided to the hTron. ICh = 100 µA,
Tsub = 3 K. (b) Time-domain evolution of all the temperatures considered in the
model (c) electrical response of the hTron. Figure from [4].

Figure 2.6b shows the time-domain evolution of the temperatures of all the
materials after a 40 µA 1 ns-long current pulse is provided to the heater. Figure
2.6c shows that the hTron is able to sense the pulse generating a output current of
90 µA.

Simplified model

A simplified model that reduces the computation complexity for the M-hTron was
introduced in [4]. In the limit of wide and thin heater, wide and thin channel and
thin dielectric film, the entire system can be described by a 0D set of differential
equations. This model is useful to estimate the thermal dissipation needed to make
the channel switch. For the heater the equations are:

Ce,H(Te,H)∂Te,H
∂t

= −Σe−ph,H(T 5
e,H − T 5

ph,H) + I2
HρH

(wHdH)2 (2.5)

and

Cph,H(Tph,H)∂Tph,H
∂t

= Σe−ph,H(T 5
e,H − T 5

ph,H)− GH−D

4dH
(T 4

ph,H − T 4
D) (2.6)

where ρH is the heater resistivity, dH the heater thickness and wH the heater
width. GH−D is the heater-dielectric boundary conductance and TD the phonon
dielectric temperature. The electron heat capacity is linear dependent on the
temperature: Ce,H = γHTe,H . For the phonon heat capacity the Debye model is
used: Cph,H = αHTph,H .
For the dielectric the equation is:

CD(TD)∂TD
∂t

= GH−D

4dD
(T 4

ph,H − T 4
D)− GD−S

4dD
(T 4

ph,D − T 4
ph,S) (2.7)
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where dD the dielectric thickness and GD−S is the dielectric-superconductor
boundary conductance. Also for the dieletrcic the Debye model can be used:
CD = αDTD.
For the superconductor the equations are:

Ce,S(Te,S)∂Te,S
∂t

= −Σe−ph(T 5
e,S − T 5

ph,S) (2.8)

and

Cph,S(Tph,S)∂Tph,S
∂t

= Σe−ph,S(T 5
e,S−T 5

ph,S)−GD−S

4dS
(T 4

ph,S−T 4
D)−GS−sub

4dS
(T 4

ph,S−T 4
sub)

(2.9)
where dS the superconductor thickness, GS−sub is the superconductor-substrate

boundary conductance and Tsub is the substrate temperature. The phonon heat
capacity follows the Debye model ( Cph,S = αSTph,S), while the electron capacity is
state-dependent: it increases exponentially with Te,S if Te,S > Tc, otherwise it is
linear dependent on the temperature.
Figure 2.7 shows the time-domain evolution of the temperatures obtained both
with the simplified 0D model and the complete 3D model, with the heater current
of 30 µA which turns on after 1 ns. The two results match almost perfectly.

Figure 2.7: Time-domain evolution of the temperatures obtained with 500-nm
wide heater and 600-nm wide channel and IH = 30 µA after 1 ns. a Simplified 0D
model. (b) Complete 3D model. Figure from [4].
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In the steady state condition it is possible to compute the electron temperature
of the channel as function of IH :

Te,S(IH) =
[

4ρ�,H
GS−sub

(
IH
wH

)2
+ T 4

sub

]1/4

(2.10)

where ρ�,H is the sheet resistance of the heater. Once the electron temperature
of the channel is known, the critical current can be computed with equation 2.4.
The simplified thermal model here explained was used to electrically model the
hTron, as described in section 3.4.
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Chapter 3

Modeling

The results of simulations shown in this work were obtained through the software
LTspice. For each exploited superconducting device, a SPICE model was created.
This chapter describes the structure and behavior of all the models used to simulate
the circuits of JJ neurons, NW neurons and the innovative synapses that will
be introduced in the next chapter: (1) Josephson junctions; (2) Superconducting
nanowires; (3) nTrons; (4) hTrons.

3.1 Josephson junction
In order to realize a model of the JJ neuron and perform the analysis of section 6,
it is necessary to model the Josepjson junctions. The SPICE component of the
Josephson junction was created using an enhanced version of a voltage-based model
based on the resistively shunted model (RCSJ) explained in section 1.2.1. The
structure, shown in figure 3.1, was inspired by [38].

Rjs

wj2

Lrjs

wj1

Cjj

Ijw(Vj)

CjfVj Vx

Ijs(Vx)Ijn(Vj)
+ +

A B

Figure 3.1: Circuit schematic of the SPICE model of a shunted Josephson
junction. (A) Main circuit. (B) Subcircuit used to compute the phase of the
junction integrating the voltage Vj.

The circuit can be divided in two subcircuits: the main circuit (A) is composed
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by all the elements of the RCSJ model, while the subcircuit B is used to compute
the phase difference ϕ of the junction. The two terminal of the junction are wj1
and wj2 and the voltage across it is Vj. Ijs(Vx) is the superconducting current,
which is controlled by Vx:

Ijs(Vx) = Ic sinϕ = Ic sin (1000 · Vx) (3.1)

Vx is obtained by the integration of the the current Ijw(Vj) in the subcircuit B.
Thanks to the equation 1.2, we know that:

ϕ(t) = 2π
Φ0

∫
Vj(t)dt (3.2)

so setting Ijw(Vj) = Vj and Cjf = 1000 · Φ0/2π, the current provided by Ijw
charges Cjf generating a voltage equal to:

Vx(t) = 1
Cjf

∫
Vj(t)dt = ϕ(t)

1000 (3.3)

The factor 1000 was introduced just to obtain a reasonable value of capacitance
Cjf in the order of picoseconds, so that LTspice can easily handle it. The model
allows to set the initial value of ϕ, in case it would be necessary to do a simulation
in which the superconducting current is not zero at t = 0. Ijn(Vj) is the normal
current of the junction and it is controlled by Vj:

Ijn(Vj) =


Vj
Rsg

, if |Vj| < Vg

Vj
Rn
, if |Vj| > Vg

(3.4)

The values of Rsg and Rn depend on the structure and the fabrication process of
the junction. Experimentally it was seen that IcRn and IcRsg are almost constant
for a given process, so it is possible to compute the two resistance if Ic is known:

Rn(Ic) = IcRn

Ic
Rsg(Ic) = Vm

Ic
(3.5)

In this model IcRn = 1.65 mV and Vm = 16.5 mV . The values are obtained
from experimental data of the MIT Lincoln Laboratory SFQ5EE process [39], as
done in the software WRspice (the most used for simulations of Josephson junctions)
[40].
Rjs is the shunt resistor of the RCSJ model that typically has a parasitic series

inductance Lrjs, whose value can be estimated with the tool InductEx, if the
geometry of the device is known [38]. A too high inductance could alter the
high-frequency dynamic of the junction, if it is not correctly designed [41]. The
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3.1 – Josephson junction

parasitic inductance was introduced in the model, but it was neglected in all the
simulations for sake of simplicity.

The model allows to set the following parameters: Cjj, Lrjs, Ic, ϕ(t = 0) and
Rtot. The latter is the total resistance resulting from the parallel between Rjs and
Rsg, so Rjs is set automatically in order to obtain the selected Rtot. Normally
Rjs � Rsg, so Rtot ' Rjs.

The I-V characteristic of an overdamped Josephson junction model (Γ > 1) is
shown in figure 3.2. The insets display the spiking behavior at two different values
of bias current. It is the ability of the junction to generate pulses like the ones
shown here that allowed to design the JJ neuron. The parameters of [1] necessary
to obtain a Class I JJ neuron were used for this simulation (Γ = 1.5).
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Figure 3.2: I-V characteristic with normalized axis of a current biased overdamped
Josephson junction (Γ = 1.5) obtained in LTspice. For each point of the black
curve the voltage is averaged over 300 ps. Parameters: Rtot = 4 Ω, Lrjs = 0 H, Cjj
= 102 fF, IC = 90 µA. The blue curve in the inset is the normalized voltage in
time-domain with a short pulse (65 ps) of 95 µA as bias current. The red curve
with a pulse of 140 µA.

The model was realized to match the behavior of the standard model for
Josephson junctions of WRspice. Figure 3.3 shows the I-V curves of a current
biased underdamped Josephson simulated with LTspice and WRspice. The curve
presents hysteresis because the junction is underdamped (Γ = 0.54), and at
< V > /IcRtot ≈ 2.5 the current drastically increases because the superconductivity
is broken and Rn is lower than Rtot. The two curves matches almost perfectly.
There are only small differences in the hysteresis and during the breaking of the
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superconductivity, but considering that in JJ neurons the junctions do not work in
these regimes the model can be trusted.
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Figure 3.3: I-V characteristic with normalized axis of a current biased under-
damped Josephson junction with hysteresis, obtained with WRspice (blue) and
LTspice (orange). For each point of the curves the voltage is averaged over 300 ps.
Parameters: Rtot = 5 Ω, Lrjs = 0 H, Cjj = 230 fF, IC = 200 µA (Γ = 0.54).
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3.2 – Superconducting nanowire

3.2 Superconducting nanowire
It is important to model the superconducting nanowire, in order to perform electrical
simulations of the NW neurons described in chapter 4 and 6. It was modeled
through the dynamic SPICE model introduced by [23], which is based on the
simplified 0D model explained in section 1.2.2. It was already shown that it can
reproduce experimental results of SNSPD. Here It was slightly modified in order
to adapt it to simulations of shunted nanowires, maintaining the consistency with
experimental works. The circuit schematic of the modified model is shown in figure
3.4. It is composed by three distinct subcircuits: The main circuit (A) describes
the nanowire as a kinetic inductance Lk(Id, Vhs) in series with a variable normal
resistance, which is modeled by the controlled voltage source Vres(Vhs, Ires) and the
switch Srestore,1(Vn).

Lk(Id ,Vhs)

Vres(Vhs ,Ires)
+

---

Ihs(Vd ,Vhs)

Chs
+

---
1 �

Vhs

Vn(Id ,Vd)

Vd Srestore(Vn) Srestore(Vn)

Id

Ires

+

--

A B C

Figure 3.4: Circuit schematic of the SPICE model of a superconducting nanowire.
(A) Main circuit with kinetic inductance and variable resistance. (B) Integration
subcircuit circuit used to simulate the hotspot growth. (C) Subcircuit that stores
the phase of the nanowire.

The state of the nanowire is stored in the subcircuit C: if Vn(Id, Vd) = 0 V
it is superconductive; if the current through Lk(Id, Vhs) exceeds Isw, it becomes
normal (Vn(Id, Vd) = 1 V ). The normal state is maintained until the voltage across
the nanowire drops below a threshold. When the nanowire is superconductive
(Vn(Id, Vd) = 0 V ), Srestore,1(Vn) is closed so that Vd = 0, otherwise it is open.

Vres(Vhs, Ires) represents the voltage across the hotspot resistance Rhs(t), and it
is controlled by Vhs, the voltage on the subcircuit B, which is equal to Rhs(t):

Vres(Vhs, Ires) = |Vhs|+ Vhs
2 Ires (3.6)

The expression is not simply VhsIres, in order to avoid a negative value of resistance.
The subcircuit B is an integration circuit that models the hotpot growth, similar
to the one exploited for the Josephson junction: the controlled current generator
Ihs(Vn, Id, Vhs) charges Chs = w/(2v0R�) with a current proportional to the propa-
gation velocity of the hotspot dlhs/dt along the nanowire, when it is in the normal
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phase. The resulting expression for Vhs in time is the following:

Vhs(t) = R�
lhs(t)
w

= R�
v0

w

∫ Ψ(Id/Isw)2 − 2√
Ψ(Id/Isw)2 − 1 + |Ψ(Id/Isw)2 − 1|/2 + δ

dt (3.7)

where w is the width of the nanowire and δ is just a small constant introduced
to avoid zero in the denominator. The integration is stopped by Ihs(Vn, Id, Vhs),
when the whole nanowire has become normal (Rhs = Rnorm). Srestore,2(Vn) restores
the superconducting phase discharging the capacitor when Vn(Id, Vd) = 0. Figure
3.5 shows how the subcircuit B models the hotspot growth.

(a) (b)

Figure 3.5: Subcircuit B used to simulate the hotspot growth. (a) When the
nanowire is superconductive the switch is close so the hotspot resistance is zero.(b)
When the nanowire is in normal state, the switch is open and the behavioral
current source charges the capacitor, so that the resistance of the hotspot can grow.
Modified Figure from [18].

The kinetic inductance Lk(Id, Vhs) is computed with equation 1.2.2 in the
superconducting phase. In the normal state its value is multiplied by the factor
1 − Rhs(t)/Rnorm to consider that the normal region of the nanowire does not
contribute to the kinetic inductance.

3.2.1 Shunted nanowire
In order to obtain a relaxation oscillator the nanowire is shunted with a resistor. As
starting point for the simulations of the next sections, the model with shunt resistor
was tested with the parameters used by [2] for NW neurons. Figure 3.6 shows
that the I-V curve and the spiking behavior are similar to the ones of a Josephson
junction in figure 3.2, but have fundamental differences: (1) for a shunted nanowire
the spiking frequency is two orders of magnitudes lower; (2) the electrothermal
oscillations are not generated by a coherent effect like in the case of the Josephson
junction; and (3) the shunted nanowire presents the latching behavior when the
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3.2 – Superconducting nanowire

steady state current Iss is reached, so that the nanowire remains constantly in
the normal state without generating oscillations. The similarities between the two
devices allowed to design the NW neuron with the same structure of the JJ neuron.
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Figure 3.6: I-V characteristic with normalized axis of a current biased overdamped
shunted nanowire obtained in LTspice. For each point of the black curve the voltage
is averaged over 200 ns. When |I| ≈ 2.5ISW , the nanowire latches in the normal
state, so the voltage does not oscillates. Parameters: Rsh = 10 Ω, L = 4 nH, Isw =
30 µA. The blue curve in the inset is the normalized voltage in time-domain with
a short pulse (6 ns) of 32 µA as bias current. The red curve with a pulse of 47 µA.
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3.3 Nano-cryotron

It is necessary to model the nTron, in order to perform all the electrical simulations
of chapter 4, and some of chapter 6. An electrical model of the nTron was already
realized by Andrew Wagner (Raytheon BBN Technologies) using the verilog-A
language. Here a SPICE model, which uses the same experimental parameters of
the aforementioned model, is introduced. The behavior of the nTron is reproduced
exploiting the previously explained model for superoconducting nanowires. The
structure of the device can be divided in four elements: the gate nanowire, the drain
nanowire, the source nanowire and the channel. Each element can be modeled as a
nanowire, with its own width, length and critical current. With this simplification,
it is possible to use the same circuital elements of section 3.2 with some changes
applied, to form the structure of the nTron, shown in figure 3.7.

Lk,d   

1 �

Ig

Ich

Im = C(Ig)

Ic,d = Ic0,ch Im

Ihs,d = 0    if Rhs,ch<Rnorm,ch

vhs,d =  vhs,d(Ic,d ,wd)  

Rnorm,d

Lk,ch   

Ic,ch = Ic0,ch Im

vhs,ch =  vhs,ch(Ic,ch ,wch)  

Rnorm,ch

Lk,s   

Ic,s = Ic0,s Im

vhs,s =  vhs,s(Ic,s ,ws)  

Rnorm,s

Lk,g   Ic,g 

vhs,g =  vhs,g(Ic,g ,wg)  

Rnorm,s

A

B

Is

gate

source

drain

Figure 3.7: Circuit schematic of the SPICE model of the nTron (A) Main circuit
composed by four superconducting nanowires. The image shows the important
parameters and their dependencies for each nanowire element. (b) Subcircuit used
to store the value of the coefficient that modulates the channel critical current.
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3.3 – Nano-cryotron

The model allows to set the length and width of all the elements. The width of
the entire gate nanowire wg is approximated to the width of the choke. In order
to reproduce the geometry in figure 2.1A, the channel is narrower than the drain
and the source nanowires, and the gate is connected to the channel and the source
nanowires. The critical current of the entire vertical nanowire (drain, channel,
source) is set to Ic,ch, so that the growth of the hotspot can be simulated in the
whole nanowire, as soon as it is formed. For the computation of vhs each part of the
vertical nanowire uses the value of its own critical current which can be different
by Ic,ch.
Ic,ch must be modified when the hotspot is generated. DC measurements on

samples fabricated by Raytheon BBN Technologies showed that when the choke
is normal the critical current of the channel is modulated by the gate current as
follows:

Ic,ch = Ic0,chC(Ig, Ig > Ic,g) = A1e
− |Ig |−Ic,g

β (3.8)

where Ic0,ch is the critical current without hotspot, A1 = 0.4 and β = 12.82 µA−1.
The subcircuit B in figure 3.7 is used to store the value of the coefficient C(Ig),
which is equal to 1 when Ig < Ic,g, and follows the expression 3.3 when Ig > Ic,g.
This factor is inserted in the elements of the drain, channel and source. After the
hotspot is formed, it initially expands only through the channel and the source.
The integration subcircuit of the drain was modified to ensure that only if the
channel becomes entirely normal (Rch = Rnorm,ch), it starts integrating to make
the hotpsot propagate through the drain nanowire. The expansion velocity of the
hotspot vhs for a single element of the nTron is half of the one used in a single
nanowire, because it expands only in one direction.

