The frontier of information processing lies in nanoscience and nanotechnology research. At the nanoscale, materials, and structures can be engineered to exhibit interesting new properties, some based on quantum mechanical effects. Our research focuses on developing nanofabrication technology at the few-nanometer length scale. We use these technologies to push the envelope of what is possible with photonic and electrical devices, focusing in particular on superconductive and free-electron devices. Our research combines electrical engineering, physics, and materials science and helps extend the limits of nanoscale engineering.

The nanocryotron: A superconducting-nanowire three-terminal electrothermal device

Recent QNN News

New Publication: Lightwave Electronic Harmonic Frequency Mixing

New publication: Matthew Yeung, Lu-Ting Chou, Marco Turchetti, Felix Ritzkowsky, Karl K. Berggren, and Philip D. Keathley, “Lightwave Electronic Harmonic Frequency Mixing,” Science Advances, 10, 33, (2024)  Image credit to Sampson Wilcox. Abstract Electronic frequency...

read more

Prof. Berggren SPIE Presentation Available

Prof. Karl Berggren gave a presentation on Integerated Electronics for Superconducting-nanowire Single-photon Detector Readouts at the SPIE Quantum West conference this January. The recording of this presentation is now available in the SPIE Digital Library. To access...

read more