Dr. Donnie Keathley will be presenting at an open webinar on May 5th at 1pm EDT. The topic will be “Nanoscale Petahertz Electronics for Science and Technology.” Details for the webinar are on the registration website and below.
When matter is driven by intense, few-cycle optical field waveforms it is possible to generate free-electrons having sub-cycle, sub-femtosecond temporal structure. By driving such emission between nanoscale structures, it is possible to create compact optical-field-driven electronic devices having bandwidths approaching or even exceeding one petahertz (10^15 hertz).
In this webinar, Phillip Keathley will start by reviewing the fundamental principles behind strong-field electron emission and how it enables sub-femtosecond electron emission. From there, Dr. Keathley will review recent efforts using these properties of strong-field electron emisison for the development of chip-scale petahertz electronics. In particular, Dr. Keathley will review his team’s efforts using nanoplasmonics to enable the use of low-energy driving pulses (picojoule- to nanojoule-level) for applications such as shot-to-shot carrier-envelope-phase detection and optical field sampling with attosecond resolution. Dr. Keathley will conclude by discussing how these nanoscale devices are enabling new capabilities. These new capabilities include field-resolved optical detection as well as the ability to transfer information between devices over femtosecond timescales for petahertz-level memory and logic gates.
Subject Matter Level: Intermediate – Assumes basic knowledge of the topic
What You Will Learn:
• Fundamentals of strong-field electron emission
• How strong-field electron emission enables field-resolved detection and petahertz-electronics
• A review of the state of the art in the field
• Future directions for these technologies
Who Should Attend:
• Those interested in ultrafast optics and applications
• Scientists working in strong-field light-matter interactions
• Those working in nanotechnology interested in how they could be used for ultrafast optics applications
• Those interested in optoelectronics and new directions for ultrafast optical detection