The model here introduced was tested in LTspice with different circuits config-
urations to demonstrate that it is able to amplify pulses or digital signals, and
that its behavior is consistent with the one of the verilog-A model (simulated in
WRspice). After checking the consistency, the model was also tested as amplifier of
current pulses, setting the same parameters of the device fabricated by [3]. Figure
3.8a shows the simulated circuit schematic, while 3.8b shows the time-domain
behavior. The magnitude of the output pulses depends only on Ib,nT , that can also
be set to negative values. The signal can be amplified by a factor of 18. Changing
the geometry of the nTron it is possible to have a different critical current for
both the gate and the channel, obtaining different input threshold and maximum
amplification.
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Ib,nT

RL
Iin

(a)

(b)

(i)

(ii)

Figure 3.8: (a) Circuit schematic of the nTron used as amplifier of current
pulses. (b) behavior of the circuit in time-domain. Parameters: Ic0,ch = 106 µA,
Ic,g = 2.9 µA, A1 = 0.7, Lk,ch = 14 nH, RL = 5 Ω. The panel (i) shows the current
through the gate; the panel (ii) shows the current through RL.

The behavior of the nTron is also defined by its load, which can be seen as shunt
resistor of the channel. As explained in section 1.2.2, if the load impedance is too
high the nanowire latches, and it is necessary to reset the bias current after each
pulse to restore the superconductivity. This is an undesired behavior if there is
not a clock signal in the system, so the load impedance must be kept low. The
latching depends also on the bias current: a too high channel critical current, so
consequently high bias current, would cause the nanowire to latch with lower load
impedance, so there is a limit in the gain we can obtain with a certain load.

3.4 Heater nano-cryotron
The M-hTron introduced in section 2.2, was electrically modeled in LTspice, exploit-
ing the 0D simplified model to describe the evolution in time of the heat transfer
between the heater the insulator, the channel and the substrate outside the steady
state condition. As consequence its validity in theory could be demonstrated only
in the limit of the assumption made by the simplified thermal model. The channel
was modeled as a superconducting nanowire with the method explained in section
3.2. Figure 3.9 shows the circuit schematic of the SPICE element, formed by three
subcircuits.
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Figure 3.9: Circuit schematic of the M-hTron model. (A) Subcircuit that contains
the heater and computes the electron temperature of the superconductor as function
of the current through the heater IH . (B) Nanowire model that reproduce the
behavior of the channel. The critical current is modulated by the subcircuit B.
(C) Subcircuit that stores the value of critical current as function of the electron
temperature (Ve,S).

The subcircuit A, used to compute the electron temperature of the supercon-
ductor knowing IH , is in turn composed by 5 circuits. Each of them associated
with one of the differential equations in the simplified model. The subcircuit B
is the nanowire model of the channel, whose critical current value is stored in

47



Modeling

the subcircuit C. The latter obtains Ic using equation 2.4, which depends on Te,S,
computed by the subcircuit A.

In the subcircuit A, the heater is represented by the normal resistance Rin,
on which the voltage drop is VH . In order to compose the remaining part of the
subcircuit, the equations of the simplified thermal model were rearranged in order
to be correctly solved by LTspice. For example, the equation describing the electron
temperature of the heater was rewritten as:

γH
∂Te,H
∂t

= −Σe−ph,H

Te,H
(T 5

e,H − T 5
ph,H) + I2

HρH
Te,H(wHdH)2 (3.9)

If the temperature is associated to a voltage Ve,H , γH to a capacitor Ce,H and
the other terms to behavioral current sources, the equation is converted in a circuit
obtaining the following current equation:

Ce,H
∂Ve,H
∂t

= −Ie,ph,H(Ve,H , Vph,H) + IJ,H(IH) (3.10)

where Ie,ph,H is associated with the flow of heat from the electron system to
the phonon system, and IJ,H with the Joule heat introduced by IH . The same
conversion method can be used for the phonon heat equation, in which the electron-
phonon term is also present and can be rewritten as Ie,ph,H,2 = Ie,ph,H(Te,H/Tph,H).
After all the equations are converted with the same method, the subcircuit A is
obtained. The current flowing from the top of it to the bottom represents the heat
that flows from the heater to the channel. Since the substrate is considered at
constant temperature, it is modeled by a simple voltage source (Vsub).
In the electron equation of the superconductor it was added a term IJ,S(IS) to
consider the Joule heat generated by the current IS through the channel just after
the normal switching. It is zero if IS < Ic and I2

SρS/Te,S(wSdS)2 if IS > Ic. For
sake of simplicity the electron heat capacity of the superconductor was modeled as
linear dependent on the temperature. The value of γS was chosen to obtain the
same results of [4]. All the other parameters was taken by [4].
The described circuit is able to correctly reproduce the behavior of the simplified
electrothermal model. Figure 3.10 shows the time-domain evolution of the temper-
atures, which results to be consistent with figure 2.7a, obtained with the simplified
model.
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Figure 3.10: Simulated (with the SPICE model) time-domain evolution of the
temperatures obtained with 500-nm wide heater and 600-nm wide channel and
IH = 30 µA after 1 ns.

The circuit simulated with the complete model, shown in figure 2.6a, was tested
also with the SPICE model obtaining the following result
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Figure 3.11: Time-domain behavior of the circuit shown in figure 2.6a, simulated
using the SPICE model. A 1ns-long pulse of IH = 40 µA is provided to the hTron.
ICh = 100 µA, Tsub = 3 K, RL = 37 Ω. (a) Time-domain evolution of all the
temperatures considered in the model (b) electrical response of the hTron.

The general behavior is consistent with the one of the 3D model, but some
differences are present. First of all the load impedance was set to 37 Ω instead of
50 Ω otherwise the nanowire would have latched. Since the latching phenomenon
depends on the capability of the nanowire to dissipate heat after the hotspot
formation, its thermal parameters used in the model need to be changed. In fact
the Stekly parameter, ratio between the Joule heat and the dissipated heat, should
be modified to consider that the heat can be transferred both to the substrate
and the dielectric. Applying this modification the cooling down of the hotspot
probably would be faster and the latching would appear at higher load resistances.
Moreover some other parameters, like thermal conductivity of the superconductor,
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are different from the electrothermal to the nanowire models. Here they were not
modified in order to keep the behavior of the two 0D models coherent with the
respective experimental data. An additional secondary improvement would be to
include the state-dependent heat capacity of the superconductor.
Even if all the listed improvements were applied, probably the result would still
differ from the one of the 3D model, for the intrinsic simplification: the heat
transfer is modeled only in a single point of the nanowire. However the created
SPICE model can be useful to perform electrical simulations of innovative circuit
structures and demonstrate their working principle, as done in section 4.3.
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Chapter 4

Nanocryotron-based
synapse: Design and
electrical analysis

The inductive synapse can reproduce some characteristics of its biological counter-
part, but it still needs to be improved. The main problems of the inductive synapse
for the nanowire-based system are:

• It is a passive component like a biological electrical synapse, so the input
action potential can not be amplified as in the case of chemical synapses.
Moreover the output current depends on the structure of the network, and can
be very low. All previous simulations of the inductive synapse with coupled
neurons are performed introducing a current source in front of the target
neuron, because it can not provide enough current to activate it.

• It can reproduce the inhibitory behavior only if the main neuron is biased
negatively. In biological systems the control depends only on the synapse.

• The tunability of the output current is low if compared with some of other
synapses introduced in section 1.3.4. The ratio between the maximum and min-
imum current it can provide with different bias currents is Iout,max/Iout,min =
1.20. In the synapse based on nanotextured Josephson junctions the typical
ratio is Iout,max/Iout,min = 7 [32].

The simplest solution to introduce the inhibitory control that depends only on the
synapse is using the inductive coupling as done by [7].
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Nanocryotron-based synapse: Design and electrical analysis

4.1 Inductive synapse with inductive coupling
Introducing a transformer into the structure of the inductive synapse allows to
choose between excitatory and inhibitory control, just changing the type of coupling
from positive to negative. Figure 4.1 shows the circuit schematic of a neuron
connected to an inductive synapse modified to implement the inductive coupling.
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Figure 4.1: Circuit schematic of a NW neuron connected to a synapse with
inductive coupling.

The characteristic currents equation of a transformer composed by two coupled
inductors Lt,1 and Lt,2 is:

It,2 = jωM

jωLt,2 + ZL
It,1 =

jωk
√
Lt,1Lt,2

jωLt,2 + ZL
It,1 (4.1)

where It,1 and It,2 are respectively the input and output current of the transformer,
ZL is the load impedance of the transformer, M = k

√
Lt,1Lt,2 is the mutual

inductance and k is the coupling coefficient. If the latter is positive the coupling
is positive, otherwise it is negative. If Lt,1 = Lt,2 and jωLt,2 � ZL, the output
current of the transformer can be approximated to It,2 = kIt,1. In the ideal case
k can be 1 or -1, so that the input current can be completely transferred to the
output without loss. If k = −1 the control of the synapse is inhibitory, because the
current is subtracted by the loop of the target neuron.

In the circuit shown in figure 4.1, ZL is equal to Rseries,out + Zin,target, the input
impedance of the target neuron. Considering that Zin,target is on the order of
jωLs,NW/2 ≈ 5 nH, Lt,1 and Lt,2 were set to 300 nH to approximately fulfill
the previous conditions, having |It,1| ≈ |It,2|. Rseries,out was set to 8 Ω to ensure
isolation from the target neuron, even if it slightly lowers the output current of
the synapse. Figure 4.2 shows the dynamic in time-domain of two NW neurons
coupled through the modified inductive synapse with negative coupling. The same
parameters of the neurons in simulations performed by [2] were used.
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4.1 – Inductive synapse with inductive coupling

Figure 4.2: Time-domain behavior of two NW neurons coupled through inductive
synapse with inductive coupling (inhibitory control). Parameters: Ib,NW,main =
59 µA, Rseries,in = 5 Ω, Rsyn,1 = 40 Ω, Lsyn = 265 nH, Rsyn,2 = 20 Ω, Ib,NW,target =
57.17 µA, Iin,main = 4.6 µA, Lt,1 = Lt,2 = 300 nH, Rseries,out = 8 Ω. The target
neuron is activated with a current source connected to its input: Iin,target = 5.6 µA.
Panel (i) displays the output voltage and the input current of the main neuron;
Panel (ii) displays the input current of the target neuron (sum of the current
through Rseries,out and Iin,target); Panel (iii) displays the output voltage of the
target neuron.

The inductive coupling solves the problem of the inhibition, but the synapse is
still not versatile because the type of control can not be changed during the normal
operations of the synapse, but only during the fabrication. Moreover the kinetic
inductance can not be exploited to create the coupled inductors, since it does not
depend on magnetic phenomena, so different materials and structure should be
used. This means that integrating a transformer in a nanowire-based system would
not be efficient in terms of fabrication processes and occupied area.

53



Nanocryotron-based synapse: Design and electrical analysis

4.2 nTron synapse
The use of the inductive coupling was discarded, and the nano-cryotron (nTron)
was added to the structure of the synapse in order to made the inductive synapse
more similar to a biological chemical synapse and solve all the other problems
listed above. The nTron is able to sense and amplify current pulses on the order of
few µA, thanks to the presence of the narrow choke in the gate. It was already
demonstrated the possibility of coupling it with an SNSPD [3], so it is reasonable
to think we can do the same with shunted nanowires. In this way the nTron would
become the perfect candidate for sensing action potentials coming from neurons,
and modulating their amplification to introduce variability in the synapse. As
shown in section 2.1, the SPICE model can reproduce the ability of the nTron
to amplify pulses with different strengths, so it was used for all the following
simulations performed to design the nTron synapse.

In the new structure proposed to improve the inductive synapse, the nTron
gate is directly connected to the output of the main neuron, and the drain to a
standard inductive synapse, that acts as load, as shown in figure 4.3. The nTron
is designed in order to allow a single pulse of the upstream neuron to exceed the
critical current of the gate, and generate a spike. The spikes charge Lsyn, which
slowly discharges through Rseries,out, making the target neuron fire, just like in the
simple inductive synapse.
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Figure 4.3: Circuit schematic of a NW neuron connected to a nTron synapse.
The output voltage of the neuron make the nTron switch. The spikes generated by
the nTron charge Lsyn, that slowly discharges providing current to the target NW
neuron.
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In order to design the synapse optimising its characteristics some considerations
were made:

• Load impedance and latching: as explained in section 2.1 the load of the
nTron characterizes its behavior in the time-domain. The load impedance of
the nTron is:

ZL =
(

1
Rsyn,1

+ 1
jωLsyn + (Rsyn,2//Zin,target)

)−1

(4.2)

In the inductive synapse designed by [2], Rsyn,1 is 40 Ω and Lsyn = 265 nH.
With the resulting load resistance the nTron fabricated by [3] would latch
according to simulations. Therefore it was chosen to lower Rsyn,1 and Lsyn
respectively to 15 Ω and 100 nH. Considering that the latching depends also
on the bias current, Ic,ch were reduced from 106 µA to 40 µA. Rsyn,2 was risen
to increase the output current of the synapse, and improve the isolation from
a target neuron.

• Falling edge: the nTron must be able to follow a pulses train without loosing
information in order to charge the Lsyn with more spikes, so the constant time
∼ Lch/ZL that defines the falling edge of the pulses, has to be lower than the
typical spiking period of a neuron, which as minimum can be approximately
3 ns. The value of kinetic inductance of the channel Lch was chosen to have a
constant time of ≈ 700 ps.

• Shunt resistor for the gate: when the gate switches, the input impedance
rises drastically, so the gate current is diverted to Rsh of the main oscillator and
the profile of the action potential is clearly modified. To avoid this behavior,
the gate was shunted with a resistor Rsh,in which is on the order of few Ω,
so that the change of input impedance becomes negligible. Figure 4.4 shows
how the action potential and the input current of the nTron behave in the
time-domain, when the gate switches, with and without Rsh,in.
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(a) (b)

(i)

(ii)

(i)

(ii)

Figure 4.4: Time-domain behavior of the gate current in a nTron synapse that
back-propagates toward the main neuron, and its effect on the action potential.
Parameters: Ic,g = 3.8 µA, Lk,g = Lk,s = 260 pH. (a) Without shunt resistor
Rsh,in = 5 Ω on the gate of the nTron. (b) With shunt resistor Rsh,in on the gate
of the nTron.. For both the images: panel (i) displays the action potential of the
NW neuron; panel (ii) displays the current through the gate of the nTron.

With the shunt resistor the gate current does not becomes negative after the
switch, so the back-propagation is limited. The input impedance of the gate
is Zin = jω(Lk,g + Lk,s). If Rsh,in < Zin it could happen that the gate current
is not able to make switch the gate. Rsh,in has also to be lower than Rsh of
the main oscillator. Therefore it is chosen in the range Zin < Rsh,in < R. For
certain values of Zin and Rsh,in it might be possible to generate relaxation
oscillations in the gate nanowire, that could slightly alters the response of the
nTron, so it is preferable to avoid this phenomenon.

• Current stored in the inductor: the synaptic inductance Lsyn stores the
pulses generated by the nTron, similarly to the superconducting loop of the
synapse of [7] introduced in section 1.3.4 that is charged by a Josephson
junction. In both cases the loop has a maximum value of current that can
be stored. For the nTron synapse once a new pulse charge the inductor, the
discharging time slightly decreases until it becomes equal to the charging
time and a steady state is reached, so that the current saturates to its
maximum value. Therefore the maximum current is higher when the period
of the input pulses is much lower than the discharge time constant of Lsyn,
which approximately is τsyn ≈ Lsyn/(Rseries,out + Zin,target). The number of
intermediate values (or number of pulses needed to reach the maximum current)
depends on τsyn: higher is τsyn, fewer values can be obtained. Rseries,out was
set to obtain about 10 possible levels and also ensure enough isolation from
the target neuron. It is important to notice that the time during which the
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current remains stored after the main neuron stops firing, depends also on
Rseries,out + Zin,target.

The main advantage of using the nTron is that the pulses are amplified and their
magnitude depends only on the bias current. As consequence, even if the upstream
neuron was driving more synapses, the output current of a single one would be
the same. Moreover with a negative bias current the synapse has an inhibitory
control on the downstream neuron. This solves the problem of using inductive
coupling, making possible to change type of control even after the fabrication of
the devices. Therefore a network based on nTron synapse would be much more
versatile. Figure 4.5 shows how the synapse behaves in the time-domain with
excitatory and inhibitory control.

