The frontier of information processing lies in nanoscience and nanotechnology research. At the nanoscale, materials, and structures can be engineered to exhibit interesting new properties, some based on quantum mechanical effects. Our research focuses on developing nanofabrication technology at the few-nanometer length scale. We use these technologies to push the envelope of what is possible with photonic and electrical devices, focusing in particular on superconductive and free-electron devices. Our research combines electrical engineering, physics, and materials science and helps extend the limits of nanoscale engineering.
The nanocryotron: A superconducting-nanowire three-terminal electrothermal device
Recent QNN News
Amir Tavakkoli K.G. Receives Best Postdoc Presentation Award from the MRS Symposium Directed Self Assembly for Nanopatterning
Congrats to Dr. Amir Tavakkoli K.G. for receiving the Best Postdoc Presentation Award from the MRS Symposium Directed Self Assembly for Nanopatterning. This was given to Amir for his presentation "Formation of Multilayer Structure and Nanoscale Rectangular Mesh by...
New Patent on Self-Assembly Issued to QNN Group Members
A method developed by the QNN Group with collaborators promises a way to make complex two-dimensional patterns by using sparse lithography in combination with self-assembly. Such a technique could be useful for nanofabrication of integrated-circuit patterns, or...
New paper: “Control of zinc oxide nanowire array properties with electron-beam lithography templating for photovoltaic applications” accepted to Nanotechnology
[abstract] We found that electron-beam lithography, a top-down approach, is a suitable prototyping method for templating and controlling hydrothermally-grown ZnO nanowires (NWs). By varying the deposition method of the ZnO seed layer, annealing and template hole...
24-picosecond single-photon timing jitter in saturated SNSPDs – New Paper in IEEE Quantum Electronics
In our new paper, to appear in the IEEE Jornal of Selected Topics in Quantum Electronics (JSTQE), we have demonstrated fully-saturated nanowire single-photon detectors with 24 ps jitter. Furthermore we show an improved fabrication process that allowed us to increase...
New paper: “Universal scaling of the critical temperature for thin films near the superconducting-to-insulating transition” accepted to Phys. Rev. B
[preprint] [supp. info.] We reported that the superconducting properties scale universally close to the superconducting-to-insulating transition in thin films. This universal behavior was found useful not only for the fundamental understanding of superconductivity...