(a) (b)Excitatory control Inhibitory control

Figure 4.5: Time-domain behavior of two NW neurons coupled through an
nTron synapse. Neurons parameters: Ls,NW = Lp,NW = 10 nH, Ls,NW = 4 nH ,
Rsh = 10 Ω, Isw = 30 µA, Ibias = 57 µA, Rseries,in = 20 Ω, Rseries,out = 5 Ω. nTron
synapse parameters: Ic,g = 3.7 µA, Ic,ch = 40 µA , Rsh,in = 5 Ω, Rsyn,1 = 15 Ω,
Lsyn = 100 nH, Rsyn,2 = 50 Ω. (a) Excitatory control. Parameters: Ib,nT = 36 µA.
(b) Inhibitory control. Parameters: Ib,nT = −30 µA, the target neuron is activated
with a current source on its input that continuously provides 8 µA. For both
cases: Panel (i) displays the input current and the output voltage of the upstream
neuron; Panel (ii) displays the output current of the nTron, that enter into the
inductive loop; Panel (iii) displays the input current and the output voltage of the
downstream neuron.

4.2.1 Variable synaptic strength
A key characteristic of the nTron synapse is the possibility to tune the bias
current Ib,nT to obtain a variable synaptic strength, without modulating the kinetic
inductance using an additional current source. The range of possible values that
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can be set for the bias current depends on how the creation of the hotspot in
the gate modulates the critical current of the channel. When the gate current
reaches the threshold, the critical current of the channel becomes Ic,ch = A1Ic0,ch.
Then most of the gate current is diverted into Rsh,in because the gate becomes
normal and the neuron is not an ideal current source, so Ic,ch can not be further
decreased below A1Ic0,ch. As consequence, it is necessary to set a bias current
higher than A1Ic0,ch to ensure the channel becomes normal after the creation of
the hotspot. Moreover if |Ib,nT | > 0.9Ic0,ch, an undesired behavior such as photon-
and noise-induced hotspot generation was observed experimentally [3], so the bias
current of the nTron has to be set such that:

A1Ic0,ch < |Ib,nT | < 0.9Ic0,ch (4.3)

Lower is A1, larger is the range of operation. The value of A1 depends on the
geometry of the channel in the region where the hotspot is generated. It was
observed that the hotspot is able to suppress Jc only within one diffusion length
LD of its perimeter [3]. For thin films of NbN the typical diffusion length is around
100 nm, so the width of the channel has to be on the same scale to generate a sharp
dropoff in Ic,ch and minimize A1. By simulations and measurements of [3], it results
that A1 ≈ 0.7, with a channel width of approximately 150 nm and a thickness of
10 nm, while by measurements performed to realize the verilog-A model it seems
possible to obtain A1 = 0.4 with a channel width of 108 nm and a thickness of
4 nm. For the nTron synapse it was chosen to keep almost the same parameters
of the verilog-A model, to obtain A1 = 0.4. Considering that A1 depends on the
channel width, it was maintained the value 108 nm, but the thickness of the film
was risen to 8 nm to obtain Ic0,ch = 40µA.

Response to a single pulse

The response of the nTron synapse to a single action potential from the upstream
neuron was studied, because hypothetically it could be possible to realize a neural
network that exploits the magnitude of single pulses to encode information, without
charging the synaptic inductance with pulses trains. It was already demonstrated
by [29], that NW neurons with inductive synapses can form a neural network for
image recognition, if they use this kind of encoding. Figure 4.6a shows how the
profile of the output current through Rseries,out varies as function of the bias current
of the nTron, when a single action potential activates it (the load of the synapse is
a NW neuron with zero bias current). The nTron can not be biased very close to
A1Ic0,ch, so it was chosen to set as minimum possible Ib,nT a current 12.5% higher.
Therefore we obtain a ratio between maximum and minimum output currents the
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nTron can provide equal to:
Imaxout,nT

Iminout,nT

= 0.9Ic0,ch
1.125 A1Ic0,ch

= 0.8
A1

(4.4)

that is equal to 2 with A1 = 0.4. Figure 4.6b shows how the peak current of a
single pulse on the output varies as function of Ib,nT . The range of bias currents
and associated maximum output current in which the nTron works properly is
displayed by the orange squares. The peak current with Ib,nT/Ic0,ch = ±0.9 is
±3.2 µA, while it is ±1.45 µA for Ib,nT/Ic0,ch = ±0.45, so the resulting tunability
is Imaxout /I

min
out = 2.2 (120 %). This value is higher than the ratio computed above

for the output current of the nTron, and it is 1.83 times larger than the tunability
of an inductive synapse. Designing a nTron synapse with higher channel critical
current would allow to make fire a target neuron with a single spike. This can
not be done with inductive synapses, without increasing the critical current of the
main neuron.

Figure 4.6: nTron synapse activated by a single action potential from a NW neuron.
The load of the synapse is a NW neuron with bias current set to zero. Neurons
parameters: Ls,NW = Lp,NW = 10 nH, Ls,NW = 4 nH , Rsh = 10 Ω, Isw = 30 µA,
Ibias = 57 µA, Rseries,in = 20 Ω, Rseries,out = 5 Ω. nTron synapse parameters:
Ic,g = 3.7 µA, Ic,ch = 40 µA , Rsh,in = 3 Ω, Rsyn,1 = 15 Ω, Lsyn = 100 nH,
Rsyn,2 = 50 Ω. (a) Profile of the output current of the synapse ( current through
Rseries,out) in the time domain, with different values of bias current Ib,nT . (b)
Peak current of the output pulses generated by the nTron synapse versus the
ratio between Ib,nT and Ic0,ch. For each value of Ib,nT/Ic0,ch the peak current is
obtained measuring the maximum of the pulses that are like the ones shown in
figure (a). The orange areas represent the intervals of current in which the nTron
works properly with single spikes
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Response to multiple pulses

The nTron synapse, as shwon in figure 4.5, can work with trains of pulses like the
inductive synapse, making possible to provide higher current to the target neuron.
As explained previously, with a fixed Ib,nT the synaptic inductor can be charged at
different levels of current controlling the number of incoming action potentials, and
there is a maximum current the inductor can store (with a fixed spiking frequency
of the main neuron). It was seen that when the current through Lsyn saturates to
its maximum value, and action potentials continue to activate the nTron, a bias
current too close to A1Ic,ch does not allow to sense every new incoming pulses.
Therefore we set as minimum possible Ib,nT a current 50% higher than A1Ic,ch to
ensure any information is lost. We obtain a ratio between maximum and minimum
output currents the nTron can provide equal to:

Imaxout,nT

Iminout,nT

= 0.9Ic0,ch
1.5 A1Ic0,ch

= 0.6
A1

(4.5)

that is equal to 1.5 with A1 = 0.4. Figure 4.7a and 4.7b show how the profile of
the output current through Rseries,out varies as function of the bias current of the
nTron, when a train of action potential activate it and make the inductor saturate
(the load of the synapse is a NW neuron with zero bias current).
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Figure 4.7: nTron synapse activated by a 11 consecutive action potentials from
a NW neuron. The load of the synapse is a NW neuron with bias current set to
zero. Neurons parameters: Ls,NW = Lp,NW = 10 nH, Ls,NW = 4 nH , Rsh = 10 Ω,
Isw = 30 µA, Ibias = 57 µA, Rseries,in = 20 Ω, Rseries,out = 5 Ω. nTron synapse
parameters: Ic,g = 3.7 µA, Ic,ch = 40 µA , Rsh,in = 3 Ω, Rsyn,1 = 15 Ω, Lsyn =
100 nH, Rsyn,2 = 50 Ω. (a) Output voltage of the main neuron in the time domain.
(b) Profile of the output current of the synapse ( current through Rseries,out) in the
time domain, with different values of bias current Ib,nT .
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Figure 4.8 shows how the maximum output peak current between 0 and 70 ns
(with 11 incoming pulses at a spiking frequency of 100 MHz ) varies as function
of Ib,nT . The orange squares display the ranges of bias currents and associated
maximum output current in which the nTron works properly. It is possible to notice
that for 0.4 < |Ib,nT/Ic0,ch| < 0.6 the output current starts decreasing because some
pulses are not amplified by the nTron.

Figure 4.8: Peak current after 11 action potentials generated by the nTron
have charged Lsyn, versus the ratio between Ib,nT and Ic0,ch. For each value of
Ib,nT/Ic0,ch the peak current is obtained measuring the maximum of the current
profiles, that are like the ones shown in figure 4.7a. The orange areas represent
the intervals of current in which the nTron works properly with multiple spikes.
Neurons parameters of figure 4.7

The maximum peak current with Ib,nT/Ic0,ch = ±0.9 is ±10.92 µA, while it is
±6.94 µA for Ib,nT/Ic0,ch = ±0.6, so the resulting tunability is Imaxout /I

min
out = 1.57

(57 %). Even in this case the value is higher than the ratio computed for the
output current of the nTron. It is 1.3 times higher than the tunability of the
inductive synapse, but much lower than the result obtained with single pulses.
Considering that 120% of tunability can be obtained with a single spike, it might
be possible to obtain the same result. Here the problem is not analyzed in details.
Further analysis would be necessary to understand how to change the parameters
of the nTron or the structure of the synapse, in order to reach the desired value.
There could be also a problem in the model that might be solved with additional
experimental data. Another way to increase the tunability would be to design a
new geometry for the channel that can drastically decrease A1.
The energy consumption of the nTron synapse, considering the variable strength,
is in the range 5-12 aJ per spike. If |Ib,nT/Ic0,ch| = 0.6 it has the same energy

61



Nanocryotron-based synapse: Design and electrical analysis

consumption of a inductive synapse, otherwise it is slightly higher, but still lower
than the one of the NW neuron.

4.2.2 Fan-out/fan-in limitations

The goal of this section is to study the fan-out/fan-in limitations of the nTron
synapse, to understand if it is possible to realize a large network, that might reach
the level of connectivity of biological system, in which every neuron is connected
to thousands of others. Here only the simplest complete network (shown in section
1.1.1) is chosen as starting point for the following analysis.

N M

Figure 4.9: Simplified schematic of a SNN. The neurons are indicated as ovals
and the connecting lines can be associated with the synapses. The neurons can be
divided into two parts like in the integrate-and -fire model: the input half, which
sums the inputs (integration), and the output half, which generates a spike if the
threshold is exceeded (firing). Both the input and output signals of the network
are patterns of spikes in time. N and M are respectively the numbers of neurons
in the first and second layer. Modified figure from [11].

Let’s consider just two layers of the entire simplified system, so that the first one
is composed by N neurons and the second one by M neurons (see figure 4.9), in
order to understand how the input current of a neuron in the second layer depends
on the parameters of the first one. This is important because an higher current
that can be possibly provided to a neuron in the second layer is a consequence of
larger maximum achievable fan-out/fan-in. Each firing neuron of the first layer can
be very roughly considered as a generator of current Iout,n1, with a certain output
impedance Zout,n1, that drives M synapses with input impedance Zin,syn. If we
assume for sake of simplicity that all the synapses have the same weight W , average
of all the real weights, the output current of the neurons in the first layer (Iout,n1)
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equally splits between the synapses, and the output current of each synapse is:

Iout,syn ≈ Iout,n1W
Zout,n1

MZout,n1 + Zin,syn
(4.6)

Usually Zin,syn is lower than Zout,n1, so if M is large enough, MZout,n1 � Zin,syn,
and the current becomes:

Iout,syn ≈
Iout,n1W

M
(4.7)

Considering that there areNon neurons in the first layer that are firing and supposing
that the synapses can be seen as current generators with output current Iout,syn
and impedance Zout,syn, the input current of each neuron in the second layer is:

Iin,n2 ≈ Iout,n1W
(
Non

M

) 1
1 +N

(
Zin,n2
Zout,syn

) (4.8)

If we have N = Non = 1 we are in the simplest case for which the output
current of each synapse is equal to Iin,n2 and its expression is the equation 4.7. This
configuration is studied in section 4.2.2(Fan-out), to find the maximum fan-out
(maximum number of neurons Mon that can be driven by a single neuron) for NW
neurons using nTron synapses. The neurons in the second layer have a minimum
input current Iminin,n2 that makes them fire, so the maximum fan-out is:

FOmax = Mon,max ≈ W

(
Iout,n1

Iminin,n2

)
(4.9)

In the worst case of Non = M = 1 and N � 1, we are in the simple situation
for which all the neuron in the first layer fan into a neuron in the second one, and
only one of them fires. This configuration is analyzed in section 4.2.2(Fan-in) for
NW neurons with nTron synapses to find the maximum fan-in (maximum number
of neurons N that allows to activate one neuron in the second layer with only one
neuron firing in the first). From equation 4.7 it is possible to obtain the maximum
fan-in:

FImax = Nmax ≈
(
Zout,syn
Zin,n2

)(
WIout,n1

Iminin,n2
− 1

)
(4.10)

In the most general configuration with M > 1, N > 1, and Non > 1, we can not
define a maximum fan-in or fan-out, but a useful factor would be the maximum
ratio between the number of activated neuron in the second layer Mon and the
number of firing neuron Non in the first one:

GFOmax =
(
Mon

Non

)
max

≈ W

(
Iout,n1

Iminin,n2

)
1

1 +N
(
Zin,n2
Zout,syn

) (4.11)
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This expression can be seen as a generalized definition of maximum fan-out
("generalized fan-out"), that intrinsically depends on the maximum fan-in, so higher
it is, better are both the fan-in and fan-out characteristics. It is analyzed in section
6.3.3 for a hybrid neural network that integrate NW neurons with JJ neurons and
uses inductive synapses.

Fan-out

In order to analyze the fan-out of a system composed by NW neurons and nTron
synapses, we can consider the case in which the main neuron fires multiple times
activating all the nTron synapses, that provide enough current to the target neurons
to make them fire. For sake of simplicity all the weights of the synapses (Ib,nT ) are
set to the maximum value. The structure of the analyzed circuit is shown in figure
4.10.

#M

Ib,NW,2

RNW,nT

synapse #1

Rseries,outRseries,in

Ib,NW,2

synapse #2

Rseries,outRseries,in

NW neuron

Ib,NW,2

synapse #M

Rseries,outRseries,in

Ib,NW,1

Iin

Rsh,main

Rsh,control

LNW

Ls,NW

Lp,NW

LNW

#2

NW neuron

#1

NW neuron

Ib,nT

Ib,nT

Ib,nT

Figure 4.10: Schematic of the simulated circuit: the main neuron drives M NW
neurons through nTron synapses

The expression of the fan-out is slightly different from equation 4.9, because
here each synapse can certainly activates the target neuron, so we have to consider
Iminin,syn, the threshold current of the synapse, instead of Iminin,n2, obtaining:

FOmax = Iout,n1

Iminin,syn

(4.12)
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When the main neuron fires, the bias current of the main oscillator is diverted
from the nanowire to Lp,NW , Rsh,main and the load impedance. Higher is the
bias current, more current flows through the load, so Iout,n1 is proportional to the
bias current, which in turn depends on the switching current Isw,n1. Therefore,
increasing Isw,n1, it is possible to obtain an higher maximum fan-out. As already
explained, Isw,n1 = wdJc, where d is the thickness of the film and w the width.
Values of critical current higher than 100 µA have already been obtained by [3]
with d = 10 nm, and [4] with d = 20 nm. Starting from the parameters of the
fabricated NbN film, extracted experimentally in chapter 5, here it was supposed
that it would be possible to reach 200 µA of switching current with a thickness of
16.8 nm, just increasing the width to 297.6 nm. This is only an assumption that
could be not true, since there is not experimental evidence that it can be realized.
In order to increase Isw starting from the parameters obtained experimentally here
and in [9], it is necessary to do some considerations:

• The value of shunt resistor Rsh for which the nanowires latch depends on Isw:
higher is the bias current (proportional to Isw), slower is the timescale to reset
the superconductivity after the switch, because more Joule heat has to be
dissipated. Therefore lower is the electrical time constant τe = Lnw/Rsh for
which latching occurs, as explained in section 1.2.2. This means that in order
to increase Isw,n1, τe has to be increased to avoid latching. Here it was chosen
to maintain always the same Rsh and just rise Lnw proportionally to Isw,n1, so
that the output impedance of the neuron is not altered much.

• To ensure that the neuron fires also Ls,NW and Lp,NW have to be proportionally
increased.

• The bias current Ib,NW was set at 1.9Isw to maintain enough margin from
external noise that could make the neuron fire also when the input current is
zero. Even if the nanowire can be activated with lower input current Iin, it
was set to 0.2Isw to ensure the activation.

The most relevant parameters used for the simulations are shown in table 4.1.

d Jc w Rsh (Ω) Lnw Ls,NW , Lp,NW Ib,NW Iin

16.8 nm 40 mA/µm2 Isw/(dJc) 10 (130 pH/µA)Isw (325 pH/µA)Isw 1.9Isw 0.2Isw

Table 4.1: Parameters used to ensure that the NW neuron does not latch during
simulations. Some are functions of Isw.

Increasing the time constant τe that defines the falling edge of an action potential,
the spiking frequency decreases approximately like 1/L(Isw), following equation
1.10. Figure 4.11 shows the spiking frequency as function of Isw,n1.
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Figure 4.11: Spiking frequency of a NW neuron as function of the switching
current, obtained through simulations with the parameters shown in table 4.1

Trying to increase the fan-out, it is necessary to consider that the spiking
frequency is lowered, so the the nTron synapse will behave differently. As explained
in section 4.2, the ratio between the spiking period and the discharging time of the
synaptic inductor defines the maximum level of current that can be stored in the
synapse. If we want to maintain approximately the same maximum current even
at higher switching currents to ensure the target neurons fire, we have to increase
the discharging time. This can be done decreasing Rseries,out. In the following
simulations, it was set to (100 /Isw) Ω, so that it is 5 Ω when Isw = 20 µA as
in previous simulations, and 10 times smaller (0.5 Ω) when Isw = 200 µA, to
counterbalance the decrease of frequency. An undesired consequence of lowering
Rseries,out, is that the isolation of the synapse from the downstream neuron is less
efficient, so further work would be necessary to understand how to solve this issue.
As explained above, the output current of the neuron depends on the current
divider between Rsh,main, Lp,NW and the load impedance of the neuron. Higher
is Rsh,main/Zload, more current flows to the load and higher is the maximum fan-
out. As shown in figure 4.10, the load is RNW,nT + Rseries,in/M , which can be
approximated to RNW,nT if M is large. Setting Rsh,main to a value 5 times larger
than RNW,nT and ensuring that Rsh,main//RNW,nT ≈ Rsh,control, it is possible to have
almost 40% of Ib,NW flowing to the load. Increasing Rsh,main more, the behavior of
the main oscillator would become too dependent on the load, and the shape of the
action potential would be modified. For this reason Rsh,main was set to 50 Ω and
RNW,nT to 10 Ω. Figure 4.12 shows the simulated dynamic in time-domain of a
NW neuron with Isw,n1 = 200 µA and the increase of Rsh,main, that drives 35 NW
neurons with Isw,n2 = 30 µA.
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Figure 4.12: Time-domain simulation of a NW neuron that drives 35 NW
neurons, through nTron synapses. The parameters of the neurons follow expressions
shown in table 4.1. Main neuron parameters: Ib,n1 = 200 µA, Rsh,main = 50 Ω,
RNW,nT = 10 Ω. Synapses parameters: Rseries,in = 1 Ω, Rsh,in = 5 Ω, Ic,g = 3.7 µA,
Ib,nT = 36 µA, Rseries,out = 0.5 Ω. Target neurons parameters: Isw,n2 = 30 µA.
Panel (i) displays the output voltage and the input current of the main neuron;
Panel (ii) displays the output current of the nTron; Panel (iii) displays the input
current and output voltage of one of the target neurons.

In order to perform a more complete analysis on the fan-out limitation and
confirm if equation 4.12 is correct, it was created a Matlab script, integrated with
LTspice, that can simulate a system with different number of target neurons and
check if they fire. In this way it is possible to find the maximum fan-out for each
possible configuration.

Figure 4.13 shows the maximum fan-out as function of Isw,n1 (when the weights
of the synapses are maximized), for different Ic,g, obtained with the aforementioned
method. The maximum fan-out is obviously boosted by the amplification of the
nTron synapse. Using standard inductive synapses, such numbers could not be
reached. The image shows that FOmax depends on Iout,n1/I

min
in,nT , indeed the slope

of the curve is higher with lower Iminin,nT as expected, but Iminin,nT is different from the
critical current of the gate. For the case of Ic,g = 3.7 µA, Iminin,nT is equal to 4.4 µA.
This is due to the presence of Rsh,in and Rseries,in in each synapse, that lower the
current flowing into the gate.
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Figure 4.13: Maximum fan-out as function of the switching current Isw,n1 of the
main neuron, at different values of gate critical current Ic,g. The marked points were
obtained by simulations, the curves fit the points. The parameters of the neurons
follow expressions shown in table 4.1. Main neuron parameters: Rsh,main = 50 Ω,
RNW,nT = 10 Ω. Synapses parameters: Rseries,in = 1 Ω, Rsh,in = 5 Ω, Ib,nT = 36 µA,
Rseries,out = (100 µA/Isw,n1) Ω. Target neurons parameters: Isw,n2 = 30 µA.

A different configuration was tested, in which all Rsh,in and Rseries,in were
removed, and a single shunt resistor was put in parallel with the gates of all the
nTrons. Doing so, Iminin,nT = Ic,g and the maximum fan-out can be increased by 17%,
but the the system loses in terms of stability. Indeed the synapses are not more
isolated from each other. When they have different weights, the nTrons are biased
at different currents, so the propagation velocities of the hotspot are also different.
This means that the gates does not switch at the same time, and back-propagation
of the gate currents alters the behavior of some synapses. As consequence this
configuration was discarded, but the same effect was observed to a lesser extent also
in the configuration shown in figure 4.10. Therefore Further work is necessary to
improve the isolation between synapses (also between main and target neurons). In
section 4.3 the hTron, a different type of cryotron, is proposed as possible solution.

Fan-in

The circuit schematic in figure 4.14 was analyzed and simulated to find the maximum
fan-in. The expression 4.10 for the maximum fan-in is only a rough estimation, that
is not really valid exploiting nTron synapses, due to the charging and discharging
dynamic of the synaptic inductance with multiple spikes, not considered in the
equation. However it is still useful to understand the dependencies and what can
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be done to improve the fan-in characteristics.
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Figure 4.14: Schematic of the circuit simulated to study fan-in performances. N
NW neurons fan into one target neuron through nTron synapses, and only one of
the N neurons is activated through Iin.

In this configuration, the current provided to the downstream neuron is:

Iin,n2 ≈ WIout,n1
1

1 +N
(
Zin,n2
Zout,syn

) (4.13)

where WIout,n1 depends on the bias current of the nTron. W is function of
the number of incoming pulses to the synapse. Using the synaptic parameters
previously introduced, with 9 pulses it is possible to reach approximately the
maximum value WIout,n1 = 12 µA. Iin,n2 is also function of Zout,syn/Zin,n2: higher
it is, more current can be provided to the neuron. In fact, part of the current
generated by a single synapse can back-propagate to the other synapses (cross-talk
current), and its value is lower if the output impedance of the synapses is much
higher than the input impedance of the target neuron. The input impedance of
the target neuron is:

Zin,n2 =
(

1
jωLs,NW

+ 1
2(Rsh//jωLNW ) + jωLp,NW

)−1

(4.14)
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while the output impedance of the synapse is:

Zout,syn =
(

1
Rsyn,2

+ 1
(Rsyn,1//jωLnT ) + jωLsyn

)−1

(4.15)

The ratio Zout,syn/Zin,n2 depends on the FFT of the output signal of the synapse, so it
varies with the temporal pattern of spikes that charges the synaptic inductance. By
a first rough estimation, if we consider that the output signal is almost a DC signal,
Zin,n2 = jωLs,NW//jω(2LNW + Lp,NW ) and Zout,syn = jω(LnT + Lsyn). Using the
parameters of the previous section, the ratio is approximately Zout,syn/Zin,n2 = 20.
This means that the fan-in structure can work properly with a low cross-talk current
up to N close to 20, but a more detailed analysis is needed to find the correct ratio
through simulations.
The circuit in figure 4.14 was simulated to obtain the peak input current Iin,n2 as
function of N and the the number of incoming spikes (Ib,nT = 36 µA). The result
obtained using all the parameters of table 4.1 and Isw,n1 = Isw,n1 = 30 µA is shown
in figure 4.15.
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Figure 4.15: Input current Iin,n2 of the target neuron of figure 4.14, as function
of the number of neurons in the first layer N , for different number of pulses
generated by the NW neuron 1 (or different ton of the pulse generated by Iin).
The neurons parameters are the ones of table 4.1 with Isw = 30 µA. The target
neuron has Ib,NW,2 = 0 µA. Synapses parameters: Rseries,in = 20 Ω, Rsh,in = 5 Ω,
Ib,nT = 36 µA, Rseries,out = 5 Ω.

The three curves were fitted with the function of equation 4.13, obtaining three
different ratios Zout,syn/Zin,n2: ∼ 25 for 3 spikes, ∼ 35 for 6 spikes and ∼ 42 for 9
spikes. The minimum current to activate a NW neuron with parameters of table
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4.1, is Iminin,n2 = (2.07Isw,n2 − Ib,NW,2). So the expression of the maximum fan-in
becomes:

FImax ≈
(
Zout,syn
Zin,n2

) WIout,n1

2.07Isw,n2
· 1

1−
(

Ib,NW,2
2.07Isw,n2

) − 1
 (4.16)

This equation shows that the fan-in can be increased also decreasing Isw,n2, or
biasing the target neuron closer to 2Isw,n2. This last option would decrease the
noise margins. Setting Ib,NW,2 = 1.9Isw,n2, in the best case of 9 spikes that charge
the synapse, the resulting maximum fan-in is:

FImax ≈ 1.35 ·
(
Zout,syn
Zin,n2

)
≈ 56 (4.17)

This is a good result if compared with the one of the JJ-based network that
exploits the current method for the fan-in, introduced in [11], for which FImax ≈ 20.
it is not an exciting result if compared with the one of the flux method [11], that
can reach a fan-in of ∼ 100. Further work is needed to improve the performances,
but it should be reasonable to reach values higher than 100. The first things to do
are decrease Zin,n2 using lower Ls,NW , and decrease Isw,n2. Afterwards it could be
possible to increase Zout,syn, just increasing Lsyn and Rseries,out, or increase WIout,n1
using an higher Ic for the nTron. It is important to notice that the first method
would lower the output current, and the second would require to lower Rsyn,1 to
avoid latching, consequently decreasing the output current too. A right balance
between parameters needs to be found.

4.2.3 nTron splitter for fan-out boosting
The maximum fan-out achievable by the NW system with nTron synapses is higher
than the one obtained with inductive synapses, but it is still far from values of
biological system in which a neuron can drives thousands of others. Moreover
the structure introduced in the previous section is limited by the gate threshold
current, and the need to increase the switching current of the main neuron with
the consequent decrease of spiking frequency. For these reason, it was designed
a new structure inspired by a recent work [11], in which the fan-out of a system
based on JJ neurons was boosted exploiting JJ splitters, typically used in SFQ
circuits [25]. The splitter is able to generate a pulse on two output lines receiving
one pulse on the input. Creating a fan-out circuit composed by nested splitters
organized on different layers allows to drastically increase the maximum fan-out,
ideally without limit. Obviously the drawback is the larger occupied area by the
network, and the increased power consumption.
Here it is proposed a similar structure based on nTron splitters, that can be nested
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to boost the fan-out of NW neurons, reaching performances of biological systems
and avoiding the increase of switching current.
The circuit schematic of a single nTron splitter is shown in figure 4.16A. It is
composed by n nTrons that are activated by a single current pulse through Rseries,in

on the input line. All the nTrons fire contemporary so that n pulses are produced
on the output lines. It is possible to use just one Rsh,in shared between nTrons,
because they are all biased with the same current Ib,nT , so there are not problems
of cross-talk. The maximum number of nTrons n that can be used depends on how
much current can be provided on the input. The nTron splitter has to be designed
in order to allow a single output line to drive another splitter, so that a nested
structure organized on more layers can be created. Figure 4.16B shows a 1-to-4
2-layers structure formed by 1-to-2 nTron splitters.

Ib,nT

Rg

Ib,nT

Rg

Rseries,in

IN

OUT

OUT

A B

Rsh,in

IN

OUT

OUT

OUT

OUT

Figure 4.16: (A) Circuit schematic of a 1-to-n nTron splitter. (B) Circuit
schematic of 1-to-4 tree composed by 1-to-2 ntron splitters (current sources are
omitted for simplicity).

More layers can be added to produce more spikes. If a NW neuron drives
the whole structure and the nTrons of the last layer are replaced with nTron
synapses, the action potentials of the main neuron can activate a very high number
of synapses. The fan-out grows exponentially with the number of layers:

FO = nNL (4.18)

Higher is n, less layers are needed to reach a certain fan-out. The number of
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nTron used in the structure is:

NnT =
NL∑
k=1

nk (4.19)

In order to demonstrate the utility of the structure, it was simulated a 3-layers
nested tree formed by 1-to-3 nTron splitters, used to obtain a fan-out of 27, with a
NW neuron that has Isw = 30 µA. Figure 4.17 shows the time-domain behavior of
the system. Each action potential of the main neuron activate the nTrons in the
first layer that in turn activate the ones in the second layer, which make the nTron
synapses switch, so that the target neurons can fire.
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Figure 4.17: Time-domain behavior of a NW neuron that drives a 3-layers 1-to-27
fan-out tree composed by 1-to-3 nTron splitters. In the last layer the nTrons
are replaced by nTron synapses, that activate NW neurons. The NW neurons
parameters are the ones of table 4.1 (Isw = 30 µA). nTron synapses parameters:
Ib,nT = 36 µA. nTron splitters parameters: the nTrons have the same parameters
of the nTron synapses, but Ib,nT = 25 µA, Rg = 2 Ω, Rseries,in = 8 Ω. (i) Input
current of and output voltage of the main neuron. (ii) Output current of a nTron
in the first layer. (iii) Output current of a nTron in the second layer. (iv) Input
current and output voltage of one of the target neurons.

Using the same parameters of the nTron synapse for all the nTrons and a bias
current of 25 µA, the energy consumption per spike is approximately 5 aJ , ten

73



Nanocryotron-based synapse: Design and electrical analysis

times smaller than the energy consumed by a NW neuron En,NW .
In the JJ-based system introduced in [11] n is always 2 three junctions are used for
each splitter. If we compare the total number of elements with a structure based
on 1-to-2 nTron splitters, the number of used junctions is

NJJ = 3 ·
NL∑
k=0

2k−1 = 3
2 ·

NL∑
k=1

2k = 3
2 ·NnT (4.20)

so less elements are used in a NW-based structure, than in a JJ-based one.
Moreover the nTron splitter is more flexible in terms of number of output line and
layers, considering that the JJ splitter only generates two pulses. For the JJ-based
system it was also proposed a different structure more similar to nTron splitters
named "current-based fan-out" that also allows to set the number n, but it is less
efficient for its higher number of junctions, so it is not considered here. The energy
consumed by a junction in the JJ splitters is approximately 0.5 aJ per spike, 2
times smaller than the energy consumption of a JJ neuron En,JJ . The Josephson
junction will always be more energy efficient than nanowires, so in order to compare
the two systems is more fear to normalize the total energy of the splitters trees with
the one of the associated neuron: the normalized energy of the NW-based splitters
system is ENW/En,JJ = NnT/10, while for JJs it is EJJ/En,JJ = 1.5 ·NnT/2, so in
these terms the nTron splitter seems to be 7.5 times more efficient.
The nTron splitter is firstly proposed here and there are not experimental data to
demonstrate it can work properly. Furthermore a more accurate analysis would be
needed to understand how much area would be occupied by such structure.

4.3 hTron synapse for isolation improvement
The nTron synapses presented problems of isolation between input and output due
to the intrinsic leakage current of the nTron. It was noticed in simulations, that
for certain set of synaptic parameters the spiking of the target neuron altered the
activation of the nTron. Moreover, as already explained, in the fan-out configuration
it was observed that setting different values of bias current for nTron synapses
driven by a single neuron, some nTrons do not spike or latch if their gates are
not correctly isolated from the others. These problems could be solved replacing
the nTron with a M-hTron, because the input impedance of the synapse would be
constant since the heater is normal, and the output would be almost completely
isolated by the input. Moreover the driving capability of the synapse would be
increased. The SPICE model of the hTron, introduced in section 3.4, was used to
study a possible synapse based on the hTron. The hTron was placed in the same
configuration of the nTron, but the shunt resistance of the gate Rsh,in was removed,
since the heater is normal. The critical current of the hTron was lowered to 40 µA
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to have the same strength of the nTron synapse (the channel and heater widths
were lowered to 200 nm). The other parameters of the synapse were changed in
order to adapt to the hTron characteristics. The input resistance of the heater was
set to 10 Ω and for sake of simplicity the thicknesses of the NbN, Ti and SiO2
films were kept equal to the ones realized by [4]. The time-domain behavior of two
neurons coupled with excitatory control through hTron synapse is shown in figure
4.18.
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Figure 4.18: Time-domain behavior of two NW neurons coupled with excitatory
control through an hTron synapse. Parameters shared by the two neurons: Ls,NW =
Lp,NW = 10 nH, Ls,NW = 4 nH , Rsh,control = 10 Ω. Main neuron parameters:
Isw = 100 µA, Ibias = 190 µA, Iin = 20 µA, Rsh,main = 50 Ω Target neuron
parameters: Isw = 30 µA, Ibias = 57 µA, Rsh,main = 10 Ω. hTron synapse
parameters: Ldrain = 100 nH, Rseries,in = 0 Ω, Rin = 10 Ω, Ic,ch = 114.5 µA ,
Rsh,in = 0 Ω, Rsyn,1 = 10 Ω, Lsyn = 300 nH, Rsyn,2 = 50 Ω, Rseries,out = 20 Ω. (i)
Parameters: Ib,nT = 36 µA. Panel (i) displays the input current and the output
voltage of the main neuron; Panel (ii) displays the output current of the hTron,
that enters into the inductive loop; Panel (iii) displays the input current and the
output voltage of the target neuron.

Since the thicknesses of the films in the hTron were not modified, the threshold
current through the heater that makes the channel switch is much higher of Ic,g in
the nTron. Therefore the switching current of the NW neuron was set to 100 µA,
and Rsh,main to 50 Ω (The parameters of table 4.1 were not used). Changing the
structure of the hTron ideally could be possible to decrease the threshold current.
The parameters used in this simulations are not optimized and further experimental

75



Nanocryotron-based synapse: Design and electrical analysis

work would be needed to understand if it is possible to realize hTron with these
characteristics, however the result is useful to show that in theory it would be
possible to create a hTron synapse that would improve the isolation, and would
increase the output current. The possibility of inhibitory control and variable
strength were not analyzed.
Considering that it was demonstrated the hTron has a higher driving capability,
it could be possible to exploit it also for splitters in order to further boost the
fan-out.
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Chapter 5

Nanowire-based Neurons
and synapses: fabrication
and characterization

In chapter 4 the nTron synapse was introduced, and a detailed analysis of its
characteristics was done, thanks to simulations. However a synapse used to connect
two NW neurons was never concretely realized, so the coupling between two neurons
was not demonstrated. In this work the first steps for a long-term plan, that aims
to demonstrate experimentally the possibility of coupling two neurons with a
nTron synapse, were set. First of all the basic elements of neurons and synapses
were designed and fabricated: (1) relaxation oscillators; (2) nTrons; (3) inductive
synapses. Afterwards they were characterized, and the first attempts to test the
neurons and the synapses were made. In this chapter the fabrication process,
the layout, the experimental setups and the results of the characterization are
shown. Due to lack of time, the characterization of all the fabricated devices was
not completed, and the operation of neurons and nTron synapses was not well
demonstrated. However interesting results that can help a future design of the
devices are here presented. Definitely further work will be needed to reach the final
goal of the plan.

5.1 Neuron
The NW neuron has already been fabricated and tested [29], but an appropriate
analysis of the fabricated shunt resistors has not been yet realized. Considering
that the process to obtain LNW is well standardized, it is important to have a
good control of the shunt resistance in order to set the time constant LNW/Rsh
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and consequently the spiking frequency. The dependence of the spiking frequency
on the resistance has not been studied experimentally. Furthermore the value
of the resistance used in previous works [29] is very low (1.2 Ω), so the output
peak voltage of the neuron approximately equal to IswRsh results to be on the
order of 50 µV . With this low value the effect of the noise is high and the driving
capabilities are limited, since the output impedance is low. Realizing oscillators
with resistance in the order of 10 Ω like the one used in simulations would solve the
problems. For these reasons isolated oscillators and neurons with different shunt
resistances were fabricated and characterized. The results of the measurements are
shown in this section.

5.1.1 Fabrication
For both the resonators and the somas, the same structures designed in [29]
were reproduced. Figure 5.1 shows SEM images of a fabricated oscillator and
soma. The nanowire is composed by a 60-nm wide switching element, and two
meandered structures 150-nm wide. The critical current depends on the width of
the constriction in the switching element, where the hotspot is generated.

2 �m 5 �m 

(a) (b)

nanowire

~LNW/2

NbN

NbN SiOX

shunt
resistor~LNW/2

bias port

input port

ouput port

Ls,NW

Lp,NW

main
oscillator

control
oscillator

~60 nm

Figure 5.1: (a) SEM image of a relaxation oscillator with 4-squares shunt resistor.
(b) SEM image of a NW neuron composed by two coupled oscillators

78



5.1 – Neuron

The kinetic inductance LNW depends on the number of squares (∼ 200) of the
entire nanowire, and the inductivity of the film, which is directly proportional to
the sheet resistance of the NbN film. The nanowire is designed to have a time
constant in the order of nanoseconds, depositing a film with a sheet resistance of
∼ 150 Ω/sq, and as consequence an inductivity of ∼ 20 − 50 nH/sq. The shunt
resistor was fabricated as close as possible to the nanowire.
The neuron is formed by a superconducting loop composed by two coupled oscil-
lators and two kinetic inductances (Ls,NW and Lp,NW ). The latter were realized
with meandered nanowires. The two branches of the loop were designed to have
the same number of squares (∼ 634), so that the bias current can be equally split.

On the same 1x1 cm2 die cut from a 4 in. Si wafer single resistors, oscillators and
somas were fabricated all together. Each element were fabricated with 5 different
structures in which the resistors have same film thickness but different numbers
of squares (0.5, 1, 2, 3, 4). Three attempts were done before reaching the desired
result. The fabrication process used for the last attempt is described in the next
section, while the results of the two first attempts are explained afterwards.

Fabrication process

The isolated resistors, oscillators and the somas were fabricated with the multi-
steps lithographic process shown in figure 5.2, on a silicon substrate (covered by
300 nm-thick thermal oxide).

As done by other works on NbN nanowires [42], the resistors were placed beneath
the NbN film, obtaining a two-layers structure. The marks necessary to align the
two layers were patterned with electron-beam lithography (Elionix E125) through
a bilayer resist process. They were realized with two separate steps, due to their
different thicknesses. For both the steps, firstly the positive-tone resist ZEP520
was spun on the substrate at 5 krpm, and baked at 180◦C. Then the resist was
developed in O-Xylene at 5◦C for 90 s, and rinsed in IPA at room temperature.
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SiO2 substrate

Resist

Figure 5.2: Fabrication process for shunted NbN nanowires (the shape of the
structure is simplified in this figure). (A) Resist spinning (ZEP520). (B) E-beam
lithography and development of the shunt resistor pattern. (C) Deposition of
Ti-Au film. (D) Lift-off. The shunt resistor is patterned. (E) Deposition of NbN.
(F) Resist spinning (ZEP530). (G) E-beam lithography and development for the
nanowire and the contacts with the resistor. (H) Reactive Ion Etching (RIE). (I)
Resist removal. The shunted nanowire is patterned.

For the markers a 10-nm layer of Ti and a 50-nm layer of Au were evaporated
on the resist, and the lift-off was performed in 1-methyl-2-pyrrolidone (NMP) at
60◦C for one hour. For the shunt resistors a 10-nm Ti + 25-nm Au layer was
realized with the same technique. Before starting creating the NbN layer, the chip
was ashed in O2He plasma with a power of 100 W for 1 min., in order to remove
impurities from the metallic film and ensure a good adhesion with the NbN film.
Better is the adhesion lower is the contact resistance between the two films, and
more controllable is the value of the shunt resistance. The NbN film was deposited
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on the entire chip in AJA sputtering system for 390 s with a peak power of 160 W,
obtaining a thickness of 16.8 nm. Then the nanowires structures were patterned
with a second electron-beam lithography step, exploiting the previously fabricated
marks to align them with the shunt resistors. In this lithographic process a different
resist was used (ZEP530), with the same recipe explained above. In this case the
final structure was obtained removing the regions of NbN uncovered by resist, using
reactive ion etching (RIE) with CF4 at 50 W of power. The residual resist was
then removed again with NMP.

The three different attempts for the fabrication of the resistances are:

• 5-nm Ti + 15-nm Au and 13-nm NbN: The thickness of the metallic
film was reduced respect to previous works to increase the sheet resistance,
while the NbN film was made thinner to obtain a faster cooling down, so a
higher latching current. In this way it should have been easier to increase the
shunt resistor. The resulting resistances were all on the order of kΩ and were
not linear proportional to the number of squares, so the oscillators were not
shunted. Probably the metallic film was too thin, or the contact resistances
too high because it was not performed the ashing step in the process to clean
the metallic surface.

• 10-nm Ti + 15-nm Au and 16.8-nm NbN: After the first attempt the
ashing step was introduced, the thicknesses of the Ti film and the NbN film
were increased. Two chips were fabricated with same NbN and Ti thiknesses,
but different Au films (15 nm and 25 nm). The resistances of the 15-nm film
were in the range 90− 250 Ω, and it was seen that the values were not almost
dependent on the number of squares.

• 10-nm Ti + 25-nm Au and 16.8-nm NbN: With this Au thickness the
resistances resulted to be on the order of 10 Ω, with lower dependence on the
contacts.

All the following results of the characterization were obtained with the 10-nm
Ti + 25-nm Au 16.8-nm NbN chip. Firstly isolated oscillators were tested, secondly
the somas.

5.1.2 Relaxation oscillators: characterization
First of all a I-V curves of a unshunted nanowire and shunted nanowires with
different resistances were realized in helium Dewar at 4.2 K. A bias current was
applied to them through a battery source in series with a 100 kΩ resistor and a
1.9-MHz low-pass filter used to filter any kind of noise that could make the nanowire
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switch. The voltage across the nanowire was measured by a multi-meter with a
1 MΩ resistor in series. Figure 5.3a shows the result for the unshunted nanowire.
The switching current is 38.2 µA, and the curve is hysteretic with Ir = 5.2 µA.
Figure 5.3b shows the I-V curves of the shunted nanowires with different shunt
resistances. The switching currents are in the range (30.3− 38.2) µA, with average
value of Isw = 34.4 µA.
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Figure 5.3: (a) I-V curve of an unshunted nanowire. (b) I-V curves of shunted
nanowires with different shunt resistances. There is a 1 Ω parasitic resistance due
to the cables used to measure.

The shunted nanowires are not hysteretic, and the voltage increases with the
number of squares. At a certain latching current, the nanowires stop spiking, so
above that point the slope of the curve corresponds to the value of the shunt
resistance, therefore it is possible to extract it. It has to be considered that there
is a 1 Ω parasitic resistance that comes from the cables used for the measurements,
that can be seen in the superconducting state. The graph clearly shows that the
latching current decreases with increasing resistance, as expected.

Resistances

The values of the resistances were extracted from the latching state in the previous
graph (for the 0.5-squares oscillator it was extracted from its spiking behavior shown
in the next section, because the latching current was higher than the switching
current of the entire structure 100 µA). For each oscillator, it was also measured
the resistance of the associated isolated resistor, that has the same structure. The
resulting values as function of the number of squares are shown in figure 5.4.
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Figure 5.4: Resistance as function of the number of squares. (blue) extracted
from the I-V curves of the shunted nanowires. (red) measured from the isolated
resistors. (green) obtained with the fitting values of sheet and contact resistance.

The resistances were patterned with different widths, the overlap between the
NbN and the Au films has a 0.5x0.5 um2 area for 2,3,4-squares resistors, 0.5x1
µm2 for 1-square and 0.5x2 µm2 for 0.5-squares. The narrower cross section the
current has to pass through is the one on the border of the contact region with an
area of ∼ d · P , where d is the thickness of the NbN film and P is the perimeter
of the contact region. Assuming this, the contact resistance has to scale with the
perimeter of the contact area in the measured resistances. Considering that the
2,3,4-squares resistors have the same contact area, it was fitted the curve formed
by that three points (blue curve) obtaining a sheet resistance R� = 4.58 Ω/sq
and a contact resistance Rc = P · 1 Ω · µm (or Rc = d · P · 0.017 Ω · µm2). The
green curve shows the estimated resistances considering the scaling of the perimeter
contact resistance. It is consistent with the 0.5,1-square values obtained by isolated
resistors (red curve).

Spiking behavior

After the extraction of the resistances, the spiking behavior of the oscillators
was tested, measuring the spiking frequency as function of the bias current. The
oscillator was connected to a bias-tee. The bias current was applied to the DC port
by a battery source in series with a 100kΩ resistor, while the RF port was connected
to a 1 GHz-bandwidth 50dB amplifier (MITEQ AM-1309). The output of the
amplifier was sent to the oscilloscope, used to apply the Fast Fourier Transform
(FFT) to the signal and find the dominant frequency peak for each value of bias
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current. Figure 5.5 shows the time-domain behavior of the 1-square oscillator with
Ibias/Isw = 1.047.
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Figure 5.5: Comparison between experimental and simulated time-domain be-
havior of the 1-square oscillator. For simulation: LNW = 6.4 nH, Rsh = 8.53 Ω,
Isw = 38.19 µA, Ibias/Isw = 1.047

The orange curve was obtained with simulation of the LTspice model, in which
the inductance was set to LNW = 6.4 nH in order to obtain the spiking frequency
of the experimental result. The same thing was done for all the oscillators and the
average value of kinetic inductance resulted to be LNW = 6.5 nH. The experimen-
tal curve presents many reflection artefacts, because the nanowire is not matched
with the 50 Ω line. Probably for these reason the measured voltage peak is slightly
lower than the simulated one.

Figure 5.6 shows the spiking frequency as function of Ibias in the range between
Isw and IL (the latching current) for all the oscillators. Outside of this range the
spiking frequency is zero.
This graph clearly demonstartes that increasing the shunt resistance, it is possible
to have the same spiking frequency with lower values of bias current, but the
nanowire latches at lower current. For frequencies above 1 GHz the data are more
noisy because we are in the cut-off region of the amplifier. However the maximum
value reached is ∼ 1.25 GHz, which is very high if compared with the ones of
previous works [29].
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Figure 5.6: Spiking frequency of the oscillators as function of the bias current,
at different shunt resistance. The graph shows the range between Isw and IL (the
latching current). Outside of this range the spiking frequency is zero. The curves
are fitted with equation 5.1.

The curves were fitted with the expression obtained by simplification of equation
1.10:

1
f
≈ −LNW

Rsh

ln
(
Ibias − Isw

Ibias

)
(5.1)

Using the previously extracted values of resistances for 1,2,3,4 squares, it was
obtained LNW ≈ 10 nH. From this value it was extracted the resistance of the
0.5-square oscillator. The inductance is higher than the one obtained matching the
time behavior of simulation and experiment, but considering that equation 1.10 is
just an approximation, the value 6.5 nH was taken as correct. This means that
the expression of the spiking period should be divided by a 1.5 correction factor.

5.1.3 Soma: characterization
Once the oscillators had been characterized, the somas with 0.5 and 2-squares
shunt resistors were tested. Firstly they were overbiased above their critical current
with zero input current, so that the two shunted nanowires oscillate in phase, in
order to check if the neuron can fire. The same frequency analysis of the previous
section was performed, obtaining the graph in figure 5.7A. Here the bias current
was provided by a battery source in series with a 100 kΩ-resistor and the filter.
The input signal was sent to a bias-tee with 50 Ω-termination on the DC port in
series with the amplifier.
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Figure 5.7: (A)Spiking frequency of the neuron as function of the bias current,
at different shunt resistance and zero input current. The voltage is measured on
the output of the neuron. Isw,tot is the switching current of the neuron, which
can be different from 2Isw if the two oscillators have different switching current.
(B) Experimental time-domain behavior of 0.5-square neuron. Isw,tot = 66 µA,
Ibias = 63 µA. (i) Input current of the neuron. (ii) Output voltage of the neuron.

The neurons can properly spike when the bias current is above the threshold
Isw,tot, and the frequency follows the same behavior of a single oscillator, but with
a slightly lower maximum frequency.

Afterwards the two neurons were tested with an applied input current. Multiple
combinations of Iin and Ibias were used, but both the neurons did not work properly.
The input current pulse was provided by a waveform generator with a 10 kΩ-resistor
in series. The voltage on the output of the generator was directly sense by the
oscilloscope (1 MΩ-mode). As shown in figure 5.7B, the 0.5-square neuron with
Isw,tot = 66 µA, Ibias = 63 µA and Iin = 9 µA, fires only during the rising and
falling edges of the input current pulse. The same thing happens for the 2-squares
neuron. This behavior typically is caused by uneven oscillators that have different
inductances, switching current or shunt resistances. It was observed in previous
works [29], when the input current is higher than a certain threshold. Here it
was tried to decrease the input current and increase the bias current to avoid
this phenomenon, but the neuron started spiking randomly due to noise. Further
work would be needed to understand where the problem comes from, performing
electrical simulations, and testing more devices.
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5.2 nTron synapse
The nTron synapse was not integrally fabricated. Firstly the nTrons and synaptic
inductors were separately realized on the same chip of the oscillators and neurons, in
order to characterize them before testing the performance of the nTron synapse. The
work of characterization was not completed, so in this section only the preliminary
results are shown.

5.2.1 Fabrication
Both for the nTrons and the synaptic inductors (or standard inductive synapses)
were fabricated at the first fabrication attempt (5-nm Ti + 15-nm Au and 13-nm
NbN), following the process explained in section 5.1.1. The sheet resistance of the
obtained NbN film is ∼ 180 Ω/sq. Figure 5.8a shows the SEM image of a nTron,
while figure 5.8b shows the SEM image of the inductor with associated parallel
resistances.
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drain
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channel

(a)
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~Ld

10 �m 

Lsyn

input output

Rsyn,1 Rsyn,2
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Figure 5.8: (a) SEM image of a fabricated nTron (30-nm wide choke and 300-nm
wide channel). Ld is the drain kinetic inductance (∼ 300 squares), the total drain
nanowire is ∼ 400-squares long. The gate is 175-squares long, while the source is
120 squares (There were realized also nTrons with ∼ 20squares long source and
gate). The small inset shows the 30-nm wide choke (there were realized also nTrons
with the choke in proximity of the bottom of the channel). (b) SEM image of the
inductive synapse. Both Rsyn,1 and Rsyn,1 are 9-squares long.
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The nTron does not have a resistances in its structure, so it is formed only by
a 13-nm thick NbN film. The kinetic inductor of the drain was realized with a
meandered nanowire (∼ 400 squares). The gate nanowire is ∼ 170-squares long,
while the source is ∼ 120-squares long. Multiple nTrons were fabricated on the
same chip with slightly different geometries, to study how their dimensions control
the property of the device. There were fabricated nTrons with different choke
width (10 nm, 20 nm, 30 nm, 40 nm) and channel width (100 nm, 200 nm, 300 nm
,400 nm). Some nTrons were also fabricated differently respect to the one shown in
figure 5.8a: the choke was realized in proximity of the bottom part of the channel,
and the gate and source inductances were lowered, reducing the number of squares
to ∼ 20. Only some devices were tested among them.

The inductive synapses were designed to have a inductance Lsyn at least higher
than 200 nH, realizing a 8500-squares meandered nanowire. With a film inductivity
of ∼ 30−40 pH/sq, the resulting inductance is in the range 250−340 nH. Multiple
inductors were realized with same number of squares, but different resistances
Rsyn,1 and Rsyn,2 (from 3 to 12 squares), in order to test the circuit with different
time constants. Since the fabricated resistances resulted to be on the order of
kΩ, they were added externally with resistors soldered on the PCB, as it will be
explained afterwards.

5.2.2 nTron: characterization

Firstly I-V curves of some nTrons with zero gate current were obtained in helium
Dewar at 4.2 K. A bias current was applied to the drain through a battery source
in series with a 100 kΩ resistor (at room temperature). The drain voltage was
measured by a multi-meter with a 1 MΩ resistor in series. Figure 5.9 shows the
result for a nTron with 20-nm wide choke and 200-nm wide channel.
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Figure 5.9: I-V curve of the nTron with 20-nm wide choke and 200-nm wide
channel (long source and gate), at zero gate current. The gate is terminated at
50 Ω. The orange curve shows the I-V curve obtained with simulation of the SPICE
model. Its parameter were set according to the geometry of the nTron.

The curve is hysteretic because the load of the nTron is 1MΩ, and the critical
current is Ic,ch = 71 µA. The orange curve was obtained by simulation of the
LTspice model, in which all the geometrical parameters were set. The model
approximately fits the experimental data. During the transaction from the super-
conducting to the normal state the curves are slightly different probably because
the model does not consider the real meandered geometry of the drain, moreover
the negative critical current in the experimental curve is a bit lower respect to the
positive one.

After the realization of the I-V curves of other nTrons, here not shown, a DC
current was applied to the gate with the same experimental setup. The gate critical
current Ic,g was found applying a current ramp to the gate and measuring for which
value of current the gate switches. Table 5.1 shows the obtained critical currents
for three different nTrons (with long gate and source nanowires):

10-nm choke, 100-nm ch. 20-nm choke, 200-nm ch. 30-nm choke, 300-nm ch.
Ic,g (µA) 3.5 4.8 11.5
Ic,ch (µA) 66 71 181

Table 5.1: Gate critical current Ic,g and channel critical current Ic,ch for three
different nTrons, measured at 4.2 K.
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The gate critical current is proportional to the choke width as expected, but the
proportionality factor is slightly different for each nTron. This means that there is
not enough control on the gate dimensions. The same consideration is valid for the
channel critical current.
The behavior of the nTron with a load on the order of 10 Ω was studied to analyze
the configuration that could be used in the nTron synapse, and estimate the value
of the parameter A1, introduced in section 3.3. An external resistor (at room
temperature) of 22 Ω was connected to the drain of the nTrons and V-I curves with
DC gate current higher than zero were realized. Figure 5.10 shows the result for
10-nm and 20-nm nTrons.

(a) (b)

Figure 5.10: Voltage across the load resistance (RL = 22 Ω) of the nTron as
function of the bias current, at different values of gate current (DC). (a) nTron
with 10-nm wide choke and 100-nm wide channel (Ic,ch = 66 µA, Ic,g = 3.5 µA).
Only the result with positive bias currents is shown. (b) nTron with 20-nm wide
choke and 200-nm wide channel (Ic,ch = 71 µA, Ic,g = 4.8 µA).

Figure 5.10a shows the positive part of the V-I curve obtained with the 10-nm
nTron. The signal is very noisy because using external resistors at room temper-
ature reflection signals are generated and the curve is slightly shifted along the
y axis due to parasitic resistances introduced by the setup, but it is possible to
notice that the nTron is correctly working since the critical current decreases with
increasing gate current. At Ig = Ic,g = 3.5 µA the critical current is suppressed by
∼ 0.55, which is the factor A1 of the nTron.
Figure 5.10b shows the full V-I curve obtained with the 20-nm nTron. Even in
this case the nTron is working but the switching seems to be asymmetric. With
negative bias currents the suppression of Ic,ch is much lower. Further work would
be needed to understand how to solve this problem, that would not allow to bias
the nTron synapse with negative currents to obtain the inhibitory control. Also for
this nTron A1 ≈ 0.55 (from green curve). This result is consistent with the fact
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that the two nTrons have almost same channel critical currents, so in theory also
same channel width, even if designed to have it different.
With the obtained A1, a synapse formed by these nTrons, with the considerations
made in chapter 4, would have a resulting tunability of ∼ 60% for single spikes
and ∼ 14% for multiple spikes. These values are not optimal, so further work is
needed to increase A1, changing the geometry of the nTron. First of all a nTron
with 100-nm wide channel should be correctly fabricated, since the channel of the
tested device is probably different from 100 nm.

Elimination of reflections

The experimental setup used for the previous results presents the problem of
reflections, that alter the output signal. The reflections were even more evident
in setups used to demonstrate the ability of the nTron to amplify current pulses,
with time-domain characterizations. The reflected signals are generated by the
coaxial cables that act as transmission lines, and are not matched with the input
impedances of the devices. These signals can be almost removed placing the 100 kΩ
resistors and the load resistors at cryogenic temperature in close proximity of the
nTrons, avoiding to use coaxial cables between the resistors and the devices ports.
For each signal that it is not constant in time, like the current provided to the gate,
a 50 Ω off-shelf resistor was placed on the PCB, in parallel with the battery source
in order to transfer the voltage to the chip being matched. After this resistor the
100 kΩ resistor was placed to set the current. For bias lines the 50 Ω resistor is not
necessary, so in this case only 100 kΩ were used. Placing the resistors at cryogenic
temperature also lowers the thermal noise. Figure 5.11 shows the realized PCB
with the 1x1 cm2 die glued in the center and the resistors soldered on the lateral
pads. A 20-nm wide choke 200-nm wide channel nTron (with short gate and source)
was wire bonded to the associated pads, to test the amplification ability with a
load of 10 Ω.
Considering that Rsyn of the inductive synapses were too high, a 8500-squares
inductor was wire bonded to off-shelf resistances (Rsyn,1 = 10, Rsyn,2 = 5), in order
to demonstrate that the kinetic inductor can be charged by a train of spikes.
Moreover a nTron synapse was realized, connecting the drain of a 20-nm nTron
to an inductor with Rsyn,1 = 10 and Rsyn,2 = 5, to test the behavior of the ntron
synapse. The obtained results are shown in the following sections
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Figure 5.11: PCB with the die glued in the center and off-shelf resistors soldered
on the pads. A nTron, a meandered inductor and a nTron synapse are wire bonded
to the associated pins and resistors.

The I-V curve with variable gate current of the 20-nm nTron with resistors at
cryogenic temperature (RL = 10 Ω) is shown in figure 5.12.
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Figure 5.12: Voltage across the load resistance (RL = 10 Ω) of the nTron as
function of the bias current, at different values of gate current (DC). 20-nm wide
choke and 200-nm wide channel, short gate and source (∼ 20 squares), resistances
at cryogenic temperature, Ic,ch = 80 µA, Ic,g = 20− 50 nA.
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Surprisingly the tested nTron seemed to have a very low gate critical current in
the range 20-50 nA. Such a low value could be obtained with a real choke width of
∼ 1 nm. It is possible that the fabricated choke is on this order of magnitude, but
is unlikely that the nTron would not be activated by noise with this Ic,g. Since the
activation seems to be stable probably the 100 kΩ resistor changed is value at low
temperature or it was made a mistake during the soldering and in reality a higher
current was provided to the gate. Even if the value of critical current probably has
to be scaled, figure 5.12 shows that this nTron with short gate and source (∼ 20
squares) has a symmetric I-V curve, and the suppression of the critical current is
dependent on the gate current. The transition from superconducting to normal
state is more smooth than the one of figure 5.10, so the value of A1 was extracted
from the time-domain results.
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Pulse amplification

Firstly the ability of the nTron to amplify a current pulses, crucial for the realization
of the nTron synapse, was demonstrated using a 20-nm nTron (long source and
gate) with resistors at room temperature. The setup of the measurement is shown
in figure 5.13A (RL = 50 Ω), while 5.13B shows the time-domain behavior. The
train of pulses was generated by a waveform generator with a 100 kΩ resistor in
series.
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Figure 5.13: (A) Circuit schematic of the experimental setup used to amplify
current pulses with a nTron. The resistors are not at cryogenic temperature.
RL = 50 Ω but the input impedance of the oscilloscope is set to 50 Ω, so the
total load resistance is 50 Ω. The input voltage is measured by the scope from a
secondary channel of the waveform generator. (B) Time-domain behavior of the
nTron with 20-nm wide choke and 200-nm wide channel (long source and gate).
The nTron was simulated with the same setup (without coaxial cables), using the
SPICE model with the same parameter of figure 5.9. (i) Current provided to the
gate (ii) Current flowing through the load resistor, obtained dividing the output
voltage by the load resistance.

The input signal does not present high noise because it was measured on a sec-
ondary port of the waveform generator. The SPICE model with the parameter used
to match the I-V curve in figure 5.9, was used to simulate the same configuration
of figure A (without including the coaxial cables). The simulated response seems
to be coherent with the experimental result, even if reflections are present, so the
model works properly. Due to reflections the maximum frequency of the current
pulses provided to the gate, that can be followed by the nTron is only 38 MHz.

The same test was performed on the 20-nm nTron of figure 5.12 with the
resistors soldered on the PCB. In this case the output signal was amplified by a
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1GHz-bandwidth 50db amplifier. The obtained time-domain behavior is shown in
figure 5.14
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Figure 5.14: Experimental time-domain behavior of the nTron with 20-nm
wide choke and 200-nm wide channel (short gate and source). The resistors are at
cryogenic temperature, and the lines are matched (Ic,ch = 80 µA, Ic,g = 20−50 nA).
(i) Current provided to the gate (ii) Current flowing through the load resistor
(RL = 10 Ω), obtained dividing the output voltage by the load resistance.

As expected the signal is much less noisy and similar to the one obtained by
simulations. The exponential decay after the switching of the channel can be
clearly recognized. The reflections are very limited and the nTron can work even
at 80 MHz, the limit of the waveform generator. This nTron was tested also with
negative values of bias current obtaining negative pulses on the output. This means
that it can be used in a nTron synapse to set an inhibitory control. Since the signal
is very clear, the result of figure 5.14 should be compared with the behavior of the
SPICE model to eventually find corrections to it.

In order to find the value of A1 for this last nTron, and realize a curve similar to
the one obtained by simulations of the nTron synapse (without the inductor Lsyn)
of figure 4.6b, a sweep on the bias current of the nTron was performed obtaining
the following output peak current as function of Ibias (the gate current is a train of
pulses with high level of Ic,g ≈ 50 nA at 80 MHz)
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Figure 5.15: Output peak current through the 10 Ω load resistor of the 20-nm
nTron (Ic,ch = 80 µA, Ic,g = 20 − 50 nA, resistors at cryogenic temperature) as
function of the bias current. The peak current on the input is 50 nA, and the pulses
frequency is 40 MHz. For each value of bias current the nTron is generating spikes,
the peak current was extracted computing for each value of Ibias the maximum in
the interval 0-180 ns.

Only positive bias currents were considered for this analysis. The obtained A1
is ∼ 0.8, which is too high to realize a nTron synapse with enough tunability.
The next step of this study would be to characterize all the fabricated nTrons with
the method that exploits resistors soldered on the PCB. With more data it will be
possible to understand better how to improve the geometry of the devices.

nTron + inductive synapse

The inductive synapse wire bonded on the chip shown in figure 5.11, was tested. A
train of current pulses was provided to the input through the waveform generator
as in the previous setup, and the voltage drop on the parallel resistance Rsyn,2 was
amplified and sensed by the oscilloscope. The goal was to show that a certain
number of pulses could charge the inductor. The discharging current, that would
have been the output current of the synapse if a NW neuron had been placed
as load, could be extracted by the voltage drop on Rsyn,2. Ideally increasing the
frequency of the pulses, the DC signal on the output should have increased, but
the tested device probably was shorted and the inductor did not charge. Previously
the inductor was also tested with external resistances at room temperature, but
the reflections were too high to allow a correct characterization. In the next steps
the inductive synapses will need to be fabricated again using the correct fabrication
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process, and more of them need to be characterized.

The final step necessary to demonstrate the nTron synapse behaves as designed,
is to connect a nTron to an inductive synapse. This was done wire bonding the drain
of a 20-nm nTron to the input of a inductive synapse. The structure was tested with
the same method used for the inductive synapse, but the connected nTron did not
work properly. The input pulses could pass through it as leakage current without
being amplified. The same structure were previously tested with resistances at
room temperature, but even in this case the reflections altered the response, and
the inductor was not able to charge because the maximum frequency the nTron
could tolerate was too low (8 MHz). A new fabrication has to be performed and
more devices need to be characterized. The goal of this last measurement was to
demonstrate the variable synaptic strength, the inhibitory control and find the real
tunability of the nTron synapse.
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Chapter 6

Integration of JJ and NW
neurons: electrical analysis

The NW neurons are better than the JJ neurons in terms of fan-out because able
to generate more fluxons. It is also simpler to test them, and integrate them
with standard CMOS technologies, but they still can not reach the same level of
parallelism of biological neurons. In a biological systems usually each neuron can
connect to 1000s of neighbors [2]. In order to find a possible solution to this lack,
the integration between nanowires and Josephson junctions-based technologies
was analyzed by the electrical point of view. The JJ neurons have much lower
characteristic impedance than NW neurons, and the NW neurons in general are
able to provide more current to the target. The union of these two characteristics
could be decisive to obtain an higher fan-out.

It was demonstrated by [43] that RSFQ circuits based on Josephson junctions
can be interfaced with nanowire-based devices like nanocryotrons, and [7] proposed
a complete design of a photonic spiking neural network in which JJ neurons are
integrated with SNSPDs. Therefore NW neurons should be able to interface with
Josephson junctions, which are the standard technologies for superconducting
electronics. This section shows the results of the performed simulations to highlight
pros and cons of the integration. Even if this integration did not result to be
advantageous in term of fan-in/fan-out properties, it could be still useful exploiting
NW neurons to allow the interface between JJs and CMOS.

6.1 Methods
The integration of the two technologies was tested only through electrical simu-
lations, using the SPICE models explained in details in chapter 3. The complete
LTspice model of the NW neurons was already used in [2] to demonstrate the basic
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characteristics, while the model of the JJ neuron was only present in WRspice.
Therefore the LTspice model of the JJ neuron was firstly tested, verifying that its
time-domain behavior matches the results of [1].

The parameters of the two models were initially set respectively to the values
used in both [1], and [2], and then slightly modified to find the optimal setting for
the system. The NW neuron is a new technology. Few operating NW neurons were
realized until now, and their characteristic and fabrication process are not well
controlled and optimized yet, considering that the value of the shunt resistance
results to be not well controlled. Here we supposed that the shunt resistance,
critical current, inductances and other parameters are perfectly controllable for
simplicity. A more in-depth analysis would be necessary to take into account any
limitations introduced by the fabrication.

Parameters of JJ neurons

In this analysis only JJ neurons which belongs to Class I (Γ = 1.5) were taken in
consideration. Their junctions are more damped than the ones of Class II, so it is
easier to control their firing behavior, avoiding undesired unstable oscillations. The
typical value of Ic for fabricated JJ neurons is 90 µA, and the junctions capacitance
is linearly dependent on the critical current with a factor around 1.13 nF/A. It
brings to a capacitance of 102 fF . The parallel of the shunt resistor and the subgap
resistance (Rtot) was set to 4 Ω in order to obtain Γ = 1.5. The loop inductance
Ltot = (Lp + Ls) was set to values in the range from 50 to 100 pH.

In order to limit an unwanted activation of the neurons due to noise injected
into the system, the bias current of both the devices was kept close to 1.9Isw (or
1.9Ic). In this way a 5% margin is maintained on both the oscillators (or junctions).

The axons of both JJ and NW neurons are not considered in all the simulations,
moreover the configuration of inductive synapses that allows a variable synaptic
strength and the inhibitory control through inductive coupling were not introduced
for sake of simplicity.

6.2 Connections
In order to evaluate a possible integration of JJ neurons and NW neurons, different
kinds of connections were simulated, in order to find the best configurations.

6.2.1 Direct connection
The easiest way to connect two neurons is through a resistor, so that the strength of
the synaptic connection corresponds to the value of the resistance. Both NW-to-JJ
and JJ-to-NW connections were analyzed.
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NW-to-JJ connection

Considering that a single current pulse of the NW neuron is at least 100 times
longer than a pulse of a JJ neuron and the typical spiking frequency of the NW
neuron is at least one order of magnitude lower then the one of the JJ neuron, the
NW neuron with Isw = 30 µA can activate the JJ neuron, which fires each time
the upstream neuron generates a spike. The direct connection through a resistor
does not isolate the upstream neuron from the pulses generated by the downstream
neuron, in fact the shape of the action potential is modified as shown in figure 6.1b,
so the configuration was discarded.
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Figure 6.1: NW neuron connected to a JJ neuron through a resistor (direct
connection). (a) Circuit schematic. Parameters: Ls,NW = Lp,NW = 10 nH,
Ls,NW = 4 nH , Rsh = 20 Ω, Isw = 30 µA, Ib,NW = 57 µA, Rseries = 10 Ω,
Ib,JJ = 171 µA, Iin = 6 µA. (b) Time-domain of the output voltage of the NW
neuron. (c) Time -domain of the output voltage of the JJ neuron.
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JJ-to-NW connection

Obviously it is not possible to make a NW neuron fire with a single spike of current
provided by a JJ neuron (JJ-to-NW connection) because a NW neuron needs more
than one fluxon to be triggered, so the direct configuration is not suitable for this
connection.

6.2.2 Connection through inductive synapse

The inductive synapse was chosen as preferable solution, because it can isolate the
two neurons thanks to the presence of Rsyn,1 and Rsyn,2, and it ideally allows to
exploit the non-linearity of the kinetic inductance to introduce the tunability of
the synaptic strength, as explained in section 1.3.3.

NW-to-JJ connection

For the NW-to-JJ connection the kinetic inductance was set to values one or two
orders of magnitude lower (1-10 nH) than ones used in [2], in order to maximize its
output current and demonstrate that a NW neuron can make fire a JJ neuron with
a single spike. With so low inductances the time constant of the synapse is not large
enough to permit the input current pulses to charge the inductor with a train of
spikes. This means that the synapse does not work as a standard inductive synapse,
but more closely to a direct connection with isolation. The action potential directly
propagates through it, its voltage and current levels are lowered, and its shape is
broadened.
Figure 6.2 shows the dynamic in time-domain of the NW-to-JJ connection in both
the excitatory and inhibitory behavior, for a single spike generated by the main
neuron (in the inhibitory configuration a current source on the input of the JJ
neuron is placed to activate it). In both cases the NW neuron is able to control the
JJ neuron, which generates more spikes respect to the result of figure 6.1 since it is
biased closer to 2Ic. Using oscillators with higher Isw would allow to decrease the
bias current, obtaining the same level of firing. Moreover it is possible to notice
that the spiking frequency of the JJ neuron is strongly dependent on the input
current, clearly belonging to Class I.
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Figure 6.2: NW neuron driving a JJ neuron through inductive synapse. (A)
Circuit schematic. Parameters of the NW neuron: Ls,NW = Lp,NW = 10 nH,
Ls,NW = 4 nH , Rsh = 10 Ω, Isw = 30 µA, Iin = 6 µA (B) Time-domain of the
excitatory control. Parameters: Ib,NW = 57 µA, Rseries,in = 5 Ω, Lsyn = 5 nH,
Rsyn,1 = Rsyn,2 = 20 Ω, Rseries,out = 1 Ω. (C) Time-domain of the inhibitory
control. Parameters: Ib,NW = −57 µA, Rseries,in = 10 Ω, Lsyn = 3 nH, Rsyn,1 =
Rsyn,2 = 20 Ω, Rseries,out = 1 Ω, Iin,JJ = 6 µA. For both the types of control: inset
(i) shows the input current and output voltage of the NW neuron; inset (ii) shows
the output current of the synapse; inset (iii) shows the output voltage of the JJ
neuron.

JJ-to-NW connection

Also for the JJ-to-NW connection, the reduction of the synaptic inductance is
necessary to ensure enough output current, since the impedance of the JJ neuron is
much lower than the one of the NW neuron and only a fluxon per spike is generated.
In this case the pulses of the JJ neuron charges the small inductor of the synapse,
that slowly discharges and activates the NW neuron.
Figure 6.3 shows the dynamic of this connection. The JJ neuron is able to drive a
NW neuron both with excitatory and inhibitory control, firing for at least 5 ns.
Increasing Ib,NW , less spikes would be necessary to activate the NW neuron. The
inset (i) of figure 6.3B shows that the spiking frequency of the JJ neuron is strongly
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dependent on the current passing though the synapse. It decreases from 25 GHz
to 15 GHz, between 1 ns and 5 ns, and then rises again to 16 GHz when the NW
neuron fires. This last change is due to the back-propagation of the signal and
could be limited or increased, varying the synaptic inductance.
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Figure 6.3: JJ neuron driving a NW neuron through inductive synapse. (A)
Circuit schematic. Parameters of the NW neuron: Ls,NW = Lp,NW = 10 nH,
Ls,NW = 4 nH , Rsh = 10 Ω, Isw = 30 µA, Ib,NW = 58.5 µA. Parameters of
the JJ neuron: Ls,JJ,1 = Lp,JJ,2 = 50 pH, Iin = 20 µA (B) Time-domain of the
excitatory control. Parameters: Ib,JJ = 171 µA, Rseries,in,1 = 5 Ω, Rsyn1,1 = 20,
Lsyn,1 = 20 nH, Rsyn2,1 = 10, Rseries,out,1 = 1 Ω. (C) Time-domain of the inhibitory
control. Parameters: Parameters: Ib,JJ = −171 µA, Rseries,in,1 = 5 Ω, Rsyn1,1 = 20,
Lsyn,1 = 20 nH, Rsyn2,1 = 10, Rseries,out,1 = 3 Ω, Iin,NW = 6 µA. For both the
types of control: panel (i) shows the input current and output voltage of the NW
neuron; panel (ii) shows the output current of the synapse; panel (iii) shows the
output voltage of the JJ neuron.

JJ-to-NW-to-JJ connection

In order to demonstrate that an hybrid system can be realized, it is necessary to
show that the neuronal signal can propagate from JJ neurons to NW neurons and
return again to the JJ neurons. Figure 6.4a and 6.4b show that it is possible, if
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all the neurons are biased closer to 2Ic (or 2Isw). Despite this could be a problem
in terms of noise margins, this simulation shows that the two technology can
communicate. A single spike of the NW neuron can make the JJ neuron generate
more spikes, that in turn can induce the NW neuron to fire once. Obviously some
improvements have to be introduced to obtain a real integration and realize a large
network.

Iin

Ib,JJ,1
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Rseries,out,1Rseries,in,1

synapse

Rseries,out,2Rseries,in,2

JJ neuron

Ib,NW

NW neuron

Ib,JJ,2
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Figure 6.4: JJ-to-NW-to-JJ connection with inductive synapses and nTron
synapses. (a) Time-domain with inductive synapses. First synapse parameters:
Rseries,in,1 = 5 Ω, Rsyn1,1 = 20, Lsyn,1 = 20 nH, Rsyn2,1 = 10, Rseries,out,1 = 1 Ω.
Second synapse parameters: Rseries,in,2 = 3 Ω, Rsyn1,1 = 20, Lsyn,1 = 5 nH,
Rsyn2,1 = 10, Rseries,out,1 = 1 Ω. JJ parameters: Ls,JJ,2 = Lp,JJ,2 = 100 pH. (b)
Simplified circuit schematic. NW neuron parameters: Ls,NW = Lp,NW = 10 nH,
Ls,NW = 4 nH , Rsh = 10 Ω, Isw = 30 µA, Ib,NW = 58.5 µA. JJ neuron parameters:
Ib,JJ,1 = 171 µA, Ls,JJ,1 = Ls,JJ,1 = 50 pH, Ib,JJ,2 = 175.5 µA, Iin = 20 µA. (c)
Time-domain with nTron synapses. Parameters for both synapses: Rsh,in = 5 Ω,
Rsyn1,1 = 15, Lsyn,1 = 100 nH, Rsyn2,1 = 50 Ω, Rseries,in,1 = 10 Ω, Rseries,in,2 = 20 Ω,
Rseries,out,1 = Rseries,out,2 = 2.5 Ω, Ic,ch = 40 µA, Ic,gate,1 = 2.2 µA, Ic,gate,2 = 3.7 µA,
Ib,nT = 36 µA. JJ neuron parameters: Ls,JJ,2 = Ls,JJ,2 = 80 pH. For both induc-
tive and nTron synapses the panels show the time-domain of: (i) output voltage of
the first JJ neuron; (ii) current through Rseries,out,1; (iii) output voltage of the NW
neuron; (iv) current through Rseries,out,2; (v) output voltage of the last JJ neuron.

The two technologies in the examples presented here, transfer information in
two different way: the information encoded in a single spike of a NW neuron is
translated into a train of spikes with variable frequency by the JJ neuron. It would
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be preferable to have the same kind of codification for both the devices, but it
is hard to obtain it, because of the enormous difference between their operating
frequencies.
A more complete analysis would consist in the simulation of a closed loop formed
by only one JJ neuron and one NW neuron, with the respective axons, that are
connected through inductive synapses. The signal would travel along the loop, and
the neurons would fire continuously with a certain phase difference from each other.
This synchronization dynamic was studied on the picosecond time scale in coupled
JJ neurons by [27].

6.2.3 Connection through nTron synapse
In chapter 4, the nTron synapse was introduced to connect NW neurons, but
theoretically it could be used to connect also neurons based on different technologies.
The NW-to-JJ connection is easily achievable, since the dependence of the nTron
synapse on the load impedance is almost the same of a simple inductive synapse.
For JJ-to-NW connections it is necessary to make some considerations. It has been
demonstrated in [43] that the nTron can be triggered by a single pulse generated
by a Josephson junction, but the time scale of the nTron pulse is much longer than
the one of a JJ pulse. As consequence the nTron is not able to follow the fast firing
of the Josephson junction, and a series of pulses could be seen as a single spike by
the nTron.
Normally on the gate of the nTron there is a non-negligible kinetic inductance.
If it is large enough (hundreds of pH), the spikes of the JJ neuron charge the
input inductor with a time constant that depends on the shunt resistor of the gate
(Rsh,in) and output impedance of the JJ neuron. When the current reaches the
threshold the nTron switches and the inductor is quickly discharged. After the
superconductivity is restored in the nTron, the gate is ready to switch again. The
number of spikes needed to activate the nTron can be set by changing the value of
the input inductance, so the number of squares of the gate and the source.

JJ-to-NW-to-JJ connection

The JJ-to-NW-to-JJ connection can be implemented also with nTron synapses.
Figure 6.4c shows the time-domain behavior of the configuration, in order to com-
pare it with the one based on inductive synapses. With the same number of spikes,
the first JJ neuron through nTron synapse (with maximum Ib,nT ) can make the
NW neuron fire 6 times, charging the gate of the nTron multiple times. The NW
neuron induces the last JJ neuron to fire for about 20 ns instead of 2.5 ns. All the
neurons can be biased at current lower than 1.90Ic, thanks to the amplification
introduced by the nTron, they becomes more robust to external noise.
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Moreover the nTron synapses always has the capability to store current in
the inductive loop, while the simple inductive synapse can not for NW-to-JJ
connections, due to the low value of Lsyn. All the advantages of the nTron synapse
could be exploited in a hybrid system, but additional power consumption would
be added, and the real advantages of the integration deriving from the impedance
mismatch between JJs and NWs would be lost (explained in following parts). For
these reason next sections will try to analyze networks that does not exploit nTron
synapses.

6.3 Fan-out/Fan-in limitations
The goal of this section is to study the fan-out/fan-in limitations of the hybrid
system, as done in sections 4.2.2 for the NW-based system, to understand if it is
possible to realize a large network with integrated JJ and NW neurons. The same
notations and definitions of fan-out/fan-in are used here.

6.3.1 Fan-out
A system based on JJ neurons that does not exploits splitters (see section 4.2.3) or
synapses able to amplify the signals, can only reach a fan-out of 2 or 3 elements
[11], because the output flux of a single action potential is always equal to one
fluxon Φ0. In a system based on NW neurons that exploits inductive synapses
the maximum fan-out is higher but still not comparable with the one of the brain.
In order to show the advantages of the integration of nanowires and Josephson
junctions for the fan-out, simulations on the following systems were performed:
(1) one NW neuron driving M NW neurons; (2) one NW neuron driving M JJ
neurons. For both these systems the inductive synapses are used instead of nTron
synapses to remove every kind of signal amplification and make a fair comparison.
The comparison with NW-based network that uses nTron synapses was included
(without splitters). The fan-out limit of this system depends mainly only on the
gate critical current of the nTron, so the results of section 4.2.2 should be valid
also to describe one NW neuron that drives M JJ neurons though nTron synapses.
The fan-out of a JJ neuron that drives M NW neurons was not analyzed because
a JJ neuron is not able to provide enough current.
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For systems (1) and (2) the synaptic inductances were kept as low as possible to
maximize the output current of the synapses, but ensure a low cross-talk current,
so an acceptable fan-in, in the hypothetical system with two layers introduced in
section 4.2.2. Lsyn of system (2) was chosen to be on the order of 1 nH. With the
same value, in system (1) Zout,syn/Zin,n2 could be two orders of magnitude lower
than the one of system (2), so it should be necessary to use a Lsyn even two order
of magnitude higher to obtain the same level of isolation (low cross-talk current).
Considering that a so high inductance would lower the maximum fan-out to almost
one, it was chosen to use 15 nH, a value that allows to have a two layer system
with at least N = 10. These considerations already show the advantages of a
possible integration of JJ and NW neurons: the fan-in connection from NWs to JJs
is advantageous because the input impedance of a JJ neuron is much lower than
the one of a NW neuron, so it is possible to drastically decrease the value of Lsyn
still keeping isolation from back-propagation, obtaining an higher fan-out because
more current can be provided by the synapses. The second advantages of using NW
neuron to drive JJ neurons is the possibility to tune Isw,n1, a characteristic that is
not present in JJ-based networks, which need splitters to have fan-out higher than 3.

For all the following analysis and simulations the parameters of the NW neurons
do not follow table 4.1, so it was not simulated the decrease of spiking frequency
with increasing switching current. In the model of the nanowires, only LNW and
Isw differ from the default values and no other experimental parameters are set,
so the neurons can still work at high Isw without latching. This is not correct
but considering that the synapses can not be charged by multiple spikes from NW
neurons, the change of spiking frequency does not modify their behavior, so the
results are consistent. It is important also to say that the output current of a NW
main neuron with Rsh,main = 50 Ω in these simulations is ∼ 0.7Isw,n1 instead of
∼ 0.8Isw,n1 (value obtained in section 4.2.2).
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Figure 6.5 shows the structure of the hybrid system and the results of the
time-domain simulation with Isw,n1 = 200 µA and M = 11.
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Figure 6.5: Maximum fan-out for the NW-JJ system. (a) Schematic of the
simulated circuit. The parameters of the NW neuron do not follow the rules
of table 4.1: only Lnw and Isw are set in the model of the nanowires, all the
other parameters are the default ones. Synapses parameters: Rseries,in = 4 Ω,
Rsyn,1 = 30 Ω, Lsyn = 1 nH, Rsyn,2 = 30 Ω, Rseries,out = 1 Ω, RNW,JJ = 10 Ω.
(b) Time domain of the output voltage of the main NW neuron (Isw,n1 = 200 µA,
high Rsh,main = 50 Ω) that drives 11 JJ neurons (Ibias = 1.9Ic) through inductive
synapses.

Using equation 4.9 it is possible to estimate the maximum fan-out as function of
the circuit parameters, with the structure of figure 6.5A. It was found by simulations
that the junctions of a JJ neuron need at least 1.01Ic of current to fire. This means
that the input current of the JJ neuron has to be higher than Iminin,JJ = 2.02Ic− Ib,JJ .
Considering that W is equal to 0.9 with the synaptic parameters used in figure 6.5,
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and Iout,NW = 0.7Isw,NW , the expression of the maximum fan-out is:

FOmax ≈ 0.31
(
Isw,NW
Ic,JJ

)
1

1−
(

Ib,JJ
2.02Ic,JJ

) (6.1)

In order to verify this equation is correct simulations were performed integrating
LTspice and Matlab, as done in section 4.2.2. Figure 6.6 shows the maximum
fan-out of system (2) as function of Isw,NW at different bias current of the JJ
neurons.
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Figure 6.6: Maximum fan-out for a NW neuron that drives JJ neurons through
inductive synapses as function of the switching current of the main neuron Isw,n1,
at different bias current of the JJ neurons Ib,JJ . The parameters of the NW neuron
do not follow the rules of table 4.1: only Lnw and Isw are set in the model of
the nanowires, all the other parameters are the default ones; (Rsh,main = 50 Ω).
Synapses parameters: Rseries,in = 4 Ω, Rsyn,1 = 30 Ω, Lsyn = 1 nH, Rsyn,2 = 30 Ω,
Rseries,out = 1 Ω, RNW,JJ = 10 Ω.

Equation 6.2 correctly describe the result. With Ib,JJ = 1.9Ic the maximum
fan-out is:

FOmax ≈ 5.25
(
Isw,NW
Ic,JJ

)
(6.2)

Using parameters of table 4.1, FOmax would be 14% higher (with Isw,NW =
200 µA it would be 12 instead of 11).
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The same simulation was performed also for the system (1). Figure 6.7 shows
the comparison between system (1), system (2) and the NW-based system with
nTron synapses (in all the systems the target neurons are biased at 1.9Ic or 1.9Isw).
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Figure 6.7: Maximum fan-out for different systems. All the target neurons are
biased with 1.90Ic(or1.90Isw). NW-JJs system: NW neuron driving JJ neurons
through inductive synapses. Synapses parameters of figure 6.6. NW-NWs system:
NW neuron driving NW neurons through inductive synapses. Synapses parameters
of figure 6.6 with Lsyn = 15 nH. NW-NWs (nTron syn.) system: NW neuron
driving NW neurons though nTron synapses. Parameters of figure 4.10 and table
4.1.

Obviously the nTron-based system is the most performing, but its power con-
sumption is high. The hybrid system can reach a double fan-out with a better
isolation from back-propagation respect to the NW-based system that does not
exploit nTrons. Moreover here only JJ neurons with Ic = 90 µA were used, but it
would be possible to exploit Josephson junctions with critical currents even lower
than 20 µA, as done by [11]. With Ic = 10 µA the maximum fan-out could be
higher than 100.

6.3.2 Fan-in

The fan-in from NW to JJ neurons was not analyzed because it can certainly reach
high values, as already said. Here it was studied the fan-in from N JJ neurons to
one NW neuron through inductive synapses. The circuit schematic of the fan-in
structure is shown in figure 6.8.
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Figure 6.8: Schematic of the circuit simulated to study fan-in performances. N
JJ neurons fan into one target NW neuron through inductive synapses, and only
one of the N neurons is activated through Iin.

As explained in section 6.2.2, the JJ neuron can activate a NW neuron through
inductive synapse only if a train of spikes charge the inductance Lsyn, generating
an almost DC current. The expression for the input current of the target neuron
Iin,NW is similar to the one of section 4.2.2:

Iin,NW ≈ WIout,JJ
1

1 +N
(
Zin,NW
Zout,syn

) (6.3)

and even in this case, WIout,JJ depends on the number of spikes that charge
the synapse. The parameters of the NW neuron were modified to decrease Zin,NW :
Ls,NW and Lp,NW were set to 5 nH, and the synaptic parameters are the ones of
section 6.2.2 (Lsyn = 20 nH). The obtained input current as function of N , at
different ton (time during which the neuron continuously fires) of the JJ neuron is
shown in figure 6.9.
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Figure 6.9: Input current Iin,NW of the target neuron of figure 6.8, as function of
the number of neurons in the first layer N , for different number of pulses generated
by the NW neuron 1 (or different ton of the pulse generated by Iin). NW neuron
parameters: Ls,NW = Lp,NW = 5 nH, Ls,NW = 4 nH , Rsh = 15 Ω, Isw = 30 µA,
Ib,NW = 0 µA. JJ neurons parameters: Ib,JJ = 171 µA, Ls,JJ = Ls,JJ = 50 pH,
Iin = 18 µA. Synapses parameters: Rseries,in,1 = 5 Ω, Rsyn1,1 = 20, Lsyn,1 = 20 nH,
Rsyn2,1 = 10, Rseries,out,1 = 1 Ω.

Fitting the three curves, it results that Zout,syn/Zin,NW is ∼ 14 for ton = 10 ns,
∼ 25 for ton = 20 ns and ∼ 35 for ton = 30 ns. Using the same equation 4.16 of the
NW-based system, and considering that the NW neuron is biased with 1.95Isw,NW ,
otherwise it can not be activated, with ton = 30 ns we obtain a maximum fan-in of:

FImax = 0.39 ·
(
Zout,syn
Zin,NW

)
≈ 13 (6.4)

which is very low compared to fan-in of NW-based and JJ-based systems. More-
over the bias current is higher so the noise can alter the operations. It is also
important to say that making a JJ neuron constantly fire for more than 10 ns with
a single action potential of a NW neuron is impossible, so in a real hybrid network
it should be considered the case for which ton < 10 ns, obtaining a maximum fan-in
close to 1.
Structures different from the one of figure 4.14 were exploited always trying to not
increase the power consumption, introducing the inductive coupling to increase
Zout,syn/Zin,NW , but they are discarded because they cause the decrease of the
synapse output current. The alternative is to introduce additional energy consump-
tion, amplifying the current in the synapses (for example using nTron synapses), or
restoring the current at the input of the target neuron, with amplification. In [11]
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the fan-in problem of the JJ-based system is solved with the inductive coupling,
and a JTL that restores the current on the input of the target. Further work would
be needed to improve the fan-in performances, probably trying to integrate the
fan-in structure of [11] with a NW neuron. It is a goal difficult to achieve, because
of the huge difference between the impedance of JJ neurons (order of pH) and the
one of NW neurons (order of nH).

6.3.3 Generalized Fan-out in a complete JJ-NW neural
network

A hypothetical 3-layers network formed by a first layer of NW neurons, a second one
of JJ neuron and a last one of NW neurons, using only inductive synapses, would
be useful for for application like pattern recognition. It was already demonstrated
that NW neurons could be used to classify simple 9-pixels images [29], but the
exploited structure can be formed by only two layers, so probably it would struggle
to recognize patterns on larger images. Introducing an additional hidden layer
the network would be more flexible and accurate. Thanks to the better fan-out
performances of the hybrid system, it would be possible to realize it. Respect to a
NW-based system the energy consumption would be lower. Moreover it would be
better respect to JJ-based systems to interface the network with external environ-
ment because the input and output neurons would be NW neurons. The problem
is that the low JJ-to-NW fan-in would limit the number of neuron that can be put
on the last layer, and in addition it would not be possible to realize networks with
more than 3 layers. For this reason, here the NW neurons of the last layers were
replaced by JJ neurons. The fan-in of a JJ-based network that exploits inductive
synapses can be much higher because the ratio Zout,syn/Zin,n2 is increased by two
orders of magnitude. In this way we exploit both the advantages of the NW-to-JJs
fan-out and JJs-to-JJ fan-in. The simplified structure that was analyzed here is
shown in figure 6.10. For simplicity only one JJ neuron was put in the last layer.
The drawback of this configuration obviously is that the output is generated by a
JJ neuron, so it is more difficult to read it.
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N NWs M JJs

Figure 6.10: Simplified schematic of the analyzed network, with N NW neurons
in the first layer, M JJ neurons in the hidden layer and 1 JJ neuron in the last
one. The inductive synapses are not shown.

It is important to estimate how many NW neurons Non are necessary to activate
M JJ neurons in the second layer, to understand the real power of the hybrid
system in terms of fan-out. Therefore the structure was simulated to find the
generalized fan-out defined in section 4.2.2, and verify that the JJ neurons of the
second layer can provide enough current to the output JJ neuron.

From equation 6.5 we know how to compute the generalized fan-out. Considering
the value of Iminin,n2, the generalized fan-out can be written as:

GFOmax =
(
Mon

Non

)
max

≈ W

(
Iout,NW

2.02Ic,JJ − Ib,JJ

)
1

1 +N
(
Zin,JJ
Zout,syn

) (6.5)

This is equal to the expression of the maximum fan-out multiplied by the factor
that depends on Zin,JJ/Zout,syn, introduced to consider the fan-in from the first
to the second layer. In the case of NW-to-JJ fan-in N � Zout,syn/Zin,JJ so the
expression of GFOmax results to be equal to the one of FOmax. In this section, in
order to make a more realistic analysis it was supposed thatW is equally distributed
in the range [0-1] for all the synapses, so W is 0.5 (previously it was set to 0.9 to
maximize the fan-out). Moreover it is known that Iout,NW ≈ 0.7Isw. With these
assumptions we can say that:

GFOmax ≈ 0.17
(
Isw,NW
Ic,JJ

)
1

1−
(

Ib,JJ
2.02Ic,JJ

) (6.6)

This expression shows that higher are the ratios Isw,NW/Ic,JJ and Ib,JJ/2.02Ic,JJ ,
higher is the number of JJ neurons that can be activated by Non NW neurons
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firing, in average. Choosing as bias current Ib,JJ = 1.9Ic, the final expression is:

GFOmax ≈ 2.9
(
Isw,NW
Ic,JJ

)
(6.7)

The network was simulated with Isw,NW = Ic,JJ , N = 50 and variable M to
validate this expression. Figure 6.11 shows the input current of the output JJ
neuron as function of M/Non at different value of Non.
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Figure 6.11: Input current of the JJ neuron of the last layer (figure 6.10), as
function of M/Non (number of JJ neuron in the second layer over number of firing
NW neurons), at different value of Non/N (N = 50). NW neurons parameters:
Ls,NW = Lp,NW = 5 nH, Ls,NW = 4 nH , Rsh,control = 10 Ω, Rsh,main = 50 Ω,
Isw = 90 µA, Ib,NW = 57 µA, RNW,JJ = 5 Ω, Iin = 6 µA. JJ neurons parameters:
Ib,JJ = 171 µA, Ls,JJ = Ls,JJ = 50 pH. Synapses parameters (NW-to-JJ):
Rseries,in = 4 Ω, Rsyn,1 = Rsyn,2 = 30, Lsyn = 10 nH, Rseries,out = 1 Ω. For the
synapses between the second and last layers Lsyn = 1 nH.

Lsyn of the synapses between the first and the second layer is set in order to
have W = 0.5. All the Non neurons are firing contemporary, so if they are able
to activate JJ neurons in the second layer, they make them fire (generating more
spikes) all a the same time. Therefore the amount of current provided to the output
neuron is very high as expected. This means that it could be possible to add more
JJ neurons to the last layer. Obviously for the same M , increasing the number
of firing NW neurons , an higher current is generated, but in a real network it is
very unlikely to have Non > 10 for N = 50. In biological systems usually only

√
N

neurons fire. In the simulation for Non ≥ 30, at certain values of M/Non lower
than 2, the current seems to be lower. Probably it happens because too much
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current is provided to JJ neurons. A more detailed analysis should be done to
understand why. However this is a secondary problem, the graph firstly shows that
the output current becomes zero approximately when M/Non = 3. Considering
that Isw,NW = Ic,JJ , the GFOmax is ∼ 3, respecting equation 6.7. This value can
be increased with the same method used to boost the NW-to-JJs fan-out. These
results show that it is possible to realize an hybrid network, in which the number
of neurons in the hidden layer is higher of the number of neurons in the first one.
In order to do a more detailed study, also the inductive coupling in the synapses
should be introduced to reproduce the inhibitory behavior.
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Chapter 7

Conclusion and outlook

Neuromorphic computing with alternative hardware structures have the poten-
tiality to really revolutionize information processing for innovative applications
like autonomous vehicle, robotics and internet of things (IoT). One of the most
promising architectures is the artificial spiking neural network, which ideally could
be able to reach the high performances of the brain. Many technologies has been
proposed for the realization of SNNs, but the most efficient in terms of energy is
based on superconducting electronics.
In this work, it was studied the possibility to create a SNN composed by su-
perconducting nanowire-based devices, analyzing its limitations and introducing
innovations in terms of design. All the most interesting results obtained in this
thesis with associated future outlooks are listed below:

From chapter 3:

• For the first time, easily usable LTspice models of Josephson junction, nTron
and hTron were created. The hTron model still need to be improved, however
with these models and the integration between Matlab and LTspice, it was
proposed a platform that facilitates the simulation of complex systems like
large neural networks. In the future it can be used to design other innovative
structures based on superconducting electronics.

From chapter 4:

• It was proposed and designed the inductive synapse with inductive coupling,
which allowed the realization of a neural network for image recognition and a
stochastic system based on the Winner-Takes-All (WTA) theory [29].

• The performances of the inductive synapse, firstly used for NW neurons, were
improved introducing an innovative structure (nTron synapse) that exploits
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the potentialities of the nTron (or hTron). The nTron synapse can reproduce
both the inhibitory and excitatory behavior with variable strength, obtaining
higher output current and tunability of the weight (ideally 120%) respect
to standard inductive synapses. The level of tunability and other electrical
characteristics of the nTron synapse still need to be improved eventually
modifying the geometry of the nTron, and a complementary circuit should be
included to introduce the unsurprising learning as done by [7].

• The fan-out limit of a network based on NW neurons and nTron synapses was
analyzed through simulations finding a maximum fan-out of ∼ 35, which can
not be reached with standard inductive synapses, but it is still much lower
than the values in the brain. Therefore it was proposed a structure inspired by
a recent work [11], based on a new circuit named nTron splitter, that ideally
could allow to reach fan-out of thousands. The nTron splitter was introduced
here for the first time, so a more accurate analysis would be necessary to
understand its limitations in terms of fabrication and occupied area. It would
be also necessary to demonstrate experimentally that a single nTron can drive
multiple nTrons.

• The fan-in limit was analyzed through simulations finding a maximum fan-in
of ∼ 56. This value is far from the one of biological systems, but it was
observed that should be possible to easily increase it playing with all the
parameters of the network. Probably it will be necessary to introduce a fan-in
structure based on inductive coupling to further increase the maximum fan-in,
as done by [11] and [7].

• Due to the characteristic non-linear input impedance and leakage currents of
the nTron, the operation of a large neural network exploiting nTron synapses
could be compromised for limited isolation. Therefore it was here proposed
to replace it with the hTron synapse, for its better isolation and fan-out
characteristics. It was demonstrated by simulations that it can couple two
neurons but further work will be needed to understand if it can be realized
and to find its limitations.

From chapter 5:

• Relaxation oscillators (shunted nanowire) with different values of shunt re-
sistance were fabricated and characterized to study the spiking behavior,
obtaining spiking frequencies even higher than 1.2 GHz. These kind of oscil-
lators in the future could be exploited for applications different from SNNs.
NW neurons were also tested, and resulted to not work properly with an
input current pulse, so more devices need to be characterized to understand
and solve the problem. Moreover it would be important to find a theoretical
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description of the NW neuron, that would help the design, and the develop
algorithms.

• nTrons and inductive synapses with different specifications were designed
and fabricated in order to study experimentally the potentiality of the nTron
synapse, and as final goal demonstrate the possibility to couple two neurons
though it. Only some of the fabricated nTrons were tested obtaining an
estimated value of tunability lower than expected. Therefore probably the
geometry of the nTron has to be rethought. The next step would be to
fabricate and test new nTrons, inductive synapses, and finally nTron synapses.
The final and crucial step would be to connect two neurons.

From chapter 6:

• Here for the first time, a possible integration between JJ neurons and NW
neurons was theorized and analyzed through simulations. It was demonstrated
that the two technologies can communicate with both the nTron and inductive
synapses, even if they work at very different spiking frequencies.

• The proposed hybrid system, that exploits inductive synapses, takes advantage
of the high driving capability of NW neurons, and low input impedance of
JJ neurons to obtain a maximum fan-out (from NW neuron to JJ neurons)
higher than the one of JJ-based system without using JJ splitters and also
higher than a NW-based systems with inductive synapses, still maintaining a
low cross-talk current.

• The maximum fan-in from JJ neurons to NW neuron is very low, so an
innovative circuital structure need to be found in order to make possible the
realization of large networks with multiple alternate layers. Probably even in
this case the solution would be a system based on inductive coupling.

• It was presented a hybrid system made by a first layer of NW neurons, a
hidden layer of JJ neurons and the last one of JJ neurons, to exploit the
good fan-out performances of the NW-to-JJ connection and the high fan-in
achievable by a JJ-to-JJ connection. This network might be useful to increase
the accuracy of pattern-recognition tasks (maintaining low power consumption)
when the number of input pixels exceeds 9 [29] and the complexity of the
images increases.

This work demonstrates that hypothetically it could be possible to realize
an artificial spiking neural network based on superconducting nanowires with
supervised learning, that can be integrated with CMOS technologies and Josephson
junctions.
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The fabrication variability and noise effects were not considered in the performed
analysis and still a lot of work will be necessary to fabricate a real neural network.
Moreover it would be very interesting to try to implement rate or temporal encoding
of information in the system, to really exploit the advantages of spiking computation
in innovative applications.